Electrochemical Impedance Spectroscopy - …ww2.che.ufl.edu/orazem/pdf-files/Orazem EIS Spring...

306
Electrochemical Impedance Electrochemical Impedance Spectroscopy Spectroscopy Mark E. Orazem Department of Chemical Engineering University of Florida Gainesville, Florida 32611 [email protected] 352-392-6207 © Mark E. Orazem, 2000-2008. All rights reserved.

Transcript of Electrochemical Impedance Spectroscopy - …ww2.che.ufl.edu/orazem/pdf-files/Orazem EIS Spring...

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Mark E. OrazemDepartment of Chemical Engineering

University of FloridaGainesville, Florida 32611

[email protected]

352-392-6207

© Mark E. Orazem, 2000-2008. All rights reserved.

ContentsContents• Chapter 1. Introduction • Chapter 2. Motivation • Chapter 3. Impedance Measurement • Chapter 4. Representations of Impedance Data• Chapter 5. Development of Process Models• Chapter 6. Regression Analysis• Chapter 7. Error Structure• Chapter 8. Kramers-Kronig Relations• Chapter 9. Use of Measurement Models• Chapter 10. Conclusions• Chapter 11. Suggested Reading• Chapter 12. Notation

Chapter 1. Introduction page 1: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Mark E. OrazemDepartment of Chemical Engineering

University of FloridaGainesville, Florida 32611

[email protected]

352-392-6207

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 1. Introduction page 1: 2

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopyChapter 1. IntroductionChapter 1. Introduction

• How to think about impedance spectroscopy• EIS as a generalized transfer function• Overview of applications of EIS• Objective and outline of course

© Mark E. Orazem, 2000-2007. All rights reserved.

Chapter 1. Introduction page 1: 3

1992 – no logo

Chapter 1. Introduction page 1: 4

The Blind Men and the ElephantThe Blind Men and the ElephantJohn Godfrey SaxeJohn Godfrey Saxe

It was six men of IndostanTo learning much inclined,Who went to see the Elephant(Though all of them were blind),That each by observationMight satisfy his mind.

The First approached the Elephant,And happening to fallAgainst his broad and sturdy side,At once began to bawl:“God bless me! but the ElephantIs very like a wall!” ...

Chapter 1. Introduction page 1: 5

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

• Electrochemical technique– steady-state– transient– impedance spectroscopy

• Measurement in terms of macroscopic quantities– total current– averaged potential

• Not a chemical spectroscopy• Type of generalized transfer-function measurement

Chapter 1. Introduction page 1: 6

-10

-5

5

10

-0.2 -0.1 0.1 0.2 0.3 0.4

Potential, V

CurrentDensity, μA/cm2

~ΔI

ΔV~

( )

Impedance SpectroscopyImpedance Spectroscopy

r jVZ Z jZI

ω Δ= = +Δ

Chapter 1. Introduction page 1: 7

Impedance SpectroscopyImpedance Spectroscopy

• Electrochemical systems– Corrosion– Electrodeposition– Human Skin– Batteries– Fuel Cells

• Materials

• Dielectric spectroscopy• Acoustophoretic

spectroscopy• Viscometry• Electrohydrodynamic

impedance spectroscopy

Applications Fundamentals

Chapter 1. Introduction page 1: 8

Physical DescriptionPhysical Description

• Electrode-Electrolyte Interface– Electrical Double Layer– Diffusion Layer

• Electrochemical Reactions• Electrical Circuit Analogues

Chapter 1. Introduction page 1: 9

Electrochemical ReactionsElectrochemical Reactions

eU V iR= +

F ddVi i Cdt

= +

( )2 22

2

2 2

OO O O OO expF

Fi i n Fk V

RTc V

α⎧ ⎫= = −⎨ ⎬

⎩ ⎭

Faradaic current density

→- -2 2O +2H O+ 4e 4OH

Total current density = Faradaic + charging

Cell potential = electrode potential + Ohmic potential drop

Chapter 1. Introduction page 1: 10

Electrical AnaloguesElectrical Analogues

Chapter 1. Introduction page 1: 11

Electrical AnalogueElectrical Analogue

Simple electrochemical reaction

Simple electrochemical reaction with mass transfer

Chapter 1. Introduction page 1: 12

Course ObjectivesCourse Objectives

• Benefits and advantages of impedance spectroscopy• Methods to improve experimental design• Interpretation of data

– graphical representations– regression– error analysis– equivalent circuits– process models

Chapter 1. Introduction page 1: 13

ContentsContents• Chapter 1. Introduction • Chapter 2. Motivation • Chapter 3. Impedance Measurement • Chapter 4. Representations of Impedance Data• Chapter 5. Development of Process Models• Chapter 6. Regression Analysis• Chapter 7. Error Structure• Chapter 8. Kramers-Kronig Relations• Chapter 9. Use of Measurement Models• Chapter 10. Conclusions• Chapter 11. Suggested Reading• Chapter 12. Notation

Chapter 1. Introduction page 1: 14

Chapter 2. Motivation page 2: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 2. MotivationChapter 2. Motivation

• Comparison of measurements– steady state– step transients– single-sine impedance

• In principle, step and single-sine perturbations yield same results

• Impedance measurements have better error structure

© Mark E. Orazem, 2000-2007. All rights reserved.

Chapter 2. Motivation page 2: 2

SteadySteady--State State Polarization Polarization

CurveCurve

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Potential, V

Cur

rent

, mA

Chapter 2. Motivation page 2: 3

SteadySteady--State TechniquesState Techniques

• Yield information on state after transient is completed• Do not provide information on

– system time constants– capacitance

• Influenced by– Ohmic potential drop– non-stationarity– film growth– coupled reactions

Chapter 2. Motivation page 2: 4

Transient Response to a Step in PotentialTransient Response to a Step in Potential

0 2 4 6 8 10

0.5

1.0

1.5

R0

R1(V)

C1

R2

C2

Cur

rent

/ m

A

(t-t0) / ms

current response

potential inputΔV=10 mV}

10-5 10-4 10-3 10-2 10-1 100

10-2

10-1

100

Cur

rent

/ m

A

(t-t0) / s

210 )( RVRRVI

++=

Chapter 2. Motivation page 2: 5

Transient Response to a Step in PotentialTransient Response to a Step in Potential

long times/low frequency

Short times/high frequency

0 2 4 6 8 10

0.5

1.0

1.5

R0

R1(V)

C1

R2

C2

Cur

rent

/ m

A

(t-t0) / ms

current response

potential inputΔV=10 mV}

Chapter 2. Motivation page 2: 6

Transient Techniques: Transient Techniques: potential or current stepspotential or current steps

• Decouples phenomena– characteristic time constants

• mass transfer • kinetics

– capacitance• Limited by accuracy of measurements

– current– potential– time

• Limited by sample rate– <~1 kHz

Chapter 2. Motivation page 2: 7

Sinusoidal PerturbationSinusoidal Perturbation

0CdVi Cdt

=

( )fi f V=

( )V t

( ){ }

0

0

( ) cos

( ) exp( ) exp( )a c

V t V V t

i t i b V b V

ω= + Δ

= − −

Chapter 2. Motivation page 2: 8

Sinusoidal PerturbationSinusoidal Perturbation

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

1 mHz100 Hz

(i-i 0) /

max

(i-i 0)

(V-V0) / V0

10 kHz

Chapter 2. Motivation page 2: 9

LissajousLissajous RepresentationRepresentation

| |

sin( )

VZI

φ

Δ= =

Δ

= −

OAOB

ODOA

( ) cos( )

( ) cos( )

V t V tVI t tZ

ω

ω φ

= ΔΔ

= +

-1.0 -0.5 0 0.5 1.0

-1.0

-0.5

0

0.5

1.0

Y(t)/

Y 0

X(t)/X0

O D A

B

Chapter 2. Motivation page 2: 10

Impedance ResponseImpedance Response

0 10 20 30 40 50

0

-5

-10

-15

-20

-25

Z j / Ω

cm

-2

Zr / Ω cm-2

100 Hz

Chapter 2. Motivation page 2: 11

Impedance SpectroscopyImpedance Spectroscopy• Decouples phenomena

– characteristic time constants• mass transfer • kinetics

– capacitance• Gives same type of information as DC transient.• Improves information content and frequency range by

repeated sampling.• Takes advantage of relationship between real and

imaginary impedance to check consistency.

Chapter 2. Motivation page 2: 12

System with Large Ohmic ResistanceSystem with Large Ohmic Resistance

• R0 =10,000 Ω• R1 =1,000 Ω • C1 = 10.5 μF

– τ = 0.0105 s (15 Hz)

M. E. Orazem, T. El Moustafid, C. Deslouis, and B. Tribollet, J. Electrochem. Soc.,143 (1996), 3880-3890.

Chapter 2. Motivation page 2: 13

Impedance SpectrumImpedance Spectrum-600

-400

-200

09800 10000 10200 10400 10600 10800 11000 11200

Zr, Ω

Z j, Ω

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

Frequency, Hz

Impe

danc

e, Ω

Zr, Ω

-Zj, Ω

Chapter 2. Motivation page 2: 14

Experimental DataExperimental Data

0.01

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000Frequency, Hz

Impe

danc

e, Ω

Chapter 2. Motivation page 2: 15

Impedance Spectroscopy Impedance Spectroscopy vs. Stepvs. Step--Change TransientsChange Transients

• Information sought is the same• Increased sensitivity

– stochastic errors– frequency range– consistency check

• Better decoupling of physical phenomena

Chapter 2. Motivation page 2: 16

Chapter 3. Impedance Measurement page 3: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 3. Impedance MeasurementChapter 3. Impedance Measurement

• Overview of techniques– A.C. bridge– Lissajous analysis– phase-sensitive detection (lock-in amplifier)– Fourier analysis

• Experimental design

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 3. Impedance Measurement page 3: 2

Measurement TechniquesMeasurement Techniques

• A.C. Bridge• Lissajous analysis• Phase-sensitive detection (lock-in amplifier)• Fourier analysis

– digital transfer function analyzer– fast Fourier transform

D. Macdonald, Transient Techniques in Electrochemistry, Plenum Press, NY, 1977.J. Ross Macdonald, editor, Impedance Spectroscopy Emphasizing Solid Materials and Analysis, John Wiley and Sons, New York, 1987.C. Gabrielli, Use and Applications of Electrochemical Impedance Techniques, Technical Report, Schlumberger, Farnborough, England, 1990.

Chapter 3. Impedance Measurement page 3: 3

AC BridgeAC Bridge

Generator

Z2Z1

Z3 Z4

D

• Bridge is balanced when current at D is equal to zero

• Time consuming• Accurate

1 4 2 3Z Z Z Z=

10 Hzf ≥

Chapter 3. Impedance Measurement page 3: 4

| |

sin( )

VZI

φ

Δ= = =Δ

= − = −

OA A'AOB B'B

OD D'DOA A'A

( ) sin( )

( ) sin( )

V t V tVI t tZ

ω

ω φ

= ΔΔ

= +

Potential

Current

ADO

B

B'

D'A'

LissajousLissajous AnalysisAnalysis

Chapter 3. Impedance Measurement page 3: 5

Phase Sensitive DetectionPhase Sensitive Detection0 sin( )AA A tω φ= +

( )0

4 1 sin 2 12 1 S

n

S n tn

ω φπ

=

= + +⎡ ⎤⎣ ⎦+∑

( ) ( )0

0

4 1 si sin 2 12 1

n Sn

A n tn

A A tS ω ω φπ

φ∞

=

+ + ⎦++= ⎡ ⎤⎣∑

General Signal

Reference Signal

( )SAAdtAS φφππ

ω ωπ

−=∫ cos22

02

0

Has maximum value when

A Sφ φ=

Chapter 3. Impedance Measurement page 3: 6

Fourier Analysis:Fourier Analysis:singlesingle--frequency inputfrequency input

0( ) cos( )II t I tω φ= +

0( ) cos( )V t V tω=

( )

( )

( )

( )

0

0

0

0

1 ( ) cos( )

1 ( )sin( )

1 ( )cos( )

1 ( )sin( )

T

r

T

j

T

r

T

j

I I t t dtT

I I t t dtT

V V t t dtT

V V t t dtT

ω ω

ω ω

ω ω

ω ω

=

= −

=

= −

( ) Re

( ) Im

r jr

r j

r jj

r j

V jVZ

I jI

V jVZ

I jI

ω

ω

⎧ ⎫+⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭⎧ ⎫+⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭

Chapter 3. Impedance Measurement page 3: 7

Fourier Analysis:Fourier Analysis:multimulti--frequency inputfrequency input

Time

Sign

al O

utpu

t

Time

Sign

al In

put

Z

Z(ω)

Fast Fourier

Transform

Chapter 3. Impedance Measurement page 3: 8

ComparisonComparisonsinglesingle--sine input multisine input multi--sine inputsine input

• Good accuracy for stationary systems

• Frequency intervals of Δf/f– economical use of

frequencies• Used for entire frequency

domain• Kramers-Kronig inconsistent

frequencies can be deleted

• Good accuracy for stationary systems

• Frequency intervals of Δf– dense sampling at high

frequency required to get good resolution at low frequency

• Often paired with Phase-Sensitive-Detection (f>10 Hz)

• Correlation coefficient used to determine whether spectrum is inconsistent with Kramers-Kronig relations

Chapter 3. Impedance Measurement page 3: 9

Measurement TechniquesMeasurement Techniques

• A.C. bridge– obsolete

• Lissajous analysis– obsolete– useful to visualize impedance

• Phase-sensitive detection (lock-in amplifier)– inexpensive– accurate– useful at high frequencies

• Fourier analysis techniques– accurate

Chapter 3. Impedance Measurement page 3: 10

Experimental ConsiderationsExperimental Considerations

• Frequency range– instrument artifacts– non-stationary behavior– capture system response

• Linearity– low amplitude perturbation– depends on polarization curve for system under study– determine experimentally

• Signal-to-noise ratio

Chapter 3. Impedance Measurement page 3: 11

Sinusoidal PerturbationSinusoidal Perturbation

0CdVi Cdt

=

( )fi f V=

( )V t

( )0

0

( ) cos( ) exp( )a

V t V V ti t i b V

ω= + Δ

=

Chapter 3. Impedance Measurement page 3: 12

LinearityLinearity

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 f = 1 mHz 1 mV 20 mV 40 mV

(I-I 0)/m

ax(I-

I 0)

(V-V0)/ΔV-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 f = 10 Hz 1 mV 20 mV 40 mV

(I-I 0)/m

ax(I-

I 0)

(V-V0)/ΔV

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 f = 100 Hz 1 mV 20 mV 40 mV

(I-I 0)/m

ax(I-

I 0)

(V-V0)/ΔV-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

f = 10 kHz 1 mV 20 mV 40 mV

(I-I 0)

/max

(I-I 0)

(V-V0)/ΔV

Chapter 3. Impedance Measurement page 3: 13

0 10 20 30 40 50

0

-10

-20

model 1 mV 20 mV 40 mV

Z j / Ω

cm

2

Zr / Ω cm2

Influence of Nonlinearity on ImpedanceInfluence of Nonlinearity on Impedance

Chapter 3. Impedance Measurement page 3: 14

Influence of Nonlinearity on ImpedanceInfluence of Nonlinearity on Impedance

10-3 10-2 10-1 100 101 102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

model 1 mV 20 mV 40 mVZ r /

Rt

f / Hz10-3 10-2 10-1 100 101 102 103 104 105 106

10-4

10-3

10-2

10-1

100

101 model 1 mV 20 mV 40 mV

|Zj| /

Ω c

m2

f / Hz

Chapter 3. Impedance Measurement page 3: 15

0.01 0.1 0.2 1

0.01

0.1

0.51

10

10

0(R

t-Z(0

))/R

t

ΔV b

Guideline for LinearityGuideline for Linearity0.2b VΔ ≤

Chapter 3. Impedance Measurement page 3: 16

Influence of Ohmic ResistanceInfluence of Ohmic Resistance

0CdVi Cdt

=

( )fi f V=

( )V t( )s tη

eR

( ) ei t R

( )0.2 1 /e tb V R RΔ ≤ +

Chapter 3. Impedance Measurement page 3: 17

Influence of Ohmic ResistanceInfluence of Ohmic Resistance

Chapter 3. Impedance Measurement page 3: 18

Overpotential as a Function of FrequencyOverpotential as a Function of Frequency

0CdVi Cdt

=

( )fi f V=

( )V t( )s tη

eR

( ) ei t R

Chapter 3. Impedance Measurement page 3: 19

Cell DesignCell Design• Use reference electrode to isolate influence of electrodes and

membranes

WorkingElectrode

Counterelectrode

2-electrode

Ref 1

WorkingElectrode

Counterelectrode

3-electrode

Ref 1

Ref 2

WorkingElectrode

Counterelectrode

4-electrode

Chapter 3. Impedance Measurement page 3: 20

Current DistributionCurrent Distribution

• Seek uniform current/potential distribution

– simplify interpretation– reduce frequency dispersion

Working Electrode Seat

Counter Electrode Lead Wires

Cell BodyID = 6 in.L = 6 in.

Working Electrode

Electrolyte In Electrolyte In

ElectrolyteOut

ElectrolyteOut

FlangeCover

CoverFlange

Chapter 3. Impedance Measurement page 3: 21

Primary Current DistributionPrimary Current Distribution

Chapter 3. Impedance Measurement page 3: 22

Modulation TechniqueModulation Technique• Potentiostatic

– standard approach– linearity controlled by

potential

• Galvanostatic– good for nonstationary

systems• corrosion• drug delivery

– requires variable perturbation amplitude to maintain linearity

( )

( ) ( )

2

2

MO corr

Fecorr

2Fe

coO rr

exp

12

1n

nF V V

RT

Fi i V

F

V

T

RT

i Vi VR

α

α α

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞−⎜ ⎟⎝ ⎠

⎡ ⎤= + +⎢ ⎥

⎢ ⎥⎣

⎛ ⎞−⎜⎝ ⎠ ⎦

⎟ …

( ) ( )/I V Z V I Zω ωΔ = Δ Δ = Δ

Chapter 3. Impedance Measurement page 3: 23

Experimental StrategiesExperimental Strategies

• Faraday cage• Short leads• Good wires• Shielded wires• Oscilloscope

I

ΔVWE CERef

Chapter 3. Impedance Measurement page 3: 24

Reduce Stochastic NoiseReduce Stochastic Noise

• Current measuring range• Integration time/cycles

– long/short integration on some FRAs• Delay time• Avoid line frequency and harmonics (±5 Hz)

– 60 Hz & 120 Hz– 50 Hz & 100 Hz

• Ignore first frequency measured (to avoid start-up transient)

Chapter 3. Impedance Measurement page 3: 25

Reduce NonReduce Non--Stationary EffectsStationary Effects

• Reduce time for measurement– shorter integration (fewer cycles)

• accept more stochastic noise to get less bias error– fewer frequencies

• more measured frequencies yields better parameter estimates• fewer frequencies takes less time

– avoid line frequency and harmonic (±5 Hz)• takes a long time to measure on auto-integration• cannot use data anyway

– select appropriate modulation technique• decide what you want to hold constant (e.g., current or potential)• system drift can increase measurement time on auto-integration

Chapter 3. Impedance Measurement page 3: 26

Reduce Instrument Bias ErrorsReduce Instrument Bias Errors

• Faster potentiostat• Short shielded leads• Faraday cage• Check results

– against electrical circuit– against independently obtained parameters

Chapter 3. Impedance Measurement page 3: 27

Measurement Case StudyMeasurement Case Study

Chapter 3. Impedance Measurement page 3: 28

Impedance Data from a BatteryImpedance Data from a Battery

-20

-10

00 10 20 30Zr / Ω

Z j / Ω

0.75 hours9.5 hours168 hours169 hours170 hours171 hours

-3

-2

-1

00 1 2 3 4 5

potentiostatic modulation2-electrodespiral-wound Alkaline AA

Chapter 3. Impedance Measurement page 3: 29

Improve Experimental DesignImprove Experimental Design

• Question– How can we isolate the role of positive electrode, negative

electrode, and separator?• Answer

Ref 1

Ref 2

WorkingElectrode

Counterelectrode

- Develop a very sophisticated process model.

- Use a four-electrode configuration.

Chapter 3. Impedance Measurement page 3: 30

Improve Experimental DesignImprove Experimental Design

• Question– How can we reduce stochastic noise in the measurement?

- Use more cycles during integration. - Add at least a 2-cycle delay.- Ensure use of optimal current measuring resistor.- Check wires and contacts.- Avoid line frequency and harmonics.- Use a Faraday cage.

• Answer

Chapter 3. Impedance Measurement page 3: 31

Improve Experimental DesignImprove Experimental Design

• Question– How can we determine the cause of variability at long times?

- Use the Kramers-Kronig relations to see if data are self-consistent.- Change mode of modulation to variable-amplitude galvanostatic to ensure that the base-line is not changed by the experiment.

• Answer

Chapter 3. Impedance Measurement page 3: 32

Facilitate InterpretationFacilitate Interpretation

• Question– How can we be certain that the instrument is not corrupting

the data?

- Use the Kramers-Kronig relations to see if data are self-consistent.- Build a test circuit with the same impedance response and see if you get the correct result.- Compare results to independently obtained data (such as electrolyte resistance).

• Answer

Chapter 3. Impedance Measurement page 3: 33

Experimental ConsiderationsExperimental Considerations

• Frequency range– instrument artifacts– non-stationary behavior

• Linearity– low amplitude perturbation– depends on polarization curve for system under study– determine experimentally

• Signal-to-noise ratio

Chapter 3. Impedance Measurement page 3: 34

Can We Perform Impedance on Transient Can We Perform Impedance on Transient Systems?Systems?

• Timeframes for measurement– Individual frequency– Individual scan– Multiple scans

Chapter 3. Impedance Measurement page 3: 35

EHD ExperimentEHD Experiment

-0.2

-0.15

-0.1

-0.05

0

0.05-0.05 0 0.05 0.1 0.15 0.2

Real Impedance, μA/rpm

Imag

inar

y Im

peda

nce,

μA/rp

mData Set #2Data Set #4Data Set #1

Chapter 3. Impedance Measurement page 3: 36

Time per Frequency for 200 rpmTime per Frequency for 200 rpm

1

10

100

1000

0.01 0.1 1 10 100

Frequency, Hz

Tim

e pe

r Mea

sure

men

t, s

1

10

100

10000.01 0.1 1 10 100

Filter OnFilter Off

Chapter 3. Impedance Measurement page 3: 37

Impedance ScansImpedance Scans

0 5 10 15 20 25 30 35 400

-5

-10

-15

Time Interval 0-1183 s 1183-2366 s 2366-3581 s

Z j / Ω

cm

2

Zr / Ω cm2

Chapter 3. Impedance Measurement page 3: 38

Impedance ScansImpedance Scans

10-2 10-1 100 101 102 103 104 105

0

1000

2000

3000

4000

E

laps

ed T

ime

/ s

f / Hz

Chapter 3. Impedance Measurement page 3: 39

Time per Frequency MeasuredTime per Frequency Measured

10-2 10-1 100 101 102 103 104 105

101

102

Δt f /

s

f / Hz

5 cycles

3 cycles

5 seconds

Chapter 3. Impedance Measurement page 3: 40

Chapter 3. Impedance Measurement page 3: 41

Chapter 4. Representation of Impedance Data page 4: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 4. Representation of Impedance DataChapter 4. Representation of Impedance Data

• Electrical circuit components• Methods to plot data

– standard plots– subtract electrolyte resistance

• Constant phase elements

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 4. Representation of Impedance Data page 4: 2

Addition of ImpedanceAddition of Impedance

Z1 Z2

21

21

111

YY

Y

ZZZ

+=

+=

Z1

Z2

21

21

111

YYYZZ

Z

+=

+=

Chapter 4. Representation of Impedance Data page 4: 3

Circuit ComponentsCircuit Components

Re

Zr

-Zj

eRZ =

1

11

dldl

−=

−=+=

j

CjR

CjRZ ee ωω

eR

eR Zr

-Zj

ω

CdlRe

Chapter 4. Representation of Impedance Data page 4: 4

Zr

-Zj ω

Simple RC CircuitSimple RC Circuit

( ) ( )

dl

dl

2dl

2 2dl dl

11

1

1 1

e

t

te

t

t te

t t

Z Rj C

RRR

j R C

R R CR jR C R C

ω

ω

ωω ω

= ++

= ++

= + −+ +

eR e tR R+

2tR

1t dlR C

ω=

Rf

Cdl

Re

-12rad / s or scycles / s or Hz

f

f

ω πω

=≡≡

Note:

Chapter 4. Representation of Impedance Data page 4: 5

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

Z r o

r -Z j

/ Ω

realimaginary

ImpedanceImpedance

Slope = 1

Slope = -1

Rf

Cdl

Re

-600

-400

-200

00 200 400 600 800 1000 1200

Zr / Ω

Z j, Ω ω

10 Hz

1 Hz

100 Hz

0

200

400

600

800

1000

1200

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

Z r o

r -Z j

/ Ω

realimaginary

Chapter 4. Representation of Impedance Data page 4: 6

Bode RepresentationBode Representation

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

|Z| /

Ω-90

-60

-30

0

φ / d

egre

es

magnitudephase angle

( )( )

| | cos

| | sin

r j

r

j

Z Z jZ

Z Z

Z Z

φ

φ

= +

=

=

Chapter 4. Representation of Impedance Data page 4: 7

Modified Phase AngleModified Phase Angle

0.01

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

|Z| /

Ω

-90

-60

-30

0

φ∗ /

degr

eesmagnitude

modified magnitudephase anglemodified phase angle

1* tan j

r e

ZZ R

φ − ⎛ ⎞= ⎜ ⎟−⎝ ⎠Input & output are in phase

Input & output are out of phase

1tan j

r

ZZ

φ − ⎛ ⎞= ⎜ ⎟

⎝ ⎠

Note:

The modified phase angle yields excellent insight, but we need an accurate estimate for the solution resistance.

Chapter 4. Representation of Impedance Data page 4: 8

Constant Phase ElementConstant Phase Element

( )1

1e

t t

Z RR j R Qαω−

= ++

Rt

Re

CPE

0.0 0.2 0.4 0.6 0.8 1.00.0

-0.2

-0.4

-0.6 α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=0.5

Z j / R t

(Zr−Re) / Rt

Chapter 4. Representation of Impedance Data page 4: 9

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 10510-5

10-4

10-3

10-2

10-1

100

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=0.5

|Zj| /

Rt

ω / τ

CPE: Log ImaginaryCPE: Log Imaginary

Note: With a CPE (α≠1), the asymptotic slopes are no longer ±1.

Slope = − α

Slope = + α

Chapter 4. Representation of Impedance Data page 4: 10

CPE: Modified Phase AngleCPE: Modified Phase Angle

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

0

-30

-60

-90

α=1 α=0.9 α=0.8 α=0.7 α=0.6 α=0.5

φ* / de

gree

s

ω / τ

Note:

The high-frequency asymptote for the modified phase angle depends on the CPE coefficient α.

Chapter 4. Representation of Impedance Data page 4: 11

Example for Synthetic DataExample for Synthetic Data

( )( ) ( )( )dl

( )1 2

t de

t d

R z fZ f R

j f Q R z fαπ

+= +

+ +

( ) ( ) tanh 22d d

j fz f z f

j fπ τ

π τ=

M. Orazem, B. Tribollet, and N. Pébère, J. Electrochem. Soc., 153 (2006), B129-B136.

Chapter 4. Representation of Impedance Data page 4: 12

Traditional RepresentationTraditional Representation

0 200 400 600 800 1000 1200

0

200

400 α = 1 α = 0.7 α = 0.5

1 mHz100 Hz10 Hz

1 Hz 0.1 Hz

−Zj /

Ω c

m2

Zr / Ω cm2

10 mHz

10-3 10-2 10-1 100 101 102 103 104 105 106

102

103

α = 1 α = 0.7 α = 0.5

| Z |

/ Ω c

m2

f / Hz10-3 10-2 10-1 100 101 102 103 104 105 106

0

-15

-30

-45

-60

-75

-90 α = 1 α = 0.7 α = 0.5

φ / d

egre

e

f / Hz

Chapter 4. Representation of Impedance Data page 4: 13

RRee--Corrected Bode Phase AngleCorrected Bode Phase Angle1

adj,est

tan j

r e

ZZ R

φ − ⎛ ⎞= ⎜ ⎟⎜ ⎟−⎝ ⎠ adj ( ) 90( )φ α∞ = −

10-3 10-2 10-1 100 101 102 103 104 105 106

0

-15

-30

-45

-60

-75

-90 α = 1 α = 0.7 α = 0.5

φ ad

j / de

gree

f / Hz

Chapter 4. Representation of Impedance Data page 4: 14

RRee--Corrected Bode MagnitudeCorrected Bode Magnitude( )2 2

,estadj r e jZ Z R Z= − +

Slope = −α

10-3 10-2 10-1 100 101 102 103 104 105

10-1

100

101

102

103

α = 1 α = 0.7 α = 0.5

| Z

| adj /

Ω c

m2

f / Hz

slope = −α

Chapter 4. Representation of Impedance Data page 4: 15

Log(|ZLog(|Zjj|)|)

Slope = −α

Slope = α

10-3 10-2 10-1 100 101 102 103 104 105 106

10-2

10-1

100

101

102

103

α = 1 α = 0.7 α = 0.5

slope=α

slope=−α

| Z

j | / Ω

cm

2

f / Hz

Chapter 4. Representation of Impedance Data page 4: 16

Effective Capacitance or CPE CoefficientEffective Capacitance or CPE Coefficient

( )effj

1 = sin2 2 ( )

Qf Z fα

αππ

⎛ ⎞− ⎜ ⎟⎝ ⎠( )CPE

CPE

12

ZQ j f απ

=

10-3 10-2 10-1 100 101 102 103 104 105 106

1

10

100 α = 1 α = 0.7 α = 0.5

Q

eff /

Qdl

f / Hz

Chapter 4. Representation of Impedance Data page 4: 17

• Re-Corrected Bode Plots (Phase Angle) – Shows expected high-frequency behavior for surface– High-Frequency limit reveals CPE behavior

• Re-Corrected Bode Plots (Magnitude) – High-Frequency slope related to CPE behavior

• Log|Zj|– Slopes related to CPE behavior– Peaks reveal characteristic time constants

• Effective Capacitance– High-Frequency limit yields capacitance or CPE

coefficient

Alternative PlotsAlternative Plots

Chapter 4. Representation of Impedance Data page 4: 18

ApplicationApplication

Chapter 4. Representation of Impedance Data page 4: 19

Mg alloy (AZ91) in 0.1 M Mg alloy (AZ91) in 0.1 M NaClNaCl

0 100 200 300 400 500 600

200

100

0

-100

-200

15.5 kHz

0.011 Hz

0.0076 Hz

time / h 0.5 3.0 6.0

Z j / Ω

cm

2

Zr / Ω cm2

65.5 Hz

Chapter 4. Representation of Impedance Data page 4: 20

Proposed ModelProposed Model

22 Mg(OH)OH2Mg

4

4

⎯⎯←⎯→⎯

+−

−+

k

k

OHMgOMg(OH) 25-k

5k

2 +⎯⎯←⎯→⎯

( ) −+ +⎯→⎯ eMgMg ads1k

( ) 2212

2ads HOHMgOHMg 2 ++⎯→⎯+ −++ k

( ) −++ +⎯⎯←⎯→⎯

eMgMg 2ads

3

3

k

k

G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier, J. Electrochem. Soc.,154 (2007), C108-C113

“negative difference effect”(NDE)

Chapter 4. Representation of Impedance Data page 4: 21

0 100 200 300 400 500 600

200

100

0

-100

-200

15.5 kHz

0.011 Hz

0.0076 Hz

time / h 0.5 3.0 6.0

Z j / Ω

cm

2

Zr / Ω cm2

65.5 Hz

Physical InterpretationPhysical Interpretationdiffusion of Mg2+

( ) −+ +⎯→⎯ eMgMg ads1k

( ) −++ +⎯⎯←⎯→⎯

eMgMg 2ads

3

3

k

k

relaxation of (Mg+)ads.intermediate

Chapter 4. Representation of Impedance Data page 4: 22

Log(|ZLog(|Zjj||

Slope = −α

10-3 10-2 10-1 100 101 102 103 104 105100

101

102

time / h 0.5 3.0 6.0

|Z

j| / Ω

cm

2

f / Hz

Chapter 4. Representation of Impedance Data page 4: 23

Effective CPE CoefficientEffective CPE Coefficient

( )effj

1 = sin2 2 ( )

Qf Z fα

αππ

⎛ ⎞− ⎜ ⎟⎝ ⎠

10-2 10-1 100 101 102 103 104 105

101

102

103

104

105

time / h 0.5 3.0 6.0

Q

eff /

(MΩ

-1 c

m-2) s

α

f / Hz

Chapter 4. Representation of Impedance Data page 4: 24

RRee--Corrected Phase AngleCorrected Phase Angle

adj ( ) 90φ α∞ = − 1adj

,est

tan j

r e

ZZ R

φ − ⎛ ⎞= ⎜ ⎟⎜ ⎟−⎝ ⎠

10-3 10-2 10-1 100 101 102 103 104 105100

101

102

103

time / h 0.5 3.0 6.0

| Z

| adj /

Ω c

m2

f / Hz

Chapter 4. Representation of Impedance Data page 4: 25

Physical ParametersPhysical Parameters

0 100 200 300 400 500 600

200

100

0

-100

-200

15.5 kHz

0.011 Hz

0.0076 Hz

time / h 0.5 3.0 6.0

Z j / Ω

cm

2

Zr / Ω cm2

65.5 Hz

Chapter 4. Representation of Impedance Data page 4: 26

Experimental device for LEISExperimental device for LEIS

appliedlocal

local

VZ

layer

Chapter 4. Representation of Impedance Data page 4: 27

Mg alloy (AZ91) in Na2SO4 10-3 M at the corrosion potential after 1 h of immersion. Electrode radius 5500 µm.

Global impedance

Global impedance analyzed with a CPE (α = 0.91). Only the HF loop of the diagram is analyzed

J.-B. Jorcin, M. E. Orazem, N. Pébère, and B. Tribollet, Electrochimica Acta, 51 (2006), 1473-1479.

Chapter 4. Representation of Impedance Data page 4: 28

Local impedance

α = 1 to 0.92

Chapter 4. Representation of Impedance Data page 4: 29

Mg alloy (AZ91) in Na2SO4 10-3 M at the corrosion potential after 1 h of immersion. Electrode radius 5500 µm

The local impedance has a pure RC behavior.

The CPE is explained by a 2d distribution of the resistance as shown in the figure.Local impedance

Chapter 4. Representation of Impedance Data page 4: 30

Comparison to Comparison to TheoryTheory

Chapter 4. Representation of Impedance Data page 4: 31

Graphical Representation of Impedance Graphical Representation of Impedance DataData

• Expanded Range of Plot Types– Facilitate model development– Identify features without complete system model

• Suggested Plots– Re-Corrected Bode Plots (Phase Angle)

• Shows expected high-frequency behavior for surface• High-Frequency limit reveals CPE behavior

– Re-Corrected Bode Plots (Magnitude) • High-Frequency slope related to CPE behavior

– Log|Zj|• Slopes related to CPE behavior• Peaks reveal characteristic time constants

– Effective Capacitance• High-Frequency limit yields capacitance or CPE coefficient

Chapter 4. Representation of Impedance Data page 4: 32

Plots based on Deterministic ModelsPlots based on Deterministic Models

Chapter 4. Representation of Impedance Data page 4: 33

Convective Diffusion to a RDEConvective Diffusion to a RDElow-frequency asymptote

Reduction of Fe(CN)63- on a Pt Disk, i/ilim = 1/2

0 50 100 150 200 2500

-50

-100

120 rpm 600 rpm 1200 rpm 2400 rpm

Z j / Ω

Zr / Ω

Chapter 4. Representation of Impedance Data page 4: 34

Normalized Impedance PlaneNormalized Impedance Plane

0 0.2 0.4 0.6 0.8 1.0 1.20

0.2

0.4

0.6 120 rpm 600 1200 2400

−Zj /

(Zr,m

ax−R

e )

(Zr−Re) / (Zr,max−Re)Note: We again need an accurate estimate for the solution resistance.

Chapter 4. Representation of Impedance Data page 4: 35

Normalized RealNormalized Real

10-3 10-2 10-1 100 101 102 103 104 105

10-4

10-3

10-2

10-1

100

120 rpm 600 1200 2400

(Zr−R

e ) /

(Zr,m

ax−R

e )

p

/p ω= Ω

Chapter 4. Representation of Impedance Data page 4: 36

Normalized ImaginaryNormalized Imaginary

10-3 10-2 10-1 100 101 102 103 104 10510-3

10-2

10-1

100

120 rpm 600 1200 2400

−Zj /

(Zr,m

ax−R

e )

p

Chapter 4. Representation of Impedance Data page 4: 37

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1.0 120 rpm 600 1200 2400

(Zr−R

e ) /

(Zr,m

ax−R

e )

−pZj / (Zr,max−Re )

Straight line at low frequencyStraight line at low frequency

Tribollet, Newman, and Smyrl, JES 135 (1988), 134-138.

Chapter 4. Representation of Impedance Data page 4: 38

Slope at low frequency yields DSlope at low frequency yields Dii

0 0.01 0.02 0.03 0.040.4

0.6

0.8

1.0

(Zr−R

e ) /

(Zr,m

ax−R

e )

−pZj / (Zr,max−Re)

{ }{ }

1/ 30

1/ 3 2 / 3

Relim ScIm

1.2261 0.84Sc 0.63Sc

Sc 1090.6

p

d Zs

dp Zλ

λ

− −

⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠= + +

=

Chapter 4. Representation of Impedance Data page 4: 39

100 101 102 103 104 105

10-1

100

101

102

103

104

105

106

320 K 340 K 360 K 380 K 400 K

−Zj /

Ω

f / Hz

nn--GaAsGaAs Diode:Diode:scaling based on scaling based on

Arrhenius relationshipArrhenius relationship

0 2x106 4x106 6x106 8x106 1x1070

-2x106

-4x106

340 K

320 K

Z j / Ω

Zr / Ω

100 101 102 103 104 105100

101

102

103

104

105

106

107

108

320 K 340 K 360 K 380 K 400 K

Z r / Ω

f / Hz

Chapter 4. Representation of Impedance Data page 4: 40

10-4 10-3 10-2 10-1 100 101 102 103

0.0

0.2

0.4

0.6

0.8

1.0 320 K 340 K 360 K 380 K 400 K

Z r / |Z

max

|

f*

Normalized RealNormalized Real

0

* expf Eff kT

⎛ ⎞= ⎜ ⎟⎝ ⎠

Jansen, Orazem, Wojcik, and Agarwal, JES 143 (1996), 4066-4074.

Chapter 4. Representation of Impedance Data page 4: 41

Normalized ImaginaryNormalized Imaginary

10-4 10-3 10-2 10-1 100 101 102 103

0.0

0.1

0.2

0.3

0.4

0.5

320 K 340 K 360 K 380 K 400 K

−Zj /

|Zm

ax|

f*

Chapter 4. Representation of Impedance Data page 4: 42

Normalized Log RealNormalized Log Real

10-4 10-3 10-2 10-1 100 101 102 10310-6

10-5

10-4

10-3

10-2

10-1

100

320 K 340 K 360 K 380 K 400 K

Z r / |Z

max

|

f*

Chapter 4. Representation of Impedance Data page 4: 43

Normalized Log ImaginaryNormalized Log Imaginary

10-4 10-3 10-2 10-1 100 101 102 10310-6

10-5

10-4

10-3

10-2

10-1

100

320 K 340 K 360 K 380 K 400 K

−Zj /

|Zm

ax|

f*

Chapter 4. Representation of Impedance Data page 4: 44

SuperlatticeSuperlatticeStructureStructure

-4.0E+08

-2.0E+08

0.0E+000.0E+00 2.0E+08 4.0E+08 6.0E+08

Zr, ΩZ j

, Ω

298.8290285270260

-4.0E+07

-2.0E+07

0.0E+000.0E+00 2.0E+07 4.0E+07 6.0E+07

Zr, Ω

-Zj,

Ω

260292.5297.2297.7297.8297.8298.8

Chapter 4. Representation of Impedance Data page 4: 45

0

0.2

0.4

0.6

0.8

1

1.2

0.0001 0.01 1 100 10000

Z/Z r

,max

Normalized Real PartNormalized Real Part

0

* expf Eff kT

⎛ ⎞= ⎜ ⎟⎝ ⎠

Chapter 4. Representation of Impedance Data page 4: 46

Normalized Imaginary PartNormalized Imaginary Part-0.4

-0.3

-0.2

-0.1

0

0.10.0001 0.01 1 100 10000

Zj /

Zr,m

ax

0

* expf Eff kT

⎛ ⎞= ⎜ ⎟⎝ ⎠

Chapter 4. Representation of Impedance Data page 4: 47

DLTS of DLTS of nn--GaAsGaAs diodediode

0.002 0.003 0.004 0.005 0.006 0.007

1/T / K-1

e/T2 /

s-1

K2

0.83 eV

0.48 eV0.32 eV

Chapter 4. Representation of Impedance Data page 4: 48

nn--GaAsGaAs

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034

1/T / K-1

TR /

K

0.77 eV

0.45 eV

0.25 eV

0.27 eV

Chapter 4. Representation of Impedance Data page 4: 49

MottMott--SchottkySchottky PlotsPlotshigh-frequency asymptote

0

sc

T

qC ∂=

∂Φ

( )( )2

2 d ad e p n N Ndy ε

Φ= − − + −

( )( )

0

2

21 fb

d a

kTe

C F N Nε

Φ − Φ ±= −

Ef

Ec

Ev

Et Eg

Position

Elec

tron

Ener

gy

GaAs

BlockingContact

OhmicContact

Dean and Stimming, J. Electroanal. Chem. 228 (1987), 135-151.

Chapter 4. Representation of Impedance Data page 4: 50

C as a function of PotentialC as a function of Potentialintrinsic semiconductor

-0.4 -0.2 0 0.2 0.410-8

10-7

10-6

10-5

10-4

10-3

C

/ μF

cm

-2

(Φ-Φfb) / V

Chapter 4. Representation of Impedance Data page 4: 51

1/C1/C22 as a function of Potentialas a function of Potentialn- or p-doped semiconductor

-3 -2 -1 0 1 2 3

0

1

2

3

4

p-typen-type

−1017 cm-3 +1017 cm-3

(Nd−Na )= +1016 cm-3 (Nd−Na )= −1016 cm-3

C-2 /

108 cm

4 μF-2

(Φ-Φfb) / V

Chapter 4. Representation of Impedance Data page 4: 52

GaAsGaAs--SchottkySchottky DiodeDiode

-3 -2 -1 0 1 20

2

4

6

8

C -2

/ nF

-2

Potential / V

Chapter 4. Representation of Impedance Data page 4: 53

Choice of RepresentationChoice of Representation

• Plotting approaches are useful to show governing phenomena

• Complement to regression of detailed models• Sensitive analysis requires use of properly weighted

complex nonlinear regression

Chapter 4. Representation of Impedance Data page 4: 54

Chapter 5. Development of Process Models page 5: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 5. Development of Process ModelsChapter 5. Development of Process Models

• Use of Circuits to guide development• Develop models from physical grounds• Model case study• Identify correspondence between physical models and

electrical circuit analogues• Account for mass transfer

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 5. Development of Process Models page 5: 2

Use circuits to create frameworkUse circuits to create framework

Chapter 5. Development of Process Models page 5: 3

Addition of PotentialAddition of Potential

Chapter 5. Development of Process Models page 5: 4

Addition of CurrentAddition of Current

Chapter 5. Development of Process Models page 5: 5

Equivalent Circuit at the Corrosion PotentialEquivalent Circuit at the Corrosion Potential

Chapter 5. Development of Process Models page 5: 6

Equivalent Circuit for a Partially Blocked Equivalent Circuit for a Partially Blocked ElectrodeElectrode

Chapter 5. Development of Process Models page 5: 7

Equivalent Circuit for an Electrode Coated Equivalent Circuit for an Electrode Coated by a Porous Layerby a Porous Layer

Chapter 5. Development of Process Models page 5: 8

Equivalent Electrical Circuit for an Electrode Equivalent Electrical Circuit for an Electrode Coated by Two Porous LayersCoated by Two Porous Layers

1402 0

2 2 2

; 8.8452 10 F/cm

R /

C εεε

δδ κ

−= = ×

=

Chapter 5. Development of Process Models page 5: 9

Use kinetic models to determine Use kinetic models to determine expressions for the interfacial impedanceexpressions for the interfacial impedance

Chapter 5. Development of Process Models page 5: 10

ApproachApproachidentify reaction mechanismwrite expression for steady state current contributionswrite expression for sinusoidal steady statesum current contributionsaccount for charging currentaccount for ohmic potential dropaccount for mass transfercalculate impedance

√√√√√√√√

Chapter 5. Development of Process Models page 5: 11

General Expression for General Expression for FaradaicFaradaic CurrentCurrent

,0 ,

,

,0, ,0 , ,

,

i k j j i k

j j j k

f iic i V c

kk k V c

f fi V cV c

f

γ γ

γ

γγ

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂+ ⎜ ⎟∂⎝ ⎠

( ),0, ,f i ii f V c γ=

{ }tjeiii ω~Re+=

Chapter 5. Development of Process Models page 5: 12

Reactions ConsideredReactions Considered

• Dependent on Potential• Dependent on Potential and Mass Transfer• Dependent on Potential, Mass Transfer, and Surface

Coverage• Coupled Reactions

Chapter 5. Development of Process Models page 5: 13

Irreversible Reaction: Irreversible Reaction: Dependent on PotentialDependent on Potential

A A z ne+ −→ +

z+

• Potential-dependent heterogeneous reaction• Two-dimensional surface• No effect of mass transfer

Chapter 5. Development of Process Models page 5: 14

Current DensityCurrent Density

A,At

ViR

=( ),A

1expt

A A A

RK b b V

=

AA A A exp Fi n Fk V

RTα⎛ ⎞= ⎜ ⎟⎝ ⎠

steady-state

( )A AexpA Ai K b b V V=

oscillating component

( )A A exp Ai K b V=

Chapter 5. Development of Process Models page 5: 15

f dl

f dl

dVi i Cdt

i i j C Vω

= +

= +

Charging CurrentCharging Current

low frequency

high frequency

,A

,A

1

dlt

dlt

Vi j C VR

V j CR

ω

ω

= +

⎛ ⎞= +⎜ ⎟⎜ ⎟

⎝ ⎠

,A

,A1t

t dl

RVi j R Cω=

+

Chapter 5. Development of Process Models page 5: 16

Ohmic ContributionsOhmic Contributions

VRiU

ViRU

e

e~~~ +=

+=

A

,A

,A1+

e

te

t dl

U VZ Ri i

RR

j R Cω

= = +

= +

Chapter 5. Development of Process Models page 5: 17

( )A A Aexp 2.303i K V β=

A A2.303/ bβ =

( )A

,AA

1exp 2.303t

A A A

RK b b V i

β= =

AA

,A

A ,A A

2.303

2.303t

t

iR

R i

β

β

=

=

( )A A exp Ai K b V=

Steady Currents in Terms of Steady Currents in Terms of RRt,At,A

Chapter 5. Development of Process Models page 5: 18

Irreversible Reaction: Irreversible Reaction: Dependent on Potential and Mass TransferDependent on Potential and Mass Transfer

O Rne−+ →

• Irreversible potential-dependent heterogeneous reaction• Reaction on two-dimensional surface• Influence of transport of O to surface

Chapter 5. Development of Process Models page 5: 19

Current DensityCurrent Density

( ),OO O,0 O

1exptR

K c b V=

( )O O O,0 Oexpi K c b V= − −

steady-state

( ) ( )

( )

O O O O,0 O O O O,0

O O O,0,O

exp exp

expt

i K b c b V V K b V c

V K b V cR

= − − −

= − −

oscillating component

Chapter 5. Development of Process Models page 5: 20

Mass TransferMass Transfer

{ }

OO O O

0

O O ORe j t

dci n FDdy

i i i e ω

= −

= +

OO O O

0

dci n FDdy

= −

( )O,0O O O

O

0c

i n FD θδ

′= −

Chapter 5. Development of Process Models page 5: 21

Combine ExpressionsCombine Expressions

( )O O O O,0,O

expt

Vi K b V cR

= −

( )O O

O,0O O 0

icn FD

δθ

= −′

Chapter 5. Development of Process Models page 5: 22

Current DensityCurrent Density

OO

,OO O O,0 O

,O ,O

1 1(0)t

t d

ViR

n FD c b

VR z

δθ

=⎛ ⎞

+ −⎜ ⎟′⎝ ⎠

=+

O,O

O O O,0 O

1 1(0)dz

n FD c bδ

θ⎛ ⎞

= −⎜ ⎟′⎝ ⎠

( ),OO O,0 O

1exptR

K c b V=

Chapter 5. Development of Process Models page 5: 23

Calculate ImpedanceCalculate Impedance

O

f dl

dl

dVi i Cdt

i i j C Vω

= +

= +

,O ,O

,O ,O

1

dlt d

dlt d

Vi j C VR z

V j CR z

ω

ω

= ++

⎛ ⎞= +⎜ ⎟⎜ ⎟+⎝ ⎠

VRiU

ViRU

e

e~~~ +=

+=

( )

O

,O ,O

,O ,O1+

e

t de

dl t d

U VZ Ri i

R zR

j C R zω

= = +

+= +

+

Chapter 5. Development of Process Models page 5: 24

Comparison to Circuit AnalogComparison to Circuit Analog

Cdl

Re

Rt,O

zd,O

( ),O ,O

O,O ,O1+

t de

dl t d

R zZ R

j C R zω+

= ++

Chapter 5. Development of Process Models page 5: 25

Irreversible Reaction: Irreversible Reaction: Dependent on Potential and Adsorbed IntermediateDependent on Potential and Adsorbed Intermediate

1

2

-

-

B X+eX P+e

k

k

⎯⎯→

⎯⎯→

• Potential-dependent heterogeneous reactions• Adsorption of intermediate on two-dimensional surface• Maximum surface coverage

B

X X XX

P

Chapter 5. Development of Process Models page 5: 26

SteadySteady--State Current DensityState Current Density

( ) ( )( )1 1 1 11 expi K b V Vγ= − −

reaction 1: formation of X

reaction 2: formation of P

( )( )2 2 2 2expi K b V Vγ= −

total current density

1 2i i i= +

Chapter 5. Development of Process Models page 5: 27

SteadySteady--State Surface CoverageState Surface Coverage

1 2

0

i iddt F Fγ

Γ = −

=

balance on γ

( )( )( )( ) ( )( )

1 1 1

1 1 1 2 2 2

exp

exp exp

K b V V

K b V V K b V Vγ

−=

− + −

steady-state value for γ

Chapter 5. Development of Process Models page 5: 28

SteadySteady--State Current DensityState Current Density

( ) ( )( ) ( )( )1 1 1 2 2 21 exp expi K b V V K b V Vγ γ= − − + −

( )( )( )( ) ( )( )

1 1 1

1 1 1 2 2 2

exp

exp exp

K b V V

K b V V K b V Vγ

−=

− + −

where

Chapter 5. Development of Process Models page 5: 29

Oscillating Current DensityOscillating Current Density

( ) ( )( ) ( )( )1 1 1 2 2 21 exp expi K b V V K b V Vγ γ= − − + −

( )( ) ( )( )( )2 2 2 1 1 1,1 ,2

1 1 exp expt t

i V K b V V K b V VR R

γ⎛ ⎞

= + + − − −⎜ ⎟⎜ ⎟⎝ ⎠

( ) ( )( )( )( )

1

,1 1 1 1 1

1

,2 2 2 2 2

1 exp

exp

t

t

R K b b V V

R K b b V V

γ

γ

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

Chapter 5. Development of Process Models page 5: 30

Need Additional EquationNeed Additional Equation

( )( ) ( )( )( )1 1 1 2 2 2,1 ,2

1 1 1 exp expt t

j V K b V V K b V VF R R

ωγ γ⎛ ⎞

Γ = − − − + −⎜ ⎟⎜ ⎟⎝ ⎠

balance on γ

( )( ) ( )( )( )1 1

,1 ,2

1 1 1 2 2 2exp expt tR R

VF j K b V V K b V V

γω

− −−=

Γ + − + −

Chapter 5. Development of Process Models page 5: 31

ImpedanceImpedance

( )( ) ( )( )( )( ) ( )( )( )

1 12 2 2 1 1 1 ,1 ,2

1 1 1 2 2 2

exp exp1 1exp exp

1

t t

t

t

K b V V K b V V R R

Z R F j F K b V V K b V V

AR j B

ω

ω

− −⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦⎣ ⎦= +Γ + − + −

= ++

, ,

1 1 1

t t M t XR R R= +

where

Chapter 5. Development of Process Models page 5: 32

Chapter 5. Development of Process Models page 5: 33

Chapter 5. Development of Process Models page 5: 34

-1.2

-1.0

-0.8

-0.6

-0.4

0.01 0.1 1 10 100Current Density, mA/ft2

Pot

entia

l, V

(Cu/

CuS

O4)

Corrosion of Corrosion of SteelSteel

2H2O + 2e- → H2+2OH-

O2+2H2O + 4e- → 4OH-

Fe → Fe2+ + 2e-

22 OHFe iiii f ++=

Chapter 5. Development of Process Models page 5: 35

Fe,Fe

~~tRVi =

( ),FeFe Fe Fe

1exptR

K b b V=

Corrosion: Fe Corrosion: Fe →→ FeFe2+ 2+ + 2e+ 2e--

( )Fe Fe Feexpi K b V=

( )Fe Fe Fe Feexpi K b b V V=

Chapter 5. Development of Process Models page 5: 36

Steady Currents in Terms of Steady Currents in Terms of RRtt

( )Fe Fe Feexp 2.303i K V β=

Fe Fe2.303/ bβ =

( )Fe

,FeFe Fe Fe Fe

1exp 2.303tR

K b b V iβ

= =

FeFe

,Fe2.303 t

iR

β=

( )Fe Fe Feexpi K b V=

Important: Note the relationship among steady-state current density, Tafel slope, and charge transfer resistance.

Chapter 5. Development of Process Models page 5: 37

( )2 2 2H H Hexpi K b V= − −

( )2 2 2 2H H H Hexpi K b b V V= −

2

2H,

H

~~tRVi =

( )2

2 2 2

t,HH H H

1exp

RK b b V

=−

HH22 Evolution: 2HEvolution: 2H22O + 2eO + 2e-- →→ HH22+2OH+2OH--

Chapter 5. Development of Process Models page 5: 38

( )2 2 2 2O O O ,0 Oexpi K c b V= − −

( )( )

2 2 2 2 2

2 2 2

O O O O ,0 O

O O O ,0

exp

exp

i K b c b V V

K b V c

= −

− −

OO22 Reduction: OReduction: O22+2H+2H22O + 4eO + 4e-- →→ 4OH4OH--

Chapter 5. Development of Process Models page 5: 39

OO22 Evolution: OEvolution: O22+2H+2H22O + 4eO + 4e-- →→ 4OH4OH--

mass transfer: in terms of dimensionless gradient at electrode surface

( )

2

2 2 2

2

2 2

2

OO O O

0

O ,0O O

O

0

dci n FD

dyc

n FD θδ

= −

′= −

Chapter 5. Development of Process Models page 5: 40

22

2

2 2 2 2

2 2

OO

,OO O O ,0 O

,O ,O

1 1(0)t

t d

ViR

n FD c b

VR z

δθ

=⎛ ⎞

+ −⎜ ⎟′⎝ ⎠

=+

( )2

2 2 2 2

t,OO O O ,0 O

1exp

RK b c b V

=−

2

2

2 2 2 2

O,O

O O O ,0 O

1 1(0)dz

n FD c bδ

θ⎛ ⎞

= −⎜ ⎟′⎝ ⎠

OO22 Evolution: OEvolution: O22+2H+2H22O + 4eO + 4e-- →→ 4OH4OH--

coupled expression

Chapter 5. Development of Process Models page 5: 41

Capacitance and Ohmic ContributionsCapacitance and Ohmic Contributions

∑∑

=

=

ff

ff

ii

ii~~

Faradaic

VCjiidtdVCii

df

df

~~~ ω+=

+=Faradaic and Charging

VRiU

ViRU

e

e~~~ +=

+=Ohmic

Chapter 5. Development of Process Models page 5: 42

ddt

ddtt,t,

jr

CjzRR

CjzRRR

jZZiUZ

ω

ω

++

+=

++

+⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

+==

22

222

O,O,eff

O,O,HFe

111

1111

~~

2eff Fe H

1 1 1

t, t,R R R= +

Process ModelProcess Model

Rt,O2

Rt,H2Rt,Fe

Cdl

Zd,O2

Chapter 5. Development of Process Models page 5: 43

Development of Impedance ModelsDevelopment of Impedance Models

identify reaction mechanismwrite expression for steady state current contributionswrite expression for sinusoidal steady statesum current contributionsaccount for charging currentaccount for ohmic potential drop

• account for mass transfercalculate impedance

Chapter 5. Development of Process Models page 5: 44

Mass TransferMass Transfer

Chapter 5. Development of Process Models page 5: 45

Film DiffusionFilm Diffusion2

2i i

ic cDt z

∂ ∂∂ ∂

⎧ ⎫= ⎨ ⎬

⎩ ⎭

,

,0

as

at 0i i f

i i

c c z

c c z

δ∞→ →

= =

( ),0 , ,0i i i if

zc c c cδ ∞= + −

steady state

Chapter 5. Development of Process Models page 5: 46

Film DiffusionFilm Diffusion2

2i i

ic cDt z

∂ ∂∂ ∂

⎧ ⎫= ⎨ ⎬

⎩ ⎭

2 2

2 2

2

2

2

2

j t j ti ii i

j t j tii

ii

d c d cj ce D D ed z d zd cj ce D ed zd cj c Dd z

ω ω

ω ω

ω

ω

ω

= +

=

=

{ }tjiii eccc ω~Re+=

2

(0)

fi

i

ii

i

KDc

c

ωδ

θ

=

=

i

ξ =

2

2 0ii i

d jKdθ

θξ

− =

Chapter 5. Development of Process Models page 5: 47

Warburg ImpedanceWarburg Impedance

( ) ( )

2

2 0

exp exp

ii i

i i i

d jKd

A jK B jK

θθ

ξ

θ ξ ξ

− =

= + −

2

2

0 at 1

1 at 0

tanh1(0)

tanh1(0)

i

i

i

i i

i

i

i

jKjK

jD

jD

θ ξ

θ ξ

θ

ωδ

θ ωδ

= =

= =

= −′

= −′

2

0 at

1 at 01 1(0)

1 1(0)

i

i

i i

i

i

jK

jD

θ ξ

θ ξ

θ

θ ωδ

= = ∞

= =

= −′

= −′

Chapter 5. Development of Process Models page 5: 48

ConcentrationConcentration

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

ξ/δ

c(ξ)

/c( ∞

)

t=0, 2nπ/K

t=nπ/K

t=0.5nπ/K

t=1.5nπ/K

K=100

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

ξ/δ

c(ξ)

/c( ∞

)

t=0, 2nπ/K

t=nπ/K

t=0.5nπ/K

t=1.5nπ/K

K=1-40

-30

-20

-10

00 10 20 30 40 50 60

Zr, Zr,D, Ω

Z j, Z

j,D,

Diffusion Impedance Only (infinite)Diffusion Impedance Only (finite)Complete Impedance

Chapter 5. Development of Process Models page 5: 49

Rotating DiskRotating Disk

Chapter 5. Development of Process Models page 5: 50

Convective DiffusionConvective Diffusion

⎭⎬⎫

⎩⎨⎧

+⎟⎟⎠

⎞⎜⎜⎝

⎛=++ 2

21zc

rrc

rrD

zcv

rcv

tc ii

ii

zi

ri

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎟⎠⎞

⎜⎝⎛ Ω+⎟

⎠⎞

⎜⎝⎛ Ω+

Ω−Ω= ...

631 4

23

2/32 zbzzavz ννν

ν

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎟⎠⎞

⎜⎝⎛ Ω−⎟

⎠⎞

⎜⎝⎛ Ω−⎟

⎠⎞

⎜⎝⎛ ΩΩ= ...

323

2/322/1

zbzzarvr ννν

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎟⎠⎞

⎜⎝⎛ Ω+⎟

⎠⎞

⎜⎝⎛ Ω−Ω= ...

31 3

2/32/1

zazbrvννθ

z

Chapter 5. Development of Process Models page 5: 51

Convective Diffusion in oneConvective Diffusion in one--DimensionDimension

⎭⎬⎫

⎩⎨⎧

=+ 2

2

zcD

zcv

tc i

ii

zi

∂∂

∂∂

∂∂

−=∑ neMsi

zii

i

∞→→ ∞ zcc ii as,

0at == znFis

zcD fii

i ∂∂

( )if cfi ,η=

Chapter 5. Development of Process Models page 5: 52

2

2

2

2 0j t j t j ti ii iz iz id c d cv Dd z d

d c d cj ce v e D edz d zz

ω ω ωω + + −− =

Sinusoidal Steady StateSinusoidal Steady State{ }tj

iii eccc ω~Re+=

1/3i

31

2

31

2 Sc99⎟⎠⎞

⎜⎝⎛

Ω=⎟⎟

⎞⎜⎜⎝

⎛Ω

=aDa

Ki

iωνω

i

ξ =Ω

⎟⎠⎞

⎜⎝⎛=

Ω⎟⎠⎞

⎜⎝⎛=

ννν

δ 1/3i

31

31

Sc133

aaDi

i

0~~~2

2

=−− iii

zi cjK

dcdv

dcd

ξξ

Chapter 5. Development of Process Models page 5: 53

Finite Length Warburg ImpedanceFinite Length Warburg Impedance

vcz

D

zi

i

∂∂

ν

=

=

0

2598 1 3 2 3. / /

Ω

z zj

j

D

d d

i

=

= =

( )tanh

. /

0

25982 1 3

ωτωτ

τSc

Ω

2

2

tanh1(0)

i

i

i

jD

jD

ωδ

θ ωδ= −

Chapter 5. Development of Process Models page 5: 54

ImpedanceImpedance

0~~~2

2

=−− iii

zi jK

ddv

dd θ

ξθ

ξθ ( ) 0,

~~~iii cc=ξθ

0at1~as0~

==

∞→→

ξθ

ξθ

i

i

( )0~,,0, i

i

i

i

ci itD nFD

scfRZ

ijjθδ

η′⎟⎟

⎞⎜⎜⎝

∂∂

−=≠

( )0~)0(

i

DD

ZZθ ′

=

Chapter 5. Development of Process Models page 5: 55

Numerical SolutionsNumerical Solutions

One Term

( )v a

z a

z = −

= =

νΩ ζ

ζν

2

051203Ω

; .

( )z zp

p

d d= −′

⎝⎜⎜

⎠⎟⎟

=

( )01

ω

Sc1/3

Ω

Two Termsv az = − +

⎛⎝⎜

⎞⎠⎟νΩ ζ ζ2 31

3 ( )( )

z zp

Z pd d= −

′+

⎝⎜⎜

⎠⎟⎟( )0

1

0

1

θ ScSc

Sc1/3

1/3

1/3

Three Termsv a

b

b

z = − + +⎛⎝⎜

⎞⎠⎟

= −

νΩ ζ ζ ζ2 3 413 6

0 616.( )

( ) ( )z z

pZ p Z p

d d= −′

+ +⎛

⎝⎜⎜

⎠⎟⎟( )0

1

0

1 2

θ ScSc

ScSc

Sc1/3

1/3

1/3

1/3

2/3

Infinite Sc

Finite Sc

Chapter 5. Development of Process Models page 5: 56

Coupled Diffusion ImpedanceCoupled Diffusion Impedance

, ,, ,

, ,

2, ,

, ,, , ,

i outer i innerd outer d inner

i inner i outerd

i outer i innerinnerd inner d outer

i inner i inner i outer

Dz z

Dz

Dz z j

D D

δδ

δδωδ

+=

⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠

Chapter 5. Development of Process Models page 5: 57

Interpretation Models for Impedance Interpretation Models for Impedance SpectroscopySpectroscopy

• Models can account rigorously for proposed kinetic and mass transfer mechanisms.

• There are significant differences between models for mass transfer.

• Stochastic errors in impedance spectroscopy are sufficiently small to justify use of accurate models for mass transfer.

Chapter 5. Development of Process Models page 5: 58

Chapter 6. Regression Analysis page 6: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 6. Regression AnalysisChapter 6. Regression Analysis

• Regression response surfaces– noise– incomplete frequency range

• Adequacy of fit– quantitative– qualitative

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 6. Regression Analysis page 6: 2

Test Circuit 1: 1 Time ConstantTest Circuit 1: 1 Time Constant

• R0 = 0• R1 = 1 Ω cm2

• τ1 = τRC = 1 sR0

R1

C1

(1)

Chapter 6. Regression Analysis page 6: 3

Linear optimization surface roughly Linear optimization surface roughly parabolicparabolic

0.6 0.8 1.01.2

1.4

0.00

0.01

0.02

0.03

0.04

0.05

0.6

0.81.0

1.21.4

Sum

of S

quar

es

τ / s

R / Ω cm2

0.5 1.0 1.50.5

1.0

1.5

R / Ω cm2

τ / s

0

0.02000

0.04000

0.06000

0.08000

0.1000

( ) ( )dat dat22

,dat ,mod,dat ,mod2 2

1 1( )

N Nj jr r

i kr j

Z ZZ Zf

σ σ= =

−−= +∑ ∑p

Chapter 6. Regression Analysis page 6: 4

Nonlinear RegressionNonlinear Regression

0 0

2

01 1 1

1( ) ( )2

p p pN N N

j j kj j kj j kp p

f ff f p p pp p p= = =

∂ ∂= + Δ + Δ Δ +

∂ ∂ ∂∑ ∑∑p p …

= ⋅ Δβ α p

dat

21

( | ) ( | )Ni i i

ki i k

y y x y xp

βσ=

− ∂=

∂∑ p p

dat

, 21

1 ( | ) ( | )Ni i

j ki i j k

y x y xp p

ασ=

⎡ ⎤∂ ∂≈ ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦∑ p p

dat 22

21

( ( | ))Ni i

i i

y y xχσ=

−= ∑ p

i i

f y Zx ω= =

=

For our purposes:

Variance of data

Derivative of function with respect to parameter

Chapter 6. Regression Analysis page 6: 5

Methods for RegressionMethods for Regression

• Evaluation of derivatives– method of steepest descent– Gauss-Newton method– Levenberg-Marquardt method

• Evaluation of function– simplex

Chapter 6. Regression Analysis page 6: 6

Effect of Noisy DataEffect of Noisy Data

0.5 1.0 1.50.5

1.0

1.5

R / Ω cm2

τ / s

1.000

75.75

150.5

225.2

300.0

• response surface remains parabolic• value at minimum increases

0.6

0.8

1.0

1.2

1.40.6

0.81.0

1.21.4

0

100

200

300

Sum

of S

quar

es

R / Ω cm2

τ / s

Add noise: 1% of modulus

Chapter 6. Regression Analysis page 6: 7

Test Circuit 2: 3 Time ConstantsTest Circuit 2: 3 Time Constants

R0

R1

C1

(1)

R2

C2

(2)

R3

C3

(3)

• R0 = 1 Ω cm2

• R1 = 100 Ω cm2

• τ1 = 0.001 s• R2 = 200 Ω cm2

• τ2 = 0.01 s• R3 = 5 Ω cm2

• τ3 = 0.05 s

Note: 3rd Voigt element contributes only 1.66% to DC cell impedance.

Chapter 6. Regression Analysis page 6: 8

Effect of Noisy DataEffect of Noisy Data

All parameters fixed except R3 and τ3

-4-3

-2-1

01

2-2-1

01

23

410-2

10-1

100

101

102

103

Sum

of S

quar

es log10(R/Ω cm2) log10(τ / s)

noise: 1% of modulus

-4-3

-2-1

01

2-2-1

01

23

410-2

10-1

100

101

102

103

Sum

of S

quar

es

log10(R/Ω cm2) log10(τ / s)

no noise

Note: use of log scale for parameters

Chapter 6. Regression Analysis page 6: 9

Resulting SpectrumResulting Spectrum

0 50 100 150 200 250 300 3500

-50

-100

-150

Z j /

Ω c

m2

Zr / Ω cm2

Model with 1% noise added− Model with no noise

Chapter 6. Regression Analysis page 6: 10

Test Circuit 3: 3 Time ConstantsTest Circuit 3: 3 Time Constants

R0

R1

C1

(1)

R2

C2

(2)

R3

C3

(3)

• R0 = 1 Ω cm2

• R1 = 100 Ω cm2

• τ1 = 0.01 s• R2 = 200 Ω cm2

• τ2 = 0.1 s• R3 = 100 Ω cm2

• τ3 = 10 s

Note: 3rd Voigt element contributes 25% to DC cell impedance. The time constant corresponds to a characteristic frequency ω3=0.1 s-1 or f3=0.016 Hz.

Chapter 6. Regression Analysis page 6: 11

Resulting Test SpectraResulting Test Spectra

0 100 200 300 4000

-100

Z j / Ω

cm

2

Zr / Ω cm2

0.01 Hz to 100 kHz1 Hz to 100 kHz

Chapter 6. Regression Analysis page 6: 12

Effect of Truncated DataEffect of Truncated Data

All parameters fixed except R3 and τ3

-2-1

01

23

4-1

01

23

45100

101

102

103

Sum

of S

quar

es

log10(R / Ω cm2)

log10(τ / s)

0.01 Hz to 100 kHz

-2-1

01

23

4-1

01

23

4510-1

100

101

102

103

Sum

of S

quar

es log10(R / Ω cm2)

log10(τ / s)

1 Hz to 100 kHz

Chapter 6. Regression Analysis page 6: 13

Conclusions from Test Spectra Conclusions from Test Spectra

• The presence of noise in data can have a direct impact on model identification and on the confidence interval for the regressed parameters.

• The correctness of the model does not determine the number of parameters that can be obtained.

• The frequency range of the data can have a direct impact on model identification.

• The model identification problem is intricately linked to the error identification problem. In other words, analysis of data requires analysis of the error structure of the measurement.

Chapter 6. Regression Analysis page 6: 14

When Is the Fit Adequate?When Is the Fit Adequate?

• Chi-squared statistic– includes variance of data– should be near the degree of freedom

• Visual examination– should look good– some plots show better sensitivity than others

• Parameter confidence intervals– based on linearization about solution– should not include zero

Chapter 6. Regression Analysis page 6: 15

Test Case: Mass Transfer to a RDETest Case: Mass Transfer to a RDE

Single reaction coupled with mass transfer. Consider model for a Nernst stagnant diffusion layer:

( )( ) ( )( )

( )1

t de

t d

R zZ R

j C R zω

ωω ω

+= +

+ +

( ) ( ) tanhd d

jz z

jωτ

ω ωωτ

=

Chapter 6. Regression Analysis page 6: 16

Evaluation of Evaluation of χχ22 StatisticStatistic

σ/|Z(ω)| 1 0.1 0.05 0.03 0.01

χ2 0.0408 4.08 16.32 45.32 408

χ2/ν 0.00029 0.029 0.12 0.32 2.9

Chapter 6. Regression Analysis page 6: 17

Comparison of Model to DataComparison of Model to Data

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

−Zj /

Ω

Zr / Ω

Impedance Plane (Impedance Plane (NyquistNyquist))

Value of χ2 has no meaning without accurate assessment of the noise level of the data

Chapter 6. Regression Analysis page 6: 18

ModulusModulus

10-2 10-1 100 101 102 103 104

10

100

|Z| /

Ω

f / Hz

Chapter 6. Regression Analysis page 6: 19

Phase AnglePhase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

φ

/ deg

rees

f / Hz

Chapter 6. Regression Analysis page 6: 20

RealReal

10-2 10-1 100 101 102 103 1040

40

80

120

160

200

Z r /

Ω

f / Hz

Chapter 6. Regression Analysis page 6: 21

ImaginaryImaginary

10-2 10-1 100 101 102 103 1040

20

40

60

80

−Zj /

Ω

f / Hz

Chapter 6. Regression Analysis page 6: 22

Log ImaginaryLog Imaginary

10-2 10-1 100 101 102 103 1041

10

100

Slope = -1 for RC

−Z

j / Ω

f / Hz

Chapter 6. Regression Analysis page 6: 23

Modified Phase AngleModified Phase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

-60

-75

-90φ∗ /

degr

ees

f / Hz

1* tan j

r e

ZZ R

φ − ⎛ ⎞= ⎜ ⎟−⎝ ⎠

Chapter 6. Regression Analysis page 6: 24

Real ResidualsReal Residuals

10-2 10-1 100 101 102 103 104-0.06

-0.04

-0.02

0

0.02

0.04

0.06

ε r /

Z r

f / Hz

±2σ noise level

Chapter 6. Regression Analysis page 6: 25

Imaginary ResidualsImaginary Residuals

10-2 10-1 100 101 102 103 104-0.3

-0.2

-0.1

0

0.1

0.2

0.3ε j /

Z j

f / Hz

±2σ noise level

Chapter 6. Regression Analysis page 6: 26

Plot Sensitivity to Quality of FitPlot Sensitivity to Quality of Fit• Poor Sensitivity

– Modulus– Real

• Modest Sensitivity– Impedance-plane

• only for large impedance values– Imaginary– Log Imaginary

• emphasizes small values• slope suggests new models

– Phase Angle• high-frequency behavior is counterintuitive due to role of solution resistance

– Modified Phase Angle• high-frequency behavior can suggest new models• needs an accurate value for solution resistance

• Excellent Sensitivity– Residual error plots

• trending provides an indicator of problems with the regression

Chapter 6. Regression Analysis page 6: 27

Test Case: Better Model for Mass Test Case: Better Model for Mass Transfer to a RDETransfer to a RDE

( )( ) ( )( )

( )1

t de

t d

R zZ R

j Q R zα

ωω

ω ω

+= +

+ +

Consider 3-term expansion with CPE to account for more complicated reaction kinetics:

( )( ) ( )1/3 1/3

1 21/3 2/31/3

0

Sc Sc1(0)Sc ScScd d

Z p Z pz z

⎛ ⎞⎜ ⎟= − + +⎜ ⎟′⎝ ⎠

χ2/ν=4.86

Chapter 6. Regression Analysis page 6: 28

Comparison of Model to DataComparison of Model to DataImpedance Plane (Impedance Plane (NyquistNyquist))

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

−Zj /

Ω

Zr / Ω

Chapter 6. Regression Analysis page 6: 29

Phase AnglePhase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

−Z

j / Ω

f / Hz

Chapter 6. Regression Analysis page 6: 30

Modified Phase AngleModified Phase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

-60

-75

-90φ* /

degr

ees

f / Hz

1* tan j

r e

ZZ R

φ − ⎛ ⎞= ⎜ ⎟−⎝ ⎠

Chapter 6. Regression Analysis page 6: 31

Log ImaginaryLog Imaginary

10-2 10-1 100 101 102 103 1041

10

100

−Z

j / Ω

f / Hz

Chapter 6. Regression Analysis page 6: 32

10-2 10-1 100 101 102 103 104-0.006

-0.003

0

0.003

0.006ε r /

Z r

f / Hz

Real ResidualsReal Residuals

±2σ

Chapter 6. Regression Analysis page 6: 33

10-2 10-1 100 101 102 103 104-0.02

-0.01

0

0.01

0.02ε j /

Z j

f / Hz

Imaginary ResidualsImaginary Residuals

±2σ

Chapter 6. Regression Analysis page 6: 34

Confidence IntervalsConfidence Intervals

• Based on linearization about trial solution• Assumption valid for good fits

– for normally distributed fitting errors– small estimated standard deviations

• Can use Monte Carlo simulations to test assumptions

Chapter 6. Regression Analysis page 6: 35

Regression of Models to DataRegression of Models to Data

• Regression is strongly influenced by – stochastic errors in data– incomplete frequency range– incorrect or incomplete models

• Some plots more sensitive to fit quality than others.• Quantitative measures of fit quality require

independent assessment of error structure.• The model identification problem is intricately linked

to the error identification problem.

Chapter 6. Regression Analysis page 6: 36

Chapter 7. Error Structure page 7: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 7. Error StructureChapter 7. Error Structure

• Contributions to error structure• Weighting strategies• General approach for error analysis• Experimental results

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 7. Error Structure page 7: 2

Error Analysis Increasingly Important Error Analysis Increasingly Important

• Improved Instrumentation– improved signal-to-noise– more data– more detailed interpretation of data possible

• New experimental techniques– more ways to study a system– proper weight must be assigned to each experiment– error analysis used to improve experimental design

• Improved computational speed– increased use of regression– increased use of detailed models

Chapter 7. Error Structure page 7: 3

Contributions to Error StructureContributions to Error Structure

• Sampling Errors

• Stochastic Phenomena• Bias Errors

– Lack of Fit– Changing baseline (non-stationary processes)– Instrumental artifacts

Chapter 7. Error Structure page 7: 4

TimeTime--domain domain Frequency DomainFrequency Domain

1 mHz 10 Hz

100 Hz 10 kHz

Chapter 7. Error Structure page 7: 5

Error StructureError Structure

resid obs model

fit bias stochastic

( ) ( ) ( )( ) ( ) ( )

Z Zε ω ω ωε ω ε ω ε ω

= −= + +

inadequate model noise (frequency domain)

experimental errors: inconsistent with the Kramers-Kronig relations

fitting error

Chapter 7. Error Structure page 7: 6

Weighting StrategiesWeighting Strategies

JZ Z Z Zr k r k

r kk

j k j k

j kk=

−+

−∑ ∑( ) ( ), ,

,

, ,

,

2

2

2

2σ σ

Strategy ImplicationsNo Weighting σr=σj

σ = αModulus Weighting σr=σj

σ = α|Ζ|Proportional Weighting σr≠σj

σr = αr|Ζr|; σj = αj|Ζj|Experimental σr=σj

σ = α|Ζj| + β|Ζr| + γ|Ζ|2/RmRefined Experimental σr=σj

σ = α|Ζj| + β|Ζr-Rsol| + γ|Ζ|2/Rm+δ

Chapter 7. Error Structure page 7: 7

Assumed Error Structure often WrongAssumed Error Structure often Wrong

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000Frequency, Hz

Impe

danc

e,

3% of |Z|

1% of |Z|

6 Repeated Measurements

Real

Imaginary

Data obtained by T. El Moustafid, CNRS, Paris, France

Chapter 7. Error Structure page 7: 8

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, 120 rpmon a Pt Disk, 120 rpm

-300

-200

-100

00 100 200 300 400 500

Zr, Ω

Z j, Ω

1/41/23/4

I/ilim

Chapter 7. Error Structure page 7: 9

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Imaginary Replicates @ 120 rpm, 1/4 Imaginary Replicates @ 120 rpm, 1/4 iilimlim

-80

-60

-40

-20

00.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Z j,

Chapter 7. Error Structure page 7: 10

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Real Replicates @ 120 rpm, 1/4 Real Replicates @ 120 rpm, 1/4 iilimlim

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Z r,

Chapter 7. Error Structure page 7: 11

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Error Structure @ 120 rpm, 1/4 Error Structure @ 120 rpm, 1/4 iilimlim

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Stan

dard

Dev

iatio

n,

Chapter 7. Error Structure page 7: 12

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Error Structure @ 120 rpm, 1/4 Error Structure @ 120 rpm, 1/4 iilimlim

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

/|Z|,

Perc

ent

Chapter 7. Error Structure page 7: 13

Interpretation of Impedance SpectraInterpretation of Impedance Spectra• Need physical insight and knowledge of error structure

– stochastic component• weighting• determination of model adequacy• experimental design

– bias component• suitable frequency range• experimental design

• Approach is general– electrochemical impedance spectroscopies– optical spectroscopies– mechanical spectroscopies

Chapter 7. Error Structure page 7: 14

Chapter 8. Kramers-Kronig Relations page 8: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 8. KramersChapter 8. Kramers--Kronig RelationsKronig Relations

• Mathematical form and interpretation• Application to noisy data• Methods to evaluate consistency

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 8. Kramers-Kronig Relations page 8: 2

ContraintsContraints

• Under the assumption that the system is– Causal– Linear– Stable

• A complex variable Z must satisfy equations of the form:

dxx

ZxZZ rrj ⎮⌡

⌠−−

−=∞

0

22)()(2)(

ωω

πωω

dxx

ZxxZZZ jj

rr ⎮⌡⌠

+−−+∞=

0

22

)()(2)()(ω

ωωπωω

Chapter 8. Kramers-Kronig Relations page 8: 3

Use of KramersUse of Kramers--Kronig RelationsKronig Relations

• Concept– if data do not satisfy Kramers-Kronig relations, a

condition of the derivation must not be satisfied• stationarity / causality• linearity• stability

– interpret result in terms of • instrument artifact• changing baseline

– if data satisfy Kramers-Kronig relations, conditions of the derivation may be satisfied

Chapter 8. Kramers-Kronig Relations page 8: 4

For real data (with noise)For real data (with noise)

))()(())()(()()()(ob

ωεωωεωωεωω

jjrr ZjZZZ

+++=+=

( ) )()( ωεωεωε jr j+=

( ) )()( ob ωω ZZE = ( ) 0)( =ωεE

where

If and only if

( )⎟⎟⎟

⎜⎜⎜

⎛⎮⌡⌠

−−+−

−=

0

22)()()()(2)( dx

xxZxZEZE rrrr

j ωωεεω

πωω

( )⎟⎟⎟

⎜⎜⎜

⎛⎮⌡⌠

+−+−−=∞−

0

22

)()()()(2)()( dxx

xxZxxZEZZE jjjj

rr ωωωεεωω

πω

Kramers-Kronig in an expectation sense

Chapter 8. Kramers-Kronig Relations page 8: 5

The KramersThe Kramers--Kronig relations can be Kronig relations can be satisfied ifsatisfied if

• This means– the process must be stationary in the sense of replication at every

measurement frequency. – As the impedance is sampled at a finite number of frequencies, εr(x)

represents the error between an interpolated function and the “true”impedance value at frequency x. In the limit that quadrature and interpolation errors are negligible, the residual errors εr(x) should be of the same magnitude as the stochastic noise εr(ω).

0)(2

0

22 =⎟⎟⎟

⎜⎜⎜

⎛⎮⌡⌠

−−∞

dxx

xE r

ωε

πω( ) 0)( =ωεE and

Chapter 8. Kramers-Kronig Relations page 8: 6

10-4 10-3 10-2 10-1 100 101 102 103 104 105

-1000

-800

-600

-400

-200

0

(Zr(x

)-Zr(ω

)) /

(x2 -ω

2 )

f / Hz

Meaning ofMeaning of 2 2

0

2 ( ) 0r xE dxx

ω επ ω

∞⌠⎮⎮⌡

⎛ ⎞⎜ ⎟− =

−⎜ ⎟⎝ ⎠

0.2 0.5 1-400

-300

-200

-100

0

Interpolated Value

Correct Value

(Zr(x

)-Zr(ω

)) /

(x2 -ω

2 )

f / Hz

Chapter 8. Kramers-Kronig Relations page 8: 7

Use of KramersUse of Kramers--Kronig RelationsKronig Relations

• Quadrature errors– require interpolation function

• Missing data at low and high frequency

Chapter 8. Kramers-Kronig Relations page 8: 8

Methods to Resolve Problems of Insufficient Methods to Resolve Problems of Insufficient Frequency RangeFrequency Range

• Direct Integration– Extrapolation

• single RC• polynomials• 1/ω and ω asymptotic behavior

– simultaneous solution for missing data• Regression

– proposed process model– generalized measurement model

Chapter 8. Kramers-Kronig Relations page 8: 9

Chapter 9. Use of Measurement Models page 9: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 9. Use of Measurement ModelsChapter 9. Use of Measurement Models

• Generalized model• Identification of stochastic component of error structure• Identification of bias component of error structure

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 9. Use of Measurement Models page 9: 2

ApproachApproach• Experimental design

– quality (signal-to-noise, bias errors)– information content

• Process model– account for known phenomena– extract information concerning other phenomena

• Regression– uncorrupted frequency range– weighting strategy

• Error analysis - measurement model– stochastic errors– bias errors

Chapter 9. Use of Measurement Models page 9: 3

Error StructureError Structure

obs model res

obs model fit bias stoch

Z ZZ Z

εε ε ε

− =− = + +

• Stochastic errors• Bias errors

– lack of fit– experimental artifact

• Kramers-Kronig consistent• Kramers-Kronig inconsistent

Chapter 9. Use of Measurement Models page 9: 4

Measurement ModelMeasurement Model

• Superposition of lineshapes

01 1

nk

k k k

RZ Rj R Cω=

= ++∑

Chapter 9. Use of Measurement Models page 9: 5

Identification of Stochastic Component Identification of Stochastic Component of Error Structureof Error Structure

How?• Replicate impedance scans.• Fit measurement model to

each scan:– use modulus or no-

weighting options.– same number of

lineshapes.– parameter estimates do

not include zero.• Calculate standard deviation

of residual errors.• Fit model for error structure.

Why?• Weight regression.• Identify good fit.• Improve experimental

design.

Chapter 9. Use of Measurement Models page 9: 6

Replicated MeasurementsReplicated Measurements

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 7

1 Voigt Element1 Voigt Element

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 8

2 Voigt Elements2 Voigt Elements

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 9

3 Voigt Elements3 Voigt Elements

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 10

4 Voigt Elements4 Voigt Elements

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 11

5 Voigt Elements5 Voigt Elements

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 12

6 Voigt Elements6 Voigt Elements

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 13

10 Voigt Elements10 Voigt Elements

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 14

Residual Residual ErrorsErrors

-0.005

0

0.005

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

εr /

Z r

-0.03

0

0.03

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hzεj

/ Zj

imaginary

real

Chapter 9. Use of Measurement Models page 9: 15

Residual Sum of SquaresResidual Sum of Squares

0.1

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11

# Voigt Elements

Σ(ε2 / σ

2 )

Chapter 9. Use of Measurement Models page 9: 16

Fit to Repeated Data SetsFit to Repeated Data Sets

0

50

100

0 50 100 150 200

Zr / Ω

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 17

Residual ErrorsResidual ErrorsReal

-0.005

0

0.005

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

εr /

Z r

Chapter 9. Use of Measurement Models page 9: 18

Standard Deviation of Residual ErrorsStandard Deviation of Residual ErrorsImaginary

-0.02

0

0.02

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

εj / Z

j

Chapter 9. Use of Measurement Models page 9: 19

Standard DeviationStandard Deviation

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Stan

dard

Dev

iatio

n,

ImaginaryReal

direct calculation of standard deviation

standard deviation obtained from measurement model analysis

Chapter 9. Use of Measurement Models page 9: 20

Comparison to ImpedanceComparison to Impedance

0.001

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Z or

,

RealImaginary3% of |Z|

Chapter 9. Use of Measurement Models page 9: 21

Identification of Bias Component of Error Structure

How?• Fit measurement model to real

component:– predict imaginary component.– Use Monte Carlo calculations to

estimate confidence interval.• Fit measurement model to

imaginary component:– predict real component.– Use Monte Carlo calculations to

estimate confidence interval.

Why?• Identify suitable

frequency range for regression.

• Improve experimental design.

Chapter 9. Use of Measurement Models page 9: 22

11stst of Repeated Measurementsof Repeated MeasurementsImaginary

-80

-60

-40

-20

00.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

Z j /

Chapter 9. Use of Measurement Models page 9: 23

11stst of Repeated Measurementsof Repeated MeasurementsReal

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

Z r /

Chapter 9. Use of Measurement Models page 9: 24

Fit to Imaginary PartFit to Imaginary Part

0

50

100

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

-Zj /

Ω

Chapter 9. Use of Measurement Models page 9: 25

Fit to Imaginary PartFit to Imaginary Part

-0.03

0

0.03

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

εj / Z

j

Chapter 9. Use of Measurement Models page 9: 26

Predict Real PartPredict Real Part

0

50

100

150

200

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

Z r / Ω

150

170

190

0.01 0.1

Chapter 9. Use of Measurement Models page 9: 27

Predict Real PartPredict Real Part

-0.03

0

0.03

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

εr /

Z r

Chapter 9. Use of Measurement Models page 9: 28

Validation of Measurement Model Validation of Measurement Model ApproachApproach

Chapter 9. Use of Measurement Models page 9: 29

The error structure identified should The error structure identified should be independent of measurement model be independent of measurement model

usedused

01

( )1 ( )

Ni

i i

RZ Rj

ωω τ=

= ++∑Voigt:

0

0

( )( )

( )

Mni

iiP

njj

j

b jZ

a j

ωω

ω

=

=

=∑

∑Transfer Function:

1/ 2n =

1/2 /20 1 2

1/2 /20 1 2

( ) ( ) ( )( ) ;( ) ( ) ( )

MM

P

b b j b j b jZa a j a j j

ω ω ωωω ω ω

+ + + +=

+ + + +……

; 1PM P a= =

Chapter 9. Use of Measurement Models page 9: 30

Convective Diffusion to a RDEConvective Diffusion to a RDEReduction of Fe(CN)Reduction of Fe(CN)66

33-- on a Pt Disk: on a Pt Disk: i/ii/ilimlim = = ¼¼; 120 rpm; 120 rpm

0 40 80 120 160 200

0

-20

-40

-60

-80 0 8.93 0.33 9.25 0.66 9.58 1.0 9.91 1.34 1.67 1.99 2.33 0.0.022 Hz

Z j / Ω

Zr / Ω

0.15 Hz

Chapter 9. Use of Measurement Models page 9: 31

10-2 10-1 100 101 102 103 104 105

0

40

80

120

160

200 0 8.93 0.33 9.25 0.66 9.58 1.0 9.91 1.34 1.67 1.99 2.33

Z r / Ω

f / Hz10-2 10-1 100 101 102 103 104 105

0

-10

-20

-30

-40

-50

-60

-70

-80

0 8.93 0.33 9.25 0.66 9.58 1.0 9.91 1.34 1.67 1.99 2.33

Z j / Ω

f / Hz

Convective Diffusion to a RDEConvective Diffusion to a RDEReduction of Fe(CN)Reduction of Fe(CN)66

33-- on a Pt Disk: on a Pt Disk: i/ii/ilimlim = = ¼¼; 120 rpm; 120 rpm

real part imaginary part

Chapter 9. Use of Measurement Models page 9: 32

Data Sets for AnalysisData Sets for Analysis

0 2 4 6 8 10-92

-91

-90

-89

-88

-87

-86 measurement

before impedance scan after impedance scan

3 2

Cur

rent

/ m

A

time / h

1

Chapter 9. Use of Measurement Models page 9: 33

Regression Results for Set #1: Regression Results for Set #1: 00--1 h1 h

• Data: – 74 frequencies – 148 data points

• Voigt Model: – 10 elements + Re

– 21 parameters• Transfer Function:

– 5 ai + 6 bi

– 11 parameters0 2 4 6 8 10

-92

-91

-90

-89

-88

-87

-86

3 2

Cur

rent

/ m

A

time / h

1

Chapter 9. Use of Measurement Models page 9: 34

Stochastic Error Structure for Set #1: Stochastic Error Structure for Set #1: VoigtVoigt

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag direct VMM

σ Z

r, σZ j /

Ω

f / Hz

Chapter 9. Use of Measurement Models page 9: 35

Stochastic Error Structure for Set #1: Stochastic Error Structure for Set #1: Voigt & Transfer FunctionVoigt & Transfer Function

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag direct VMM

σ Z

r, σZ j /

Ω

f / Hz

Chapter 9. Use of Measurement Models page 9: 36

Regression Results for Set #3: Regression Results for Set #3: 8.98.9--9.9 h9.9 h

• Data: – 74 frequencies – 148 data points

• Voigt Model: – 9 elements + Re

– 19 parameters• Transfer Function:

– 5 ai + 6 bi

– 11 parameters0 2 4 6 8 10

-92

-91

-90

-89

-88

-87

-86

3 2

Cur

rent

/ m

A

time / h

1

Chapter 9. Use of Measurement Models page 9: 37

Stochastic Error Structure for Set #3: Stochastic Error Structure for Set #3: VoigtVoigt

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag VMM

σ Z

r, σZ j /

Ω

f / Hz

Chapter 9. Use of Measurement Models page 9: 38

Stochastic Error Structure for Set #3: Stochastic Error Structure for Set #3: Voigt & Transfer FunctionVoigt & Transfer Function

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag TMM VMM

σ Z

r, σZ j /

Ω

f / Hz

Chapter 9. Use of Measurement Models page 9: 39

Identification of Stochastic Component Identification of Stochastic Component of Error Structureof Error Structure

• Direct evaluation of standard deviation includes significant contributions from changes in system behavior

• The error structure identified was independent of measurement model used

• Selection of measurement model– Ease of identification of initial parameters → Voigt– Number of parameters → Transfer Function

Chapter 9. Use of Measurement Models page 9: 40

Evaluation of Consistency with the Evaluation of Consistency with the KramersKramers--Kronig relationsKronig relations

• Approach– Fit measurement model to imaginary component– Use experimental variance to weight regression– Predict real component– Compare prediction to measured data– Use Monte Carlo calculations to estimate confidence interval

• Assumption– Measurement model satisfies the Kramers-Kronig relations

Chapter 9. Use of Measurement Models page 9: 41

Voigt Measurement Model: Data 1Voigt Measurement Model: Data 1

10-2 10-1 100 101 102 103 104 105-0.02

-0.01

0

0.01

0.02

(Zj-Z

j,mod

) / Z

j,mod

f / Hz

Fit to Imaginary

10-2 10-1 100 101 102 103 104 105-0.04

-0.02

0

0.02

0.04

• 20 parameters, guessed value for Re

• Tight confidence interval at low frequency• Justify deleting 5 data points at lowest frequency

(Zr-Z

r,mod

) / Z

r,mod

f / Hz

Prediction of Real

Chapter 9. Use of Measurement Models page 9: 42

Voigt Measurement Model: Data 5Voigt Measurement Model: Data 5

• 20 parameters, guessed value for Re

• Justify keeping all data points

10-2 10-1 100 101 102 103 104 105-0.010

-0.005

0

0.005

0.010

(Zj-Z

j,mod

) / Z

j,mod

f / Hz

Fit to Imaginary

10-2 10-1 100 101 102 103 104 105-0.04

-0.02

0

0.02

0.04

(Zr-Z

r,mod

) / Z

r,mod

f / Hz

Prediction of Real

Chapter 9. Use of Measurement Models page 9: 43

Interpretation of Impedance SpectraInterpretation of Impedance Spectra

• Physical insight and knowledge of error structure– stochastic component

• weighting• determination of model adequacy• experimental design

– bias component• suitable frequency range• experimental design

• Measurement model approach is general– electrochemical impedance spectroscopies– optical spectroscopies– mechanical spectroscopies

Chapter 9. Use of Measurement Models page 9: 44

Chapter 10. Conclusions page 10: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 10. ConclusionsChapter 10. Conclusions

• Overview of Course• Credits

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 10. Conclusions page 10: 2

Overview of CourseOverview of Course

• Chapter 1. Introduction • Chapter 2. Motivation • Chapter 3. Impedance Measurement • Chapter 4. Representations of Impedance Data• Chapter 5. Development of Process Models• Chapter 6. Regression Analysis• Chapter 7. Error Structure• Chapter 8. Kramers-Kronig Relations• Chapter 9. Use of Measurement Models• Chapter 10. Conclusions• Chapter 11. Suggested Reading• Chapter 12. Notation

Chapter 10. Conclusions page 10: 3

Impedance SpectroscopyImpedance Spectroscopy• Electrochemical measurement of macroscopic properties• Example of a generalized transfer-function measurement• Can be used to extract contributions of

– electrode reactions– mass transfer– surface layers

• Can be used to estimate – reaction rates– transport properties

• Interpretation of data– graphical representations– regression– process models – error analysis

Chapter 10. Conclusions page 10: 4Integrated ApproachIntegrated Approach

Chapter 10. Conclusions page 10: 5

AcknowledgementsAcknowledgements• Students

– University of Florida• P. Agarwal, M. Durbha, S. Carson, M. Membrino, P. Shukla, V. Huang, S. Roy, B. Hirschorn,

S-L Wu– CNRS

• T. El Moustafid, I. Frateur, H. G. de Melo– CIRIMAT

• J-B Jorcin • Collaborators

– University of South Florida• L. García-Rubio

– University of Florida • O. Crisalle

– CNRS, Paris• B. Tribollet, C. Deslouis, H. Takenouti, V. Vivier

– CIRIMAT, Toulouse• N. Pébère

– CNR, Italy• M. Musiani

• Funding– NSF, ONR, SC Johnson, CNRS, NASA

• Other– The Electrochemical Society– The Fuel Cell Seminar

Chapter 10. Conclusions page 10: 6

Chapter 11. Suggested Reading page 11: 1

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

Chapter 11. Suggested Reading Chapter 11. Suggested Reading

• General• Process Models• Orazem group work on Fuel Cells• Measurement Models• CPE• Plotting

© Mark E. Orazem, 2000-2008. All rights reserved.

Chapter 11. Suggested Reading page 11: 2

Suggested ReadingSuggested ReadingGeneralGeneral

• J. R. Macdonald, editor, Impedance Spectroscopy Emphasizing Solid Materials and Analysis, John Wiley and Sons, New York, 1987.

• E. Barsoukov and J. R. Macdonald, editors, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, John Wiley and Sons, New York, 2005.

• C. Gabrielli, Use and Applications of Electrochemical Impedance Techniques, Technical Report, Schlumberger, Farnborough, England, 1990.

• D. Macdonald, Transient Techniques in Electrochemistry, Plenum Press, NY, 1977.

• M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley and Sons, New York, 2008.

• Other Sources– See instrument vendor websites for for application notes.

Chapter 11. Suggested Reading page 11: 3

Suggested ReadingSuggested ReadingProcess ModelsProcess Models

• A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applications,” Modern Aspects of Electrochemistry, 32, R. E. White, J. O'M. Bockris and B. E. Conway, editors, Plenum Press, New York, 1999, 143-248.

• C. Deslouis and B. Tribollet, Flow Modulation Techniques in Electrochemistry, Advances in Electrochemical Science and Engineering, 2, H. Gerischer and C. W. Tobias, editors, VCH, Weinheim, 1992, 205-264.

• M. E. Orazem, “Tutorial: Application of Mathematical Models for Interpretation of Impedance Spectra,” Tutorials in Electrochemical Engineering - Mathematical Modeling, PV 99-14, R.F. Savinell, A.C. West, J.M. Fenton and J. Weidner, editors, Electrochemical Society, Inc., Pennington, N.J., 68-99, 1999.

• B. Tribollet, Look-up Tables for Rotating Disk Electrode, April 28, 2000, http://www.ccr.jussieu.fr/lple/EnglishVersion.html

Chapter 11. Suggested Reading page 11: 4

• S. K. Roy and M. E. Orazem, “Error Analysis of the Impedance Response of PEM Fuel Cells,” Journal of the Electrochemical Society,154 (2007), B883-B891

• S. K. Roy and M. E. Orazem, “Deterministic Impedance Models for Interpretation of Low-Frequency Inductive Loops in PEM Fuel Cells,” in Proton Exchange Membrane Fuel Cells 6, T. Fuller, C. Bock, S. Cleghorn, H. Gasteiger, T. Jarvi, M. Mathias, M. Murthy, T. Nguyen, V. Ramani, E. Stuve, T. Zawodzinski, editors, ECS Transactions, 3:1(2006), 1031-1040.

• S. K. Roy and M. E. Orazem, “Stochastic Analysis of Flooding in PEM Fuel Cells by Electrochemical Impedance Spectroscopy,” in Proton Exchange Membrane Fuel Cells 7, T. Fuller, H. Gasteiger, S. Cleghorn, V. Ramani, T. Zhao, T. Nguyen, A. Haug, C. Bock, C. Lamy, and K. Ota, editors, Electrochemical Society Transactions, 11:1 (2007), 485-495.

• S. K. Roy, M. E. Orazem, and B. Tribollet “Interpretation of Low-Frequency Inductive Loops in PEM Fuel Cells,” Journal of the Electrochemical Society, 154 (2007), B1378-B1388.

Suggested ReadingSuggested ReadingOrazem group work on Fuel CellsOrazem group work on Fuel Cells

Chapter 11. Suggested Reading page 11: 5

Suggested ReadingSuggested ReadingCPECPE

• G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, “The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element,” Journal of ElectroanalyticChemistry, 176 (1984), 275-295.

• V. Huang, V. Vivier, M. Orazem, N. Pébère, and B. Tribollet, “The Apparent CPE Behavior of an Ideally Polarized Blocking Electrode: A Global and Local Impedance Analysis,” Journal of the Electrochemical Society, 154 (2007), C81-C88.

• V. Huang, V. Vivier, M. Orazem, I. Frateur, and B. Tribollet, “The Global and Local Impedance Response of a Blocking Disk Electrode with Local CPE Behavior,” Journal of the Electrochemical Society, 154(2007), C89-C98.

• V. Huang, V. Vivier, M. Orazem, N. Pébère, and B. Tribollet, “The Apparent CPE Behavior of a Disk Electrode with Faradaic Reactions: A Global and Local Impedance Analysis,” Journal of the Electrochemical Society, 154 (2007), C99-C107.

Chapter 11. Suggested Reading page 11: 6

Suggested ReadingSuggested ReadingMeasurement ModelsMeasurement Models

• P. Agarwal, M. E. Orazem, and L. H. García-Rubio, "Measurement Models for Electrochemical Impedance Spectroscopy: 1. Demonstration of Applicability," Journal of the Electrochemical Society, 139 (1992), 1917-1927.

• P. Agarwal, Oscar D. Crisalle, M. E. Orazem, and L. H. García-Rubio, "Measurement Models for Electrochemical Impedance Spectroscopy: 2. Determination of the Stochastic Contribution to the Error Structure," Journal of the Electrochemical Society, 142 (1995), 4149-4158.

• P. Agarwal, M. E. Orazem, and L. H. García-Rubio, "Measurement Models for Electrochemical Impedance Spectroscopy: 3. Evaluation of Consistency with the Kramers-Kronig Relations,” Journal of the Electrochemical Society, 142 (1995), 4159-4168.

• M. E. Orazem “A Systematic Approach toward Error Structure Identification for Impedance Spectroscopy,” Journal of Electroanalytical Chemistry, 572 (2004), 317-327.

Chapter 11. Suggested Reading page 11: 7

Suggested ReadingSuggested ReadingPlottingPlotting

• M. Orazem, B. Tribollet, and N. Pébère, “Enhanced Graphical Representation of Electrochemical Impedance Data,” Journal of the Electrochemical Society, 153 (2006), B129-B136.

EElleeccttrroocchheemmiiccaall IImmppeeddaannccee

SSppeeccttrroossccooppyy

CChhaapptteerr 1122.. NNoottaattiioonn

• Roman • Greek

Chapter 12. Notation page 12: 2

Roman a coefficient in the Cochran expansion for velocity, 0.51023 a =

b coefficient in the Cochran expansion for velocity, -0.61592 b =

ic concentration of reacting species , mol/cm3 i

ic steady-state value of the concentration of reacting species , mol/cm3 i

ic Oscillating component of the concentration of reacting species , mol/cm3 i

,oic concentration of species on the electrode surface, mol/cm3 i

,oic steady-state value of the concentration of species on the electrode surface, mol/cm3 i

,oic Oscillating component of the concentration of species on the electrode surface, mol/cm3 i

∞c bulk concentration of the reacting species, mol/cm3

dC double layer capacitance, F/cm2

dlC double layer capacitance, F/cm2

iD diffusion coefficient of species , cm2/s i

f arbitrary function, e.g., ( ),f ii f V c=

F Faraday’s constant, C/equiv

i Total current density, A/cm2

i Steady-state total current density, A/cm2

Chapter 12. Notation page 12: 3

i Oscillating component of total current density, A/cm2

fi Faradic current density, A/cm2

fi Steady-state Faradic current density, A/cm2

fi Oscillating component of Faradic current density, A/cm2

0i Exchange current density, A/cm2

j imaginary number, 1−

Ak rate constant for reaction identified by index A (units depend on reaction stoichiometry)

dimensionless frequency,

1 13 31/3

2 2

9 9 Sci ii

Ka D a

ω ν ω⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟Ω Ω ⎝ ⎠⎝ ⎠ K

iM notation for species i

n number of electrons produced when one reactant ion or molecule reacts

R universal gas constant, J/mol/K

eR Ohmic resistance, Ω cm2

,t AR Charge-transfer resistance associated with reaction A, Ω cm2

r radial coordinate, cm

0r radius of disk, cm

is stoichiometric coefficient for species , ( for a reactant and i 0is > 0is < for a product)

Chapter 12. Notation page 12: 4

Sci Schmidt number, Sc /i iDν=

T electrolyte temperature, K

t time, s

zr vv , radial and axial velocity components, respectively, cm/s

V potential, V

V steady-state potential, V

V oscillating contribution to potential, V

Z impedance, Ω cm2

z axial position, cm

dz diffusion impedance, Ω cm2

iz charge for species i

Greek α coefficient used in the exponent for a constant-phase element. When 0α = , the element behaves as an ideal capacitor in

parallel with a resistor.

Aα apparent transfer coefficient for reaction A

Aβ Tafel slope for reaction A, V

iγ Fractional surface coverage by species i

Chapter 12. Notation page 12: 5

Γ Maximum surface coverage

iδ characteristic diffusion length for species i

θ homogeneous solution to the oscillating dimensionless convective diffusion equation

(0)θ ′ derivative of the solution to the oscillating dimensionless convective diffusion equation evaluated at the electrode surface

η surface overpotential, V

∞κ solution conductivity, (Ω cm)-1

characteristic length for a finite-length diffusion layer, 1/ 3 2 / 32.598 /iDν= Ω

μ viscosity, g/cm s

ν kinematic viscosity, /ν μ ρ= , cm2/s

ρ density, g/cm3

τ finite-length diffusion time constant, 2 / iDτ =

ξ normalized axial position, / izξ δ=

Φ ohmic potential, V

ω frequency of perturbation, rad/s

Ω rotation speed, rad/sec