Electro-optic Devices - Ray Tracing

download Electro-optic Devices - Ray Tracing

of 45

Transcript of Electro-optic Devices - Ray Tracing

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    1/45

    ELECTRO-

    OPTIC DEVICES- RAY TRACING

    LECTURE 1

    Dr. Ty [email protected]

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    2/45

    Outline of Semester

    Introduction

    Ray Optics

    Wave Optics

    Beam Optics

    Electro-Magnetics

    Resonators

    Photons and Atoms Polarization and

    Crystal Optics

    Semiconductor PhotonSources

    Semiconductor Photon

    Detectors Non Linear Optics

    Acousto Optics

    Photonic Switchingand Computing

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    3/45

    Postulates of Ray OpticsSimple Components

    Mirrors

    Planar Boundaries

    Spherical BoundariesMatrix Optics

    Ray Transfer Matrices

    Matrices for Simple Components

    Matrices of CascadesPeriodic Systems

    Ray Optics

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    4/45

    Ray Optics: Postulates

    Light Travels in Rays

    Optical Media is characterized by a quantity,

    n, referred to as the index of refraction. Thisquantity is greater than or equal to 1.

    The index is used to scale the speed of light in aparticular media.

    The time it takes light to travel a distance, d, in

    media would be=

    (Optical Path

    Length)

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    5/45

    Index of refraction

    = - Relative magnetic permeability ( = ) - Relative Electric Permittivity ( = )

    For most optically transmissive material and

    positive real numbers, thus n is real

    and positive

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    6/45

    Ray Optics: Postulates

    In an inhomogeneous media, the refractive indexn(r) is a function of (x,y,z). The optical pathlength along a direction can then be defined by:

    =

    Here, ds is the differential length along the path.The time taken by light to transverse the path fromA to B is proportional to the optical path length.

    A

    B

    ds

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    7/45

    Ray Optics: Postulates

    Fermats Principle: Optical Rayspropagating between two points follow apath such that the optical path length is anextrema relative to neighboring paths. i.e.

    = 0

    This means that light travels between to pointssuch that it takes the least amount of time.

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    8/45

    Propagation in Homogeneous Media

    Fermats Principle inhomogenous media:

    Light takes the

    shortest path.

    LENS.ZMXConfiguration 1 of 1

    3D Layout

    /8/2012

    X

    Y

    Z

    Rays propagate in straight lines

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    9/45

    Propagation in Homogeneous Media

    Reflections Proof: According toFermats Principle thedistance mustbe a minima distance. If is a mirror of ,then must alsobe minimize to meetsFermats Principle. This

    only happens when is a straightline. i.e. B coincides withB and q coincides with q

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    10/45

    Propagation in Homogeneous Media

    Snells Law: The angle of the refracted ray in a plane inmedia n2 is related to the angle of the ray in media n1by the relation:

    sin() = 2sin(2)

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    11/45

    Propagation in Homogeneous Media

    Fermats Principle: 2 must beminimized in the time it takes to get from A

    to C. (n1 < n2)()

    () = minima

    tan 2tan(

    )= d

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    12/45

    Propagation in Homogeneous Media

    = +

    +

    = 0

    = 0 =

    2

    +

    2

    +

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    13/45

    Propagation in Homogeneous Media

    = 0 =

    2

    +

    2

    +

    = 0 = + +

    sin() = +

    sin() = +

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    14/45

    Propagation in Homogeneous Media

    = 0 =

    ()

    ()

    This solves to Snells Law

    sin() = 2sin()

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    15/45

    Simple Optical Components

    Planar Mirror

    3D Layout

    0/2012

    Z

    Mirror

    +

    Optical Axis

    Parabolic Mirror

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    16/45

    Simple Optical Components

    Parabolic Mirror Definitions

    is the focal length, f, ofthe parabola.

    The blocked rays are saidto be obscured from thesystem.

    3D Layout

    0/2012

    Z

    f

    F P

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    17/45

    Simple Optical Components

    No Obscuration Obscuration

    LENS.ZMXConfiguration 1 of 1

    3D Layout

    /10/2012

    X

    Y

    Z

    LENS.ZMXConfiguration 1 of 1

    3D Layout

    /10/2012

    X

    Y

    Z

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    18/45

    Simple Optical Components

    No Obscuration Obscuration

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.5000

    0.6000

    0.7000

    0.8000

    0.9000

    1.0000

    LENS.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 24.93 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.5000

    0.6000

    0.7000

    0.8000

    0.9000

    1.0000

    LENS.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 24.93 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

    Remember nothing is free

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    19/45

    Simple Optical Components

    Elliptical Reflector Diffracted limited spot

    Elliptical reflector 320 degree light cone .zmxConfiguration 1 of 1

    Layout

    bject radiating a 320 degree cone/10/2012

    otal Axial Length: 800.00000 mm

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.5000

    0.6000

    0.7000

    0.8000

    0.9000

    1.0000

    Elliptical reflector 320 degree light cone .zmxConfiguration 1 of 1

    Polychromatic FFT PSF

    Object radiating a 320 degree cone1/10/20120.5500 to 0.5500 m at 0.0000 (deg).Side is 3.23 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    20/45

    Simple Optical Components

    Why Elliptical Cavity MirrorsFlash Lamp Pumping

    Architectures

    Lasers

    Depending on service lifeflash lamps can be cheaperto operate than laserdiodes.

    http://en.wikipedia.org/wiki/Laser_pumping

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    21/45

    Simple Optical Components

    Spherical Mirror Spot looks like

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    3D Layout

    /10/2012

    X

    Y

    Z 0.0000

    0.0036

    0.0072

    0.0107

    0.0143

    0.0179

    0.0215

    0.0251

    0.0286

    0.0322

    0.0358

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 35.24 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    22/45

    Simple Optical Components

    Spherical Reflector Parabolic Reflector

    0.0000

    0.0036

    0.0072

    0.0107

    0.0143

    0.0179

    0.0215

    0.0251

    0.0286

    0.0322

    0.0358

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 35.24 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.5000

    0.6000

    0.7000

    0.8000

    0.9000

    1.0000

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 35.51 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    23/45

    Paraxial Optics

    Paraxial Optics i.e. rays on very near on axis

    Spot approaches parabolicfocal spot

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    3D Layout

    /10/2012

    X

    Y

    Z 0.0000

    0.0899

    0.1798

    0.2698

    0.3597

    0.4496

    0.5395

    0.6295

    0.7194

    0.8093

    0.8992

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 17.31 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    24/45

    Paraxial Optics

    Spherical Optic Parabolic Optic

    0.0000

    0.0899

    0.1798

    0.2698

    0.3597

    0.4496

    0.5395

    0.6295

    0.7194

    0.8093

    0.8992

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 17.31 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.5000

    0.6000

    0.7000

    0.8000

    0.9000

    1.0000

    Parabola at 0 degrees.ZMXConfiguration 1 of 1

    Polychromatic FFT PSF

    1/10/20120.5500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 17.34 m.Surface: ImageReference Coordinates: 0.00000E+000, 0.00000E+000

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    25/45

    Paraxial Optics:

    = 2= 2 =2 2 =2

    =2

    =

    2

    f=2

    =

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    26/45

    Refraction at a Plane

    Two Type of Refraction: External Refraction

    (n1 < n2 ) When a rays are incident from a medium with a smaller indexthan the medium that the has higher index, the rays will refract into thenew medium such that the angle of the incident ray from the surfacenormal is greater than the angle of the refracted beam from the surface

    normal.

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    27/45

    Refraction at a Plane

    Two Type of Refraction: Internal Refraction (n1 > n2 ) When a rays are incident from a medium with a greater

    index to a medium that the has lesser index, if the rays refract, therays will refract into the new medium such that the angle of theincident ray from the surface normal is less than the angle of therefracted beam from the surface normal.

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    28/45

    Critical Angle: Total Internal Reflection

    Recall Snells Law

    sin = 2 sin 2

    sin 2is maximum when is 90.

    Result:

    = 2Rays should totaling internally reflect

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    29/45

    Glass

    Glass Name Index Abbe

    F2 1.62004 36.37

    F5 1.60342 38.03

    LAFN7 1.74950 34.95

    N-BAK2 1.53996 59.71

    N-BK10 1.49782 66.95

    N-BK7 1.51680 64.17 N-F2 1.62005 36.43

    N-LAF21 1.78800 47.49

    N-LAF7 1.74950 34.82

    N-LASF31A 1.88300 40.76

    N-SF1 1.71736 29.62

    N-SF11 1.78472 25.68

    N-SK11 1.56384 60.80

    P-LASF50 1.80860 40.46

    SF56A 1.78470 26.08

    LITHOSIL-Q 1.45844 67.83

    N-LASF46 1.90138 31.64

    F8 1.59551 39.18

    SF54 1.74080 28.09http://micro.magnet.fsu.edu/optics/timeline/p

    eople/abbe.html

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    30/45

    Refraction: Prism

    Surface: IMA

    200.

    00

    OBJ: 0.0000, 0.0000 (deg)

    IMA: 0.000, 3.972 mm

    0.4500

    0.4750

    0.5000

    0.5250

    0.5500

    Prism using tilted surface.zmxConfiguration 1 of 1

    Spot Diagram

    Prism example1/11/2012 Units are m.Field : 1RMS radius : 50.913GEO radius : 95.651Scale bar : 200 Reference : Chief Ray

    X

    Y

    Z

    Prism using tilted surface.zmxConfiguration 1 of 1

    Wireframe

    rism example/11/2012

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    31/45

    Refraction: Prism

    X

    Y

    Z

    Prism using tilted surface.zmxConfiguration 1 of 1

    Wireframe

    rism example/11/2012

    0.0000

    0.1000

    0.2000

    0.3000

    0.4000

    0.5000

    0.6000

    0.7000

    0.8000

    0.9000

    1.0000

    Prism using tilted surface.zmxConfiguration 1 of 1

    Polychromatic FFT PSF

    Prism example1/11/20120.4500 to 0.5500 m at 0.0000, 0.0000 (deg).Side is 393.43 m.Surface: ImageReference Coordinates: 0.00000E+000, 3.97217E+000

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    32/45

    Metal Metals (negative index of refraction)

    = most optically

    transparent media n>1

    > 1> 1 =

    It is possible for

    < 1< 1 In this case =

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    33/45

    Refraction: Prism

    = 2 2 /2 sin cos()Using the paraxial approximation this can be simplified to

    = 1

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    34/45

    Refraction: Prisms

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    35/45

    Refraction: Prisms

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    36/45

    Refraction: Prisms

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    37/45

    Refraction: Prisms

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    38/45

    Refraction: Prisms

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    39/45

    Ray Optics: Beam Splitter

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    40/45

    Ray Optics: Refraction

    At the boundary, applySnells Law:

    n1Sin(q1) = n2Sin(q2)

    Assume Paraxial conditionn1 (q1) = n2 (q2)

    Substitute for angles

    n1 (a-j) = n2 (a-j)

    Approximating angle by theretangents

    = 2

    n1>n2

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    41/45

    Ray Optics: Refraction

    Rearranging using thesame sign convention

    as before:

    =

    = Power of the

    refracting surface

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    42/45

    Types of Lenses

    Convergent Lenses

    Divergent Lenses

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    43/45

    Ray Optics: Simple Imaging

    First, Image throughfirst refracting surface.

    Treat the image from

    the first surface as avirtual object for the

    second refractingsurface. Find its image

    relative to the 2nd

    refracting surface.

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    44/45

    Ray Optics: Thin Lens

  • 7/25/2019 Electro-optic Devices - Ray Tracing

    45/45

    Surface 1 Surface 2

    Recall, the object for surface 2 is virtual:

    2= If t ->0

    s2= -s1Substituting

    222=2 22

    2=

    2

    22

    22

    2=

    22

    2=

    2