Electroencephalograph Machine

download Electroencephalograph Machine

of 33

Transcript of Electroencephalograph Machine

  • 7/29/2019 Electroencephalograph Machine

    1/33

    ElectroencephalographyMachine

    KoushaTalebian

    February25,2013

    BMEG550ProjectReport

  • 7/29/2019 Electroencephalograph Machine

    2/33

    2

    ExecutiveSummary

    An electroencephalography machine is an instrument that measures the neural

    activityofthebrain.Themachineconsistsofelectrodes,anamplifier,filters,analog

    todigitalconvertor, acomputermodule, and amonitoringdevice.The amplifiers,

    filters, analog to digital convertor are all part of the same circuitry. The biggest

    challengetotheEEGmachineisnotthedatacollection,butratherthephysiological

    interpretationofthedata.Sincethecollectedsignalcontainsartifactsfromdifferent

    biopotentials, isolating the EEG signal is to some measures a difficult task.

    Measuring these biopotentials simultaneously using extra electrodes, and then

    removingthemfromthesignaliscommonpractice.

    The specification of an EEG machine is not universal, as different applications

    requireslightlymodifiedEEGmachine.ThefrequencyofanEEGfallsbetween0.01

    to70Hz,andanEEGmachineshouldatleastrespondtothisband.Thehighercutoff

    frequencymaybelargeriffastsamplingrateisneeded.Theelectrodesthemselves

    requireaveryinformlowresistancefornosignaldistortion.Theamplifiersinput

    resistanceontheotherhand,shouldbeashighaspossiblewithacommon-mode

    rejection-ratioofatleast100dB.

    AnEEGsignalconsistsof4wavelets,labeledasalpha,beta,deltaandtheta,covering

    the frequency range of 0.01 to 70Hz. Each has its own characteristics and is

    correlatedwitha certainphysiological feature. The digitalizeddata isoften then

    decomposed into these wavelets and the doctor can interpret the results and

    determinethecauseofproblemwiththepatientsbrain.

  • 7/29/2019 Electroencephalograph Machine

    3/33

    3

    TableofContents

    ListofFigures............................................................................................................................4

    ListofAbbreviation.................................................................................................................51. Introduction.......................................................................................................................61.1. History......................................................................................................................................6

    2. SourceofEEGActivity.....................................................................................................82.1. AlphaWave.............................................................................................................................92.2. BetaWave.............................................................................................................................102.3. DeltaWave...........................................................................................................................102.4. ThetaWave...........................................................................................................................10

    3. UsagesofEEG..................................................................................................................11 3.1. ClinicalUsage.......................................................................................................................11

    3.2. ResearchUsage...................................................................................................................124. EEGMachine....................................................................................................................134.1. Electrode...............................................................................................................................134.2. AmplifiersandFilters.......................................................................................................174.3. A/DConvertor.....................................................................................................................214.4. ComputerProgram/Monitoring...................................................................................214.5. Calibration............................................................................................................................224.6. TechnicalSpecification.....................................................................................................23

    5. EEGSignal........................................................................................................................25 5.1. SensitivityDistributionofEEGSignal.........................................................................255.2. BehavioroftheEEGSignal..............................................................................................26

    5.3. BasicPrinciplesofEEGDiagnostics.............................................................................286. Risks&Hazards.............................................................................................................29

    7. Artifacts............................................................................................................................307.1. PatientArtifacts..................................................................................................................307.2. TechnicalArtifacts.............................................................................................................307.3. ArtifactCorrection.............................................................................................................30

    Conclusion...............................................................................................................................31

  • 7/29/2019 Electroencephalograph Machine

    4/33

    4

    ListofFiguresFigure1:Frequencyandvoltagerangeofsomeofthemostcommonbiopotential

    signals(Webster,2010)................................................................................................................6

    Figure2:FirstrecordingofEEGperformedbyDr.Bergerin1924(Wallis,2007)......7Figure3:Theconnectionoftwoneurons.TheEEGmachinemeasurestheSP

    produced(Adeli&Ghosh-Dastidar,2010)...........................................................................8Figure4:ThefourmajortypesofEEGwaves(Webster,2010)............................................9

    Figure5:Theeffectofopeningandclosingtheeyereplacesthealphawavesby

    asynchronoushigherfrequencywaves(Webster,2010)...........................................10Figure6:AtypicalEEGmachine.Theinstrumentontherightistheamplifier/filter

    (takenfromhttp://emgneedleelectrode.com)................................................................13

    Figure7:Asubduralelectrode..........................................................................................................14Figure8:Asurfaceelectrode.............................................................................................................14

    Figure9:Anelectrodecap(Teplan,2002)..................................................................................15

    Figure10:TheStandardInternational10/20configuration(Kropotov,2005).........16Figure11:TheStandardInternational10/10configuration(Kropotov,2005).........16

    Figure12:AnEEGchannelisthedifferencebetweentwoelectrodesvoltage(EBME.co.ukLtd,2008)..............................................................................................................17

    Figure13:DifferentialamplifierproducingtheEEGchannel(EBME.co.ukLtd,2008)

    ...............................................................................................................................................................18Figure14:Calculationshowingwhythedifferencebetweentwochannelsisalways

    thedifferencebetweenthetwoelectrodes,irrelevanttothemannerthechannelswereproduced........................................ ............................................ ........................18

    Figure15:(A)Bipolarand(B)commonreference.NotethatthemontageoftheEEG

    channeldependsonthemeasurementlocation(Malmivuo&Plonsey,1995).19

    Figure16:Theamplifier/filtercomponentoftheEEGmachine.Allelectrodesplusthereferenceandthegroundsignalsareinsertedintothismachine.Theoperatorcanusethecomputertoconfigurethedifferentialmannerandview

    themontageonthemonitor(PicturecourtesyoftheMitSarMedical)................19

    Figure17:AsamplescreenshotoftheMitSarprogramusedtomonitorEEG............22Figure18:D179PerformanceCheckerusedtocalibrateanEEGmachine...................23

    Figure19:TheRush-Discrollmodel.Thesensitivitytothebrainregiondecreasesas

    theelectrodesmoveclosertoeachother(Malmivuo&Plonsey,1995)..............26Figure20:Summaryofthesignaldecompositionshowinghowdifferentwavesare

    extractedfromtheEEGsignal(Adeli&Ghosh-Dastidar,2010)...............................27Figure21:AnexampleofadecomposedEEGsignalintowavelets(Malmivuo&

    Plonsey,1995)................................................................................................................................27

    Figure22:EEGsignalofanawake,lightsleep,REMsleepanddeepsleeppersonalongwithapersonincoma(Malmivuo&Plonsey,1995)........................................28

  • 7/29/2019 Electroencephalograph Machine

    5/33

    5

    ListofAbbreviation

    A/D AnalogtoDigital

    AP ActionPotentialC Central

    ECG ElectrocardiographyEEG ElectroencephalographyEMG Electromyography

    EP EvokedPotentialF Frontal

    O Occipital

    P PosteriorRef Reference

    SNR SignaltoNoiseRatioSP SynapticPotential

    T Temporal

    Pp. Voltagepeak-peak

  • 7/29/2019 Electroencephalograph Machine

    6/33

    6

    1.IntroductionAnelectroencephalogram(EEG)machineisadeviceusedtocreateadiagramofthe

    electricalactivityofthebrain.Themachineisusedbothformedicaldiagnosis(see

    section3.1),aswellasresearchapplication(seesection3.2).Onthefigurebelow,

    thevoltageandfrequencybandoftheEEGiscomparedwiththeotherbiopotential

    signals; thereare significantoverlapsbetween the different signals, and thiswill

    leadtobio-artifactsartifactscollectedbythesensorfromabiopotentialsignalthat

    isnotintendedfor.

    Figure1:Frequencyandvoltagerangeofsomeofthemostcommonbiopotentialsignals(Webster,2010).

    1.1.HistoryBy the end of the nineteenth century, scientists were trying to study and

    measuretheelectricalpropertyofthebrain.In1875,RichardCatton,aBritish

    surgeonfromLiverpool,measuredtheelectricalpotentialoftheexposedcortex

    of rabbits and monkeys brain. In 1902, Hans Berger, studied the correlation

    between the brain activity and the physiological phenomena (such as sleep,epilepsy,anesthesia).HeusedtheLippmanncapillaryelectrometerandEdelman

    galvanometer to record the electrical pulses. However, none produced a

    satisfactory result. Itwas finally in1924whereDr.Bergermade the firstEEG

    recordingofahumansbrain.

  • 7/29/2019 Electroencephalograph Machine

    7/33

    7

    Figure2:FirstrecordingofEEGperformedbyDr.Bergerin1924(Wallis,2007).

    It took another five-years of research by Edgar Douglas Adrian and B. C. H.

    Matthews,whoreproducedBergersresults,beforeEEGwasaccepted.In1936,

    WalterGrayusedalargenumberofelectrodespastedontothescalptocreatea

    map of the brain activity. Areas around a tumor showed abnormal electrical

    activity.

  • 7/29/2019 Electroencephalograph Machine

    8/33

    8

    2.SourceofEEGActivityNeurons transmit information throughout the body electrically through the

    diffusion ofcalcium,sodiumandpotassium ionsacross the cellmembrane. These

    electrical pulses (called action potentials, AP) travel down an axon. At the axon

    terminal, the AP causes a synaptic potential (SP) that will be detected by the

    dendritesofanotherneuron.SPhaslowervoltageamplitudethanAP,butproducea

    currentthathaslargerdistributionthatcanbedetectedonthescalp.

    Figure3:Theconnectionoftwoneurons.TheEEGmachinemeasurestheSPproduced(Adeli&Ghosh-Dastidar,

    2010).

    Undernormalconditions,actionsofthechemicaltransmittersatthepostsynaptic

    neuronscontribute very little totheoverallbiopotentialenergyonthe scalp.The

    firingoftheseSPareasynchronousandinrandomdirections.Consequently,thenet

    resultofthespatialandtemporal influenceofthepotentialenergyonthescalpis

    smallandnegligible.Whenapersonperformsaspecifictask,thepartofbrainthatis

    associatedwith,firestheSPsynchronouslyanduniformly.Thesepotentials(called

    evokedpotentials EP1) have relativelyhigh amplitudes and can bedetectedwith

    electrodes.ItisimportanttonotethattheelectricalactivitymonitoredbytheEEG

    isthepostsynapticpulseandtheelectrodecollectstheperpendicularcomponentof

    thesignal.

    1Evokepotentialsarepotentialsduetoastimulus

  • 7/29/2019 Electroencephalograph Machine

    9/33

    9

    TheEEG isdescribedaseither rhythmicor transients.Therhythmicactivitiesare

    divided intobandsbasedon the frequencyandare foundatdifferent part of the

    humanbrain.Tablebelowsummarizes themain four frequencybands.Thereare

    alsothetwomorewavesknownasgammaandmuthatarenotdiscussedinthis

    report.

    Table1:Comparisonbetweenthealpha,beta,delta,andthetawavegroupoftheEEG(Webster,2010)

    Group Frequency(Hz) Location Normally Pathologically

    Delta Below3.5 Frontal in adults,

    posteriorinchildren

    -Sleepingadults

    -Babies

    -Diffuselesion

    -Deepmidline

    Theta 4-7 Location not related

    toataskathand

    -Youngchildren

    -Drowsinessandarousal

    inadults-Idling

    - Focal subcortical

    lesions

    -Someinstancesofhydrocephalus

    Alpha 8-13 Posterior region ofhead

    -Relaxing/reflecting-Blinking

    -Inhibitioncontrol

    -Coma

    Beta 13-40 Evenly distributedon both sides, more

    towardsthefrontal

    -Alert-Active/busy/thinking

    - Benzodiazepines(BZs)

    Figure4:ThefourmajortypesofEEGwaves(Webster,2010).

    2.1.AlphaWaveThesewavesarefoundinvirtuallyall-normalpeopleataquite,transientstate

    (i.e.restingstateofthecerebral).Theyusuallyoccurontheoccipitalregion,but

  • 7/29/2019 Electroencephalograph Machine

    10/33

    10

    canalsobefromthefrontalandposteriorofthescalpaswell.Theamplitudeof

    these waves ranges form 20 to 200V. When a person sleeps, alpha waves

    completely disappear. The alpha waves are also replaced by asynchronous

    waves of higher frequency due to sensation or when the person is directed

    towardsaspecificactivity.Inthefigurebelow,onecanobservethattheactionof

    closingandopeningtheeyecompletelyreplacesthealphawaves.

    Figure5:Theeffectofopeningandclosingtheeyereplacesthealphawavesbyasynchronoushigherfrequency

    waves(Webster,2010).

    2.2.BetaWaveAlthoughthesewavesnormallyoccurbetween13-30Hz,duringintensemental

    activity,theycangoashighas50Hz.Theyareusuallyrecordedfromthefrontal

    andparietalregionofthescalp.Therearetwotypesofbetawaves:betaIand

    betaII.BetaIactsjustasalphawaves.BetaIIontheotherhand,appearduring

    intense CNS activity. Thus, beta I is elicited bymental activity, and beta II is

    inhibitedbyit.

    2.3.DeltaWaveTheseincludetheveryslowEEGwaves.Theyonlyoccurduringdeepsleepor

    seriousorganicbraindieses.Theyoccurinthecortex,completelyindependent

    ofthelowerregionofthebrain.

    2.4.ThetaWaveThesewavesoccurattheparietalandtemporalregionofthescalp.Theyoccur

    whenapersonbecomesfrustrated,orwhenanelementofpleasantryisremoved

    fromtheperson.

  • 7/29/2019 Electroencephalograph Machine

    11/33

    11

    3.UsagesofEEGAccordingtoR.D.Bickford(Bickford,1987),EEGsignalsareusedto

    1. Monitoralertness,comaandbraindeath2. Locateareasofdamagefollowingheadinjury,stroke,tumor,etc.3. Testafferentpathways(byevokedpotentials)4. Monitorcognitiveengagement(alpharhythm)5. Producebiofeedbacksituations,alpha,etc.6. Controlanesthesiadepth(servoanesthesia)27. Investigateepilepsyandlocateseizureorigin8. Testepilepsydrugeffects9. Assistinexperimentalcorticalexcisionofepilepticfocus10.Monitorhumanandanimalbraindevelopment11.Testdrugsforconvulsiveeffects12.Investigatesleepdisorderandphysiology.3.1.ClinicalUsageAroutineEEGrecordingcanbeasshortas20mintoaslongascoupleofdays.It

    usuallyinvolvestheattachmentof8+electrodestothescalp,dependingonthe

    testandthelevelofresolutionrequired.EEGdeviceswerethefirstmethodfor

    detecting tumors.However,MRIandCTscanshavereplacedtheEEGmachine

    fordetectionoftumors.

    TheEEGrecording isalsoused todistinguishbetweenepileptic seizuresfrom

    the other types (psychogenic non-epileptic seizures). It can also be used to

    differentiatebetweendeliriumandcatatonia.SincetheEEGwavesareameasure

    ofbrainactivity,thenitcanbeusedtoassessbraindeath/coma.ApatientwithsleepdisordercanalsobestationedatthehospitalandbeconnectedtoanEEG

    foruptoaweektorecordandanalyzetheirsleeppattern.

    2ThisismyresearchthesiswithDr.GuyDumont.TheBISindex,whichisaspectral

    analysisofEEG,isusedasthedepthofhypnosis(DOH)signal.Aimofthethesisisdesignanadaptiveclosedloopcontrolofthe(DOH).

  • 7/29/2019 Electroencephalograph Machine

    12/33

    12

    3.2.ResearchUsageEEG is extensively used in neuroscience, cognitive science, and anesthetic

    studies.EventhoughEEGhasbeenreplacedbyMRIandCTscans,itisstillused

    forcaseswherehighspatialresolutionof

  • 7/29/2019 Electroencephalograph Machine

    13/33

    13

    4.EEGMachineAnEEGmachinecansimplybebrokendownintofourcomponents:theelectrode,

    amplifiers,acomputercontrolmodule,andadisplaydevice.Oneoftheadvantages

    oftheEEG isthatfor its simplicity,it offers substantial insight intobrainactivity.

    Generally,theelectrodesaremanufacturedusingGermansilver:analloymadeupof

    copper,nickelandzinc.Germansilverissoftenoughtogrind,andhardenoughnot

    tobreak.Alternatively,stainlesssteelissometimesusedforitscorrosionresistant

    property. However, since it is a harder material, manufacturing process ismore

    challengingandcostly.

    Figure6:AtypicalEEGmachine.Theinstrumentontherightistheamplifier/filter(takenfrom

    http://emgneedleelectrode.com)

    4.1.ElectrodeThereare5basicstypesofelectrodes:

    1. Disposable(pre-gelled)2. Reusable3. Headbandandelectrodecap4. Saline-basedelectrode5. Needleelectrode(insertedintothebrain)

  • 7/29/2019 Electroencephalograph Machine

    14/33

    14

    Thefirstfourelectrodesareknownassurfaceelectrodesastheyareattachedto

    thescalp.Thelastoneisasubduralelectrode,asthescalpispuncturedandthe

    electrodeisplacedintothebraindirectly.

    Figure7:Asubduralelectrode

    Figure8:Asurfaceelectrode

    For amultichannelmontage3, the electrodecap isrecommendedas itreduces

    the setup time.Skinpreparationdiffers slightly, but cleaning the oil and dead

    skinisrecommended.Forsomeelectrodetypes(speciallythereusableGermany

    silverelectrodes),aconductivegelisneeded.

    3AmontageisthefinalresultoffiltrationanddecompositionoftheEEGsignal

  • 7/29/2019 Electroencephalograph Machine

    15/33

    15

    Figure9:Anelectrodecap(Teplan,2002)

    TheEEGsignal issimply thedifferenceofvoltagebetweentwoelectrodes.To

    make the comparison of the signal betweendifferent institutes and hospitals

    easier, the CanadianDr. Herpert Jasper has defined an international standard

    configuration.CalledtheStandardInternational10/20,thisconfigurationshows

    theplacementoftheelectrodesonthepatientshead.Eachelectrodeshouldbe

    placed within 10% of the standard. There is also a standard sequence of

    measurements (Rahey, 2007). Before the introduction of this standard, EEG

    readings were limited in accuracy, as even the same doctor would place the

    electrodesatdifferentlocationsoneverypatient.Iftheelectrodesarenotplaced

    on the rightposition, then the perpendicular components of the signal to the

    electrodescouldbeminimized,leadingtoaweakersignal.

    The scalp is divided into regions: F (frontal), C (central), P (posterior), O

    (occipital), andT (temporal).The lettersare followedbyoddnumbers for the

    leftsideofthebrain,andevennumbersforrightsideofthebrain.Leftandrightsideisdenotedfromthepatientspointofview.

  • 7/29/2019 Electroencephalograph Machine

    16/33

    16

    Figure10:TheStandardInternational10/20configuration(Kropotov,2005)

    A higher resolution EEG can be obtained byusing the Standard International

    10/10configurationshownbelow.

    Figure11:TheStandardInternational10/10configuration(Kropotov,2005)

    High input impedanceleadstoincreased signal distortion,whichreducesSNR

    andtherefore,theactualsignalbeinglost.TopreventasmallSNR,anelectrode

    input impedance of

  • 7/29/2019 Electroencephalograph Machine

    17/33

    17

    With modern EEG instruments, the choice of ground electrode is minimal.

    Forhead(Fpz)ornearearlocationiscommonpractice,butlegsandwristsare

    sometimes used as well. There are also several different reference electrode

    placementmentionedinliterature.Thereferenceelectrodecouldbechosenas

    the linkedear, tip of nose, C7, cortex, and etc. Theonly constraint is that the

    referenceelectrodemustbeatanelectricallyneutrallocation.Eachchoiceofthe

    locationhasitsownadvantageanddisadvantages.

    4.2.AmplifiersandFiltersTheEEGmachineusesdifferentialamplifierstoproduceeachchannel.Oneach

    input of the differential amplifier, one electrode is connected; the different

    betweenthesetwoelectrodesiscalledtheEEGchannel.Inthediagrambelow,theinput1isconnectedtothepositiveterminal,andinput2isconnectedtothe

    negativeterminal.

    Figure12:AnEEGchannelisthedifferencebetweentwoelectrodesvoltage(EBME.co.ukLtd,2008)

    Eachofthechannelsisthensubtractedfromthegroundelectrodetoremovethe

    background noise and the low-frequency compartment (signal from the

    biopotentialfromotherorgans).Wheninput1ismorenegativetheninput2,the

    deflectionisup.

  • 7/29/2019 Electroencephalograph Machine

    18/33

    18

    Figure13:DifferentialamplifierproducingtheEEGchannel(EBME.co.ukLtd,2008)

    There are three manners in which the electrodes are connected: common

    referencederivation,averagereference,orbipolar.Thedifferencebetweentwochannelsisalwaysthedifferencebetweenthetwoelectrodes;irrelevanttothe

    manner the channels were produced. This can easily be seen as followed.

    Assumecommon-referencederivationisused.Denotechannel1asF1-Refand

    channel2asF4-Ref.Thenchannel1minuschannel2hasthereferencesignal

    cancelledandproducesF1-F4.

    Figure14:Calculationshowingwhythedifferencebetweentwochannelsisalwaysthedifferencebetweenthe

    twoelectrodes,irrelevanttothemannerthechannelswereproduced.

    In the common-reference derivation, each amplifier records the difference

    between each electrode and the common reference. The reference signal is

    usuallytheelectrodebytheears.

  • 7/29/2019 Electroencephalograph Machine

    19/33

    19

    Figure15:(A)Bipolarand(B)commonreference.NotethatthemontageoftheEEGchanneldependsonthe

    measurementlocation(Malmivuo&Plonsey,1995)

    Intheaverage-referencederivation,theaverage-referencesignalisdenotedas

    theaverageofallelectrodes.Theamplifierthenrecordsthedifferencebetween

    each individualelectrodeandtheaveragereference. TheEEGmachineallows

    theoperatortoremoveanyofthechannelstonotbeincludedinthecalculation

    oftheaveragereferencesignal.

    In bipolar derivation, each amplifier records the difference between two

    electrodes that are opposite of each other. For instance, F3-C3 or C3-P3 are

    eitheroppositeortransposeofeachother.ThiswillleadtomaximumSNR,asit

    willbediscussedinsection5.1.

    Figure16:Theamplifier/filtercomponentoftheEEGmachine.Allelectrodesplusthereferenceandtheground

    signalsareinsertedintothismachine.Theoperatorcanusethecomputertoconfigurethedifferentialmanner

    andviewthemontageonthemonitor(PicturecourtesyoftheMitSarMedical).

    The EEG amplifiers input is equipped with diodes in order to prevent the

    voltage to travel backwards, towards the scalp. This is a safety feature and

    preventsshocktothepatientincaseofadevicemalfunction.

  • 7/29/2019 Electroencephalograph Machine

    20/33

    20

    The basic requirements that all biomedical amplifiers must have are (Nagel,

    1995):

    Thephysiologicalprocesstobemonitoredshouldnotbeinfluencedinanywaybytheamplifier

    Themeasuredsignalshouldnotbedistorted Theamplifiershouldprovidethebestpossibleseparationofsignal

    andinterferences

    Theamplifierhastoofferprotectionofthepatientfromanyhazardofelectricalshock

    Theamplifieritselfhastobeprotectedagainstdamagesthatmightresultfromhighinputvoltagesastheyoccurduringtheapplication

    ofdefibrillatorsorelectrosurgicalinstrumentation

    The EEG signal recorded by the electrode consists of five signals: the

    desired biopotential, undesired biopotential, power line signal interferenceof

    60Hz (the AC power line frequency), interference produced because of bad

    connectionbetweentheelectrodeandthescalp,andnoise.

    For isolating the electrically noisy environment, a high amplifier input

    impedanceofatleast100Misimplemented.Theamplifieralsorequireshaving

    ahighcommon-moderejection-ratio(CMMR)ofatleast100dB(Teplan,2002).

    The amplification gain is1,000to100,0004(Nagel,1995). Theoptimalgain is

    onethatmaximizestheSNR.TherawscalpEEGsignalisabout10-100Vand

    10-20mVwhensubduralelectrodesareused.

    Filtersareimplementedintheamplification-integratedunittoremovenoiseand

    unwantedartifacts.Ahighpassfilterisusedtoremovethelowfrequencynoise

    4Thehigherthegaindoesnotmeanthebetterthesignalwillbe.Thereareafew

    parameters(suchassamplingrate,theA/Dconversion,thenoise)thatwilldeterminetheoptimalgain

  • 7/29/2019 Electroencephalograph Machine

    21/33

    21

    that remains in the signal after the subtracting the voltage from the ground5

    (Teplan, 2002). The cutoff frequency of this high-pass filter is between0.1

    0.7Hz(Bronzino,1995).A low-pass filter isused toensurethe signalis band-

    limited.Thecutoff frequency isthehighestfrequencyofthesignal,whichfalls

    between40Hz(betawave)andhalfthesamplingrate(whichisusually512Hz)

    (Bronzino, 1995). If higher frequencies survive, then according to Nyquist

    theorem,aliasingcouldoccur.

    4.3.A/DConvertorModernEEGmachinesaredigitalandthusrequireA/Dconversions.Asampling

    rate of 512Hz is common in clinical practices, and 20kHz in research

    applications(Fisch,1999).Abilitytoresolvea0.5Visrecommended(Brunet&

    Young,2000).TheresolutionofA/D(R)issimplytheratiobetweenthevoltage

    range(VR)and2raisedtothepowerofnumberofbits(b).

    =

    2!

    Afterthedataisdigitalized,theycangounderfurtherdigitalfiltration,according

    totheobjectiveofthetestbeingperformed.LinearfilteringsuchasFIRorIIRto

    morenovelnon-linearfilteringmethodsisused.Clinicalmachineshavea12bit

    A/Dconvertor(Teplan,2002),butresearchconvertorsmightbelargerifhigher

    resolutionisrequired.

    4.4.ComputerProgram/MonitoringOncethedata isdigitalized,a computerprogramisusedtomonitortheresult.

    Computersoftwareisusuallycapableofswitchingbetweendifferentmontages,

    performing advancedmathematical calculation (including chaos analysis) and

    exports the data. They are equipped to auto detect certain dieses and/or

    characteristicsofthesignal.

    5Breathingforinstance,causesalow-frequencycomponent

  • 7/29/2019 Electroencephalograph Machine

    22/33

    22

    Figure17:AsamplescreenshotoftheMitSarprogramusedtomonitorEEG.

    4.5.CalibrationRoutine calibration is required to model the circuitry, and connection wires

    noise as well as determining the exact amplification gain. Usually a known

    impulse (sine or triangle) is generated on all of the inputs of themain EEG

    amplifier. Thus, the generated signal passes through the entire EEGmachine,

    withtheexceptionoftheelectrodes.Theoutputcanberecordedandcompared

    withtheinputtodeterminetheamplificationgain,andtomodelthenoise.This

    noiseshouldmainlybefromtheamplifiercircuitandtheA/Dconverter.Noise

    valueshouldbeconsistentwiththemanufacturerspec,andisusually0.3-2VPP

    (Teplan,2002).

    Noisecanalsobedeterminedbyshort-circuitingtheinputsoftheamplifier,or

    byplacingtheelectrodesintoasalt-bath,andthenmeasuringtheoutput.Since

    inputsignaliszero,thentheoutputsignalisthenoisemodel.

    Once the noise ismodeled, the number ofuseful bits can easily becomputed.

    Takingtheratioof theaveragegeneratedEEGsignal amplitudeoverthenoise

    amplitude,thenearestexponentof2isthenumberofusefulbits.Forinstance,if

    theratiois50V/1V,thenthereare5usefulbits.

  • 7/29/2019 Electroencephalograph Machine

    23/33

    23

    There are commercial calibrators (known as performance checker), which

    generate the requiredcalibratingsignal.More advancedEEGmachineshavea

    built-in calibrators. An example of such a device is the D179 Performance

    CheckerbyDigitimer.D179has32outputswith1ground/commonsocketand2

    referencesockets.TheoutputoftheEEGmachineisconnectedtotheD179,and

    thePerformanceCheckerwillautomaticallycomparetheinputtotheoutputand

    modelthenoiseandtheamplificationgain.

    Figure18:D179PerformanceCheckerusedtocalibrateanEEGmachine

    4.6.TechnicalSpecificationThe technical specification of an EEG machine can change depending on the

    usageofthedevice.Generally,forresearchpurposes,thedeviceisofahigher

    quality.Thefollowingspecificationsaretakenfrom(Ananthi,2006).

    AtypicalEEGmachineformedicaldevicesrequirementfornumberofelectrodes

    varies significantly depending on the case. For a simple diagnostic, it might

    requireonly8,whereastherequirementmightgoashighas256.Foranesthetic

    patients,only4arerequired.

    The frequency response of the system should be anywhere between 0.05 to

    130Hz. The system should have a variable high-pass filter centered at

  • 7/29/2019 Electroencephalograph Machine

    24/33

    24

    frequencies between 0.1-5Hz, a low-pass filter centered at 50-256Hz. There

    shouldalsobea50-60HzACfiltertoremovethepowerlinenoise.

    ItrequiresaCMMRofatleast100dBwithamplifierinputimpedanceofatleast

    100Mandelectroderesistancelessthan5k.

    BelowisthespecificationofBWIIEEGmachine:

    25channel:22EEGchannels,2Ref,1ground Calibrationonboard:0.5Hz,7Hz,15Hz(squareandsinewave) CMMR~125dB Low/highpassfilter0.0016to70Hz A/D12bitconversion

    As a comparison, the government of India requires the following minimum

    requirementfromanEEGmachine

    32channel Frequencyresponsebetween0.05to70Hz Low-passfilterof15Hz,30Hz,and70Hz High-passfilterof0.1Hz,0.3Hz,1.5Hz,3Hz,5Hz) CMMR>100dB Amplifierinputresistance>10M

  • 7/29/2019 Electroencephalograph Machine

    25/33

    25

    5.EEGSignal5.1.SensitivityDistributionofEEGSignalAnimportantquestionwhenperformingEEGisthesensitivityofthesignal;in

    otherwords,howdeepintothebraincanthesignalsbegeneratingfromandstill

    bedetected by the EEG instrument? This problem is of no significancewhen

    subduralelectrodesareused;itisamatterofdiscussionforsurfaceelectrodes.

    RushandDriscollperformedthefirstsuchstudiesin1969.Intheirstudy,the

    patients head is modeled as a perfect sphere an assumptiononly partially

    valid.Theyplacetwoelectrodesonthepatientshead;oneproducesa current

    whiletheothermeasuresthecurrent.Theirresults,whilepioneerinnature,had

    limitedpracticality.

    In 1987,PuikkonenandMalvimuousedthesamemodelasRushandDriscoll,

    butpresentedtheresultswithleadfieldcurrentflowlines.Thedirectionofthe

    sensitivity is then simply normal to the field current flow lines and the

    magnitude of it is seen from the density of these field lines (Puikkonen &

    Malmivuo, 1987). A limitation of this theorem is that it is a 2D model,

    representinga3Ddistribution.Thefieldlinesthusbreaktodenoteachangein

    the third dimension (see Figure 19. Note how the blue lines suddenly break,

    denotingamovementinthethirddimension).

    Inthe followingdiagrams, the twoelectrodesare separatedbyanglesof 180,

    120,60,40,and20.Inthediagrams,thesolidbluelinesarethefieldcurrent

    flow lines, the dotted black lines are the isosensitivity lines, and the green

    shaded region isknown asHalf-sensitivity volume the volume atwhich the

    fieldcurrentdensityisatleast50%ofitsmaximumvalue.Thelocationofthe

    two electrodes isvisible from the highly dense fieldcurrent lines. The sphere

    itselfhasthreeshades:theouteristheskin,themiddleistheskullandtheinner

  • 7/29/2019 Electroencephalograph Machine

    26/33

    26

    isthecerebralregion.Astheelectrodesmovecloserandclosertoeachother,the

    current flowsmore inthe skin region, thusdecreasing the access tothe brain

    itself. The noise also increases as a result (Suihko, Malmivuo, & Eskola). The

    conclusionoftheirworkthensuggestsusingelectrodesthatareasfarfromeach

    otheraspossibletoachieveoptimalquality(Malmivuo&Plonsey,1995).

    Figure19:TheRush-Discrollmodel.Thesensitivitytothebrainregiondecreasesastheelectrodesmovecloser

    toeachother(Malmivuo&Plonsey,1995)

    5.2.BehavioroftheEEGSignalDigitaldecompositionisperformedonthedigitalizedEEGsignaltoseparatethe

    differentEEGwavesfromfordetailedanalysis.Digitaldecompositioncouldbea

    simpleband-passfilter.However,sincetheseEEGwavesoverlap infrequency

    domain, then advanced Fourier and spectral analysis is required. The signal

    needs to go through 3-level of decomposition (shown in figure below), to

    successfullyextractthewaves(Adeli&Ghosh-Dastidar,2010).

  • 7/29/2019 Electroencephalograph Machine

    27/33

    27

    Figure20:SummaryofthesignaldecompositionshowinghowdifferentwavesareextractedfromtheEEG

    signal(Adeli&Ghosh-Dastidar,2010).

    WiththeseparatedEEGwavelets,itispossibletoperformdiagnostics.Belowisa

    samplewaveletofanactualEEGsignal.

    Figure21:AnexampleofadecomposedEEGsignalintowavelets(Malmivuo&Plonsey,1995).

  • 7/29/2019 Electroencephalograph Machine

    28/33

    28

    5.3.BasicPrinciplesofEEGDiagnosticsThe EEG signal is related to the consciousness lever of an individual. With

    increaseactivity,thesignalfrequencyincreasesandamplitudedecreases.With

    eyes closed, alphawaves dominate until the personwalls asleep, which then

    results in a decrease of the wave. During REM sleep, the signal frequency

    increases.Indeepsleep,amplitudeishighandfrequencyislow.Thesignalsof

    theseexamplesareshownbelow.

    Figure22:EEGsignalofanawake,lightsleep,REMsleepanddeepsleeppersonalongwithapersonincoma

    (Malmivuo&Plonsey,1995).

  • 7/29/2019 Electroencephalograph Machine

    29/33

    29

    6.Risks&HazardsEEG machines are non-invasive devices and are risk-free. EEG with subdural

    electrodesurprisinglyhasminimaldamageonthebrainif the rightneedle size is

    selected. In the case of an epilepsy study, the seizure is sometimes intentionally

    induced.However, these triggersare done undermaximummedical care and are

    verycontrolled.

    TheEEGamplifiersinputisequippedwithdiodesinordertopreventthevoltageto

    travelbackwards,towardsthescalp.Thisisasafetyfeatureandpreventsshockto

    thepatientincaseofadevicemalfunction.

  • 7/29/2019 Electroencephalograph Machine

    30/33

    30

    7.ArtifactsArtifactsaresignalswithhighamplitudesanddifferentshapesascomparedtothe

    desired biopotential signal. They can either be patient artifacts (unwanted

    physiological biopotentials), or technical artifacts (power line noise, and

    interferencesignals).

    7.1.PatientArtifactsThesearethesignalsthatarepickedupfromthescalp,butareoriginatedfrom

    the non-cerebral compartment. Many physiological signals can arise from the

    patientsbody.Anybodymovements,suchasblinkingtheeye,cancauseaspike

    intheEEGsignal.EMG(signalfromskeletalmuscle),andECG(signalfromthe

    heart)canalsobepickedbytheEEGelectrodeandcancontributetotheartifact.

    7.2.TechnicalArtifactsThesearethesignalsthathaveoriginatedfromtheoutsideofthepatientsbody.

    Movement by the patient can cause the electrode to move, and create an

    electrode-skin interference. The electrode impedance can sometimes fluctuate

    and cause signal distortion. Poor grounding can also cause significant 60Hz

    artifacts.

    7.3.ArtifactCorrectionTocorrectthepatientartifacts,additionalelectrodestomonitoreyemovement,

    theEMGandECGmayberequired.Recently,usingFourieranalysis,signalshave

    beendecomposedandthecomponentsrelatedtootherbiopotentialshavebeen

    weightedout.Forthetechnicalartifacts,bettergrounding,insulationandhigher

    qualityelectrodescanbeusedtominimizethenoisepickedupbythesystem.

  • 7/29/2019 Electroencephalograph Machine

    31/33

    31

    Conclusion

    Electroencephalographybelongstoabioelectricalimagingtoolsetsusedwidelyin

    bothclinicalaswellasresearchenvironments.EEGmachinemeasureschangesin

    the electrical potentials created as the results of excitation of the postsynaptic

    neurons.Thesignalitself iscomposedof fourprimarilywaves, denoted asalpha,

    beta,theta,anddelta.

    EEGmachine isa non-invasivemethod tomeasure the EEG signal (with the rare

    occasionwhensubduralelectrodesareused)andcausesnopainandhasminimal

    risktothepatient.

    TheEEGmachineitselfconsistsofanelectrode(fromeitherGermansilveroractual

    silver)coatedwithconductivegel,anamplifierwithagainof1,000100,000with

    an input impedance of at least 100dB, analog high-pass filter to remove low

    frequencynoisewithacutofffrequencycenteredat0.1-0.7Hz,analoglow-passfilter

    toband-limit the signal andremovehigh frequencynoisewitha cutoff frequency

    centered at 50Hz to half sampling frequency, at least 12bit A/D convertor, EEG

    softwarecapable toperformdigital filtering andwavelet decomposition tocreate

    therequiredmontages.

    Many believe thatEEGmachinewill lead to awide range of discoveries in basic

    brainfunctionalityaswellasbetterunderstandingofneurologicaldiseases.

  • 7/29/2019 Electroencephalograph Machine

    32/33

    32

    Bibliography

    Adeli,H.,&Ghosh-Dastidar,S.(2010).AutomatedEEG-BasedDiagnosisof

    NeurologicalDisorders-InventingtheFutureofNeurology.BocaRaton:Taylor&FrancisGroup.

    Ananthi,A.(2006).ATextbookofMedicalInstruments.NewDelhi:NewAgeInternationalPvtLtdPublishers.

    Bickford,R.D.(1987).Electroencephalography.InG.Adelman,Encyclopediaof

    Neuroscience(pp.371-373).Birkhauser:Cambridge.

    Bronzino,J.D.(1995).PrinciplesofElectroencephalography.InJ.D.Bronzino,The

    BiomedicalEngeneeringHandbook(pp.201-212).Florida:CRCPress.

    Brunet,D.,&Young,G.(2000).Electroencephalography,GuidelinesforClinical

    PracticeandFacilityStandards.Ontario:CollegeofPhysiciansandSurgeons.

    EBME.co.ukLtd.(2008).IntroductiontoEEG.Retrieved2013,fromEBME:

    http://www.ebme.co.uk/arts/eegintro/eeg2.php

    Fisch,B.(1999).FischandSpehlmann'sEEGPrimer:BasicPrinciplesofDigitalandAnalogEEG.Elsevier.

    Hirsch,L.J.,&Brenner,R.P.(2006).AtlasofEEGinCriticalCare.Wiley-Blackwell.

    Kropotov,J.D.(2005).QuantitativeEEG,Event-RelatedPotentialsandNeurotherapy.

    NewYork:Elsevier.

    Malmivuo,J.,&Plonsey,R.(1995).Bioelectromagnetism.NewYork:OxfordUniversityPress.

    Nagel,H.N.(1995).BiomedicalAmplifiers.InJ.D.Bronzino,TheBiomedicalEngineeringHandbook(pp.1185-1195).Florida:CRCPress.

    Puikkonen,J.,&Malmivuo,J.A.(1987).Theoreticalinvestigationofthesensitivity

    distributionofpointEEG-electrodesonthethreeconcentricspheresmodelofahuman

    head-Anapplicationofthereciprocitytheorem.TampereUniv.Techn.,Inst.Biomed.

    Eng.,Reports.

    Rahey,S.R.(2007).FundamentalsofEEGTechnology.Halifax:CapitalHealth.

    Rush,S.,&Driscoll,D.A.(1969).EEG-electrodesensitivity-Anapplicationofreciprocity.EEETrans.Biomed.Eng,15-22.

  • 7/29/2019 Electroencephalograph Machine

    33/33

    Suihko,V.,Malmivuo,J.,&Eskola,H.Distributionofsensitivityofelectricleadsinan

    inhomogeneoussphericalheadmodel.TampereUniv.Techn.,RagnarGranitInst.,Rep.7.1993.

    Tatum,W.O.,Kaplan,P.W.,Benbadis,S.R.,&Husain,A.M.(2008).HandbookofEEG

    Interpretation.DemosMedicalPublishing.Teplan,M.(2002).FundamentalofEEGMeasurement.Retrieved2013,from

    MeasurementScienceReview:http://www.ccs.fau.edu/eeg/teplan2002.pdf

    Wallis,C.(2007,September20).ElectroencephalogramLab.RetrievedFebruary16,

    2013,fromCaliforniaStateUniversityLongBeach:http://www.csulb.edu/~cwallis/482/eeg/eeg.html

    Webster,J.G.(2010).MedicalInstrumentationApplicationandDesign.Wiley.