Electron Microscope Imaging Coreweb.phys.ntu.edu.tw/lclab/EMIC.pdf · Cryo‐electron microscopy...

1
Electron Microscope Imaging Core Specific aims : Most biological mechanisms of living organisms are carried out through large molecular assemblies in the range of 10 to 100 nanometers. Cryoelectron microscopy (cryoEM) provides architecture of these “molecular machines” and extends the capabilities of structural biology. We aim to understand the molecular structure of these macromolecules which is not only essential for the comprehension of their function and mechanism, but can also provide clues for the developing therapeutics related to health and disease. Accomplishment: Cryoelectron microscopy Cryoelectron microscopy (CryoEM) is a technique to freeze a hydrated sample and derive the 3D structures of the biological macromolecules using an transmission electron microscope. Using CryoEM combined with image processing technique, we have worked on many proteins and are able to solve less than 1 nanometer resolution protein structure. Fig. 1. 200 kVFEG transmission electron microscope. National Taiwan University Molecular Imaging Center CryoFIB scanning electron microscopy Imaging of cryofracturing samples to reveal internal structures is a well established microscopy technique. For Cryo DualBeam technique, the full advantage of Focused Ion Beam (FIB) site specific cross sectioning normal to the sample surface, and direct SEM imaging are the unique capabilities that allow us to investigate the internal structures of biological specimens without the loss of any data or artifacts introduced by sample preparation. Fig. 6. CryoSEM image of a disrupted chloroplast. Fig. 4. CryoEM structure of Escherichia coli GroEL. Fig. 3. CryoEM micrograph of Lumbricus terrestris hemoglobin. Fig. 2. CryoEM micrograph of Escherichia coli GroEL. Fig. 5. CryoEM structure of Lumbricus terrestris hemoglobin. . Fig. 8. CryoFIB prepared cross section of chloroplast grana. Fig. 7. CryoSEM image of chloroplast internal structure.

Transcript of Electron Microscope Imaging Coreweb.phys.ntu.edu.tw/lclab/EMIC.pdf · Cryo‐electron microscopy...

Page 1: Electron Microscope Imaging Coreweb.phys.ntu.edu.tw/lclab/EMIC.pdf · Cryo‐electron microscopy (Cryo‐EM) is a technique to freeze a hydrated sample and derive the 3D structures

Electron Microscope Imaging Core

Specific aims :Most biological mechanisms of  living organisms are carried out  through  large molecular assemblies  in  the  range of 10  to 100 nanometers. Cryo‐electron microscopy  (cryo‐EM) provides architecture of these “molecular machines” and extends the capabilities of structural biology. We aim to understand the molecular structure of these macromolecules which is not only essential for the comprehension of their function and mechanism, but can also provide clues for the developing therapeutics related to health and disease.

Accomplishment:Cryo‐electron microscopyCryo‐electron microscopy (Cryo‐EM) is a technique to freeze a hydrated sample and derive the 3D structures of the biological macromolecules using an transmission electron microscope. Using Cryo‐EM combined with image processing technique, we have worked on many proteins and are able to solve less than 1 nanometer resolution protein structure. 

Fig. 1. 200 kV‐FEG transmission electron microscope.

National Taiwan University Molecular Imaging Center

Cryo‐FIB scanning electron microscopyImaging of cryo‐fracturing samples to reveal  internal structures  is a well established microscopy technique. For Cryo DualBeam technique, the full advantage of Focused Ion Beam (FIB) site specific cross sectioning normal to the sample surface, and direct SEM imaging are the unique capabilities that allow us to investigate the internal structures of biological specimens without the loss of any data or artifacts introduced by sample preparation.

Fig. 6. Cryo‐SEM image of a disrupted chloroplast.

Fig. 4. Cryo‐EM structure of Escherichia coli GroEL.

Fig. 3. Cryo‐EM micrograph of Lumbricus terrestris hemoglobin.

Fig. 2. Cryo‐EM micrograph of Escherichia coli GroEL.

Fig. 5. Cryo‐EM structure of Lumbricus terrestris hemoglobin.

.

Fig. 8. Cryo‐FIB prepared cross section of chloroplast grana.Fig. 7. Cryo‐SEM image of chloroplast internal structure.