Electrochemistry and Electrogenerated Chemiluminescence of...

5
S1 Electrochemistry and Electrogenerated Chemiluminescence of Twisted Anthracene- Functionalized Bimesitylenes Jungdon Suk a , Palani Natarajan b , Jarugu Narasimha Moorthy b , and Allen J. Bard a* a Center for Electrochemistry and Department of Chemistry and biochemistry Department, The University of Texas at Austin, Austin, Texas 78712, b Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India Supporting Information 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 35 30 25 20 15 10 5 0 5 10 15 20 C urrent ( μA) Potential (V vs. Ag wire) 0.05 V/s 0.1 V/s 0.2 V/s 0.5 V/s 1 V/s 2 V/s 5 V/s 10 V/s (a) 0 1 2 3 4 5 0.00006 0.00005 0.00004 0.00003 0.00002 0.00001 0.00000 Y=1.17953E5X C urrent (A) square root of scan rate (b) 1.2 1.4 1.6 1.8 2.0 20 10 0 10 20 30 40 (c) 0.05 V/s 0.1 V/s 0.2 V/s 0.5 V/s 1 V/s 2 V/s 5 V/s 10 V/s C urrent ( μA) Potential (V vs. Ag wire) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.000000 0.000005 0.000010 0.000015 0.000020 0.000025 0.000030 0.000035 Current (A) square root of scan rate Y=1.0452E5X (d) Figure S1. (a) Oxidation CV of 0.5 mM AB1 in 3:1 Bz: MeCN at various scan rates (b) Oxidation peak current versus the square root of the scan rate (v 1/2 ) (c) Reduction CV of 0.5 mM

Transcript of Electrochemistry and Electrogenerated Chemiluminescence of...

Page 1: Electrochemistry and Electrogenerated Chemiluminescence of ...bard.cm.utexas.edu/resources/Bard-Reprint/883_SI.pdfJungdon Suka, Palani Natarajanb, Jarugu Narasimha Moorthyb, and Allen

  S1  

Electrochemistry and Electrogenerated Chemiluminescence of Twisted Anthracene-

Functionalized Bimesitylenes

Jungdon Suka, Palani Natarajanb, Jarugu Narasimha Moorthyb, and Allen J. Barda*

a Center for Electrochemistry and Department of Chemistry and biochemistry Department, The

University of Texas at Austin, Austin, Texas 78712,

bDepartment of Chemistry, Indian Institute of Technology, Kanpur 208 016, India

Supporting Information

1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

-­‐35

-­‐30

-­‐25

-­‐20

-­‐15

-­‐10

-­‐5

0

5

10

15

20

Cur

rent

 (µA)

P otential  (V  vs .  Ag  wire)

 0 .05  V /s  0 .1  V /s  0 .2  V /s  0 .5  V /s  1  V /s  2  V /s  5  V /s  10  V /s

(a)

0 1 2 3 4 5-­‐0.00006

-­‐0.00005

-­‐0.00004

-­‐0.00003

-­‐0.00002

-­‐0.00001

0.00000

Y =-­‐1.17953E -­‐5X

Current  (A

)

s quare  root  of  s c an  rate

(b)

-­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8 -­‐2.0-­‐20

-­‐10

0

10

20

30

40

(c )

 0 .05  V /s  0 .1  V /s  0 .2  V /s  0 .5  V /s  1  V /s  2  V /s  5  V /s  10  V /s

Cur

rent

 (µA)

P otential  (V  vs .  Ag  wire)  0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

0.000035

Curren

t  (A

)

s quare  root  o f  s c an  rate

Y =1.0452E -­‐5X

(d)

     

Figure S1. (a) Oxidation CV of 0.5 mM AB1 in 3:1 Bz: MeCN at various scan rates (b)

Oxidation peak current versus the square root of the scan rate (v1/2) (c) Reduction CV of 0.5 mM

Page 2: Electrochemistry and Electrogenerated Chemiluminescence of ...bard.cm.utexas.edu/resources/Bard-Reprint/883_SI.pdfJungdon Suka, Palani Natarajanb, Jarugu Narasimha Moorthyb, and Allen

  S2  

AB1 in 3:1 Bz: MeCN at various scan rates (d) Reduction peak current versus the square root of

the scan rate (v1/2)

 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8

-­‐80

-­‐60

-­‐40

-­‐20

0

20

40

60

P otential  vs .  Ag  w ire  (V )

 0 .05  V /s  0 .1  V /s  0 .2  V /s  0 .5  V /s  1  V /s  5  V /s  10  V /s  20  V /s

Cur

rent

 (A)

(a)

0 1 2 3 4 5

-­‐0.00008

-­‐0.00006

-­‐0.00004

-­‐0.00002

0.00000

Y = -­‐1.92201E -­‐5X

s quare  root  o f  s c an  rate

Current  (A

)

(b )

 

-­‐0.8 -­‐1.0 -­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8

-­‐40

-­‐20

0

20

40

60

80  0 .05  V /s  0 .1  V /s  0 .2  V /s  0 .5  V /s  1  V /s  5  V /s  10  V /s  20  V /s

Cur

rent

 (A)

P otential  vs .  Ag  w ire  (V )

(c )

0 1 2 3 4 50.00000

0.00002

0.00004

0.00006

0.00008(d )

Current  (A

)

s quare  root  o f  s c an  rate

Y =1.78289E -­‐5X

 

Figure S2. (a) Oxidation CV of 0.5 mM AB3 in 3:1 Bz: MeCN at various scan rates (b)

Oxidation peak current versus the square root of the scan rate (v1/2) (c) Reduction CV of 0.5 mM

AB3 in 3:1 Bz: MeCN at various scan rates (d) Reduction peak current versus the square root of

the scan rate (v1/2)

Page 3: Electrochemistry and Electrogenerated Chemiluminescence of ...bard.cm.utexas.edu/resources/Bard-Reprint/883_SI.pdfJungdon Suka, Palani Natarajanb, Jarugu Narasimha Moorthyb, and Allen

  S3  

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6-­‐6

-­‐4

-­‐2

0

2

4

P otential  (V  vs .  S C E )

Cur

rent

 (µA)

50  mV/s

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

-­‐8

-­‐6

-­‐4

-­‐2

0

2

4

6100  mV/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6-­‐12

-­‐10

-­‐8

-­‐6

-­‐4

-­‐2

0

2

4

6

8200  mV/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

-­‐15

-­‐10

-­‐5

0

5

10 500  mV/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

-­‐25

-­‐20

-­‐15

-­‐10

-­‐5

0

5

10

15 1  V/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

-­‐30

-­‐20

-­‐10

0

10

20 2  V/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

-­‐40

-­‐20

0

20

405  V/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6

-­‐60

-­‐40

-­‐20

0

20

40 10  V/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

Page 4: Electrochemistry and Electrogenerated Chemiluminescence of ...bard.cm.utexas.edu/resources/Bard-Reprint/883_SI.pdfJungdon Suka, Palani Natarajanb, Jarugu Narasimha Moorthyb, and Allen

  S4  

Figure S3. Experimental (solid line) and simulated (dot-dashed line) cyclic voltammograms of

0.5 mM AB3 oxidation with scan rate from 50 mV/s to 10 V/s. Simulation mechanism is four,

one electron oxidation and corrected for resistance (2470 Ω) and capacitance (700 nF): E°1,ox =

1.05 V, E°2,ox = 1.09 V, E°3,ox = 1.10 V, E°4,ox = 1.13 V vs. SCE, k°> 104 cm/s, α= 0.5.

-­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8 -­‐2.0

-­‐8

-­‐4

0

4

8

12 200  mV/s

Curren

t  (µA

)

P otential  (V  vs .  S C E ) -­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8 -­‐2.0

-­‐15

-­‐10

-­‐5

0

5

10

15

20500  mV/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

-­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8 -­‐2.0

-­‐15

-­‐10

-­‐5

0

5

10

15

20

251  V/s

Curren

t  (µA

)

P otential  (V  vs .  S C E ) -­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8 -­‐2.0

-­‐20

-­‐10

0

10

20

30 2  V/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E )

-­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8 -­‐2.0

-­‐40

-­‐20

0

20

40

60 5  V/s

Curren

t  (µA

)

P otential  (V  vs .  S C E ) -­‐1.2 -­‐1.4 -­‐1.6 -­‐1.8 -­‐2.0

-­‐40

-­‐20

0

20

40

60 10  V/s

Cur

rent

 (µA)

P otential  (V  vs .  S C E ) Figure S4. Experimental (solid line) and simulated (dot-dashed line) cyclic voltammograms of

Page 5: Electrochemistry and Electrogenerated Chemiluminescence of ...bard.cm.utexas.edu/resources/Bard-Reprint/883_SI.pdfJungdon Suka, Palani Natarajanb, Jarugu Narasimha Moorthyb, and Allen

  S5  

0.5 mM AB3 reduction with scan rate from 50 mV/s to 10 V/s. Simulation mechanism is four,

one electron reduction and corrected for resistance (2470 Ω) and capacitance (700 nF): E°1,red = -

1.735 V, E°2,red = - 1.755 V, E°3,red = - 1.785 V, E°4,red = - 1.8 V vs. SCE, k°> 104 cm/s, α= 0.5.

2.0 1.5 1.0 0.5 0.0 -­‐0.5 -­‐1.0 -­‐1.5 -­‐2.0

-­‐10

-­‐5

0

5

10

Cur

rent

 (µA)

P otential  (V  vs .  Ag  wire)  

  Figure S5. Cyclic voltammogram of 0.5 mM AB3 in 3:1 benzene: MeCN with 0.1 M TBAPF6

before (red line) and after ECL experiment (after 1st ECL experiment with 3 min integration:

blue line and after 2nd ECL experiment with 3 min integration: green line). WE: Pt disk, CE: Pt

coil, RE: Ag wire as a QRE. Scan rate was 0.5 V/s.