Electric Drives Note

123
Electric Drives Principles: From Basics to Advanced Vector Control and Encoder-less Operation April 24-25, 2004 Day 2 Advanced: Dynamic Operation and Control of AC Drives (8:00AM – 5:00PM) 1. Representation in Phase Quantities 2. Dynamic Analysis by d-q Representation 3. Vector Control 4. Voltage Space-Vector PWM 5. Encoder-less Direct Torque Control 6. Vector Control of PMAC Drives 7. Switched-Reluctance Motor Drives 8. Synchronous-Reluctance Motor Drives Reference Book: Textbook Advanced Electric Drives: Analysis, Control and Modeling using Simulink® by Ned Mohan, year 2001, published by MNPERE. (See www.MNPERE.com for details.)

Transcript of Electric Drives Note

Page 1: Electric Drives Note

Electric Drives Principles: From Basics to Advanced Vector Control and

Encoder-less Operation April 24-25, 2004

Day 2 Advanced: Dynamic Operation and Control of AC Drives (8:00AM – 5:00PM) 1. Representation in Phase Quantities 2. Dynamic Analysis by d-q Representation 3. Vector Control 4. Voltage Space-Vector PWM 5. Encoder-less Direct Torque Control 6. Vector Control of PMAC Drives 7. Switched-Reluctance Motor Drives 8. Synchronous-Reluctance Motor Drives

Reference Book:

Textbook Advanced Electric Drives: Analysis, Control and Modeling using Simulink® by Ned Mohan, year 2001, published by MNPERE. (See www.MNPERE.com for details.)

Page 2: Electric Drives Note

© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

1-1

Chapter 1

Introduction to Advanced Electric Drives

Page 3: Electric Drives Note

© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

1-2

Graduate Course in Electric Drives

Objectives:• Basics to Advanced Topics in 2 Semesters• Seamless Continuation of the First Course• Topics: Dynamic Modeling and Control• Approach/Tools

– dq-Windings based Analysis– Design Examples Using Simulink– Verification in the Hardware Lab using dSPACE

Page 4: Electric Drives Note

© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

1-3

Topics (Lectures)1. Introduction to Advanced Electric Drive Systems (2)2. Induction Machine Equations in Phase Quantities: Assisted

by Space Vectors (5)3. Dynamic Analysis of Ind. Mach. in terms of dq-Windings (7)4. Vector Control of IM Drives: A Qual. Examination (4)5. Mathematical Description of Vector Control (5)6. Detuning Effects in Induction Motor Vector Control (3)7. Space Vector PWM (SV-PWM) Inverters (3)8. Direct Torque Control (DTC) and Encoder-Less Operation

of Induction Motor Drives (5)9. Vector Control of Perm-Magnet Syn. Motor Drives (3)10. Switched-Reluctance Motor (SRM) Drives (3)

Page 5: Electric Drives Note

© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

1-4

Continuation of Topics Discussed in the First Course

• Switch-Mode Converters Average Representation• Magnetics – Transformers• Feedback Controller Design• Space Vector Representation for AC Machines• Basic Calculations for Electromagnetic Torque• PMAC Drives – Space Vector Based Steady State

Operation• Induction Motor Drives – Space Vector based

Steady State Analysis

Page 6: Electric Drives Note

© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

1-5

Design Examples• Induction Machine Initially Operating in Steady

state– Load Torque Disturbance at t=0.1 s– Control Objective is to keep Speed Constant

(design speed loop with a bandwidth of 25 rad/s and a phase margin of 60 degrees)

• Permanent Magnet AC (PMAC) Drives• Switched-Reluctance Motor (SRM) Drives

Page 7: Electric Drives Note

© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

1-6

“TEST” INDUCTION MOTORNameplate Data:Power: 3 HP/2.4 kWVoltage: 460 V (L-L, rms)Frequency: 60 HzPhases: 3Full Load Current: 4 AFull-Load Speed: 1750 RPMFull-Load Efficiency: 88.5 %Power Factor: 80.0 %Number of Poles: 4

Per-Phase Motor Circuit Parameters:

2

1.77 , 1.34 , 5.25 (at 60 Hz)4.57 (at 60 Hz), 139.0 (at 60 Hz)

Full-Load Slip = 1.72 %, 0.025

s r s

r m

eq

R R XX X

J kg m

= Ω = Ω = Ω= Ω = Ω

= ⋅

Page 8: Electric Drives Note

2-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 2

Induction Machine Equations in Phase Quantities: Assisted by Space

Vectors

Page 9: Electric Drives Note

2-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

c axis

a axis

b axis

i c

i b

i a

θ

magneticaxis of phase a

ia

θ=0

′4′3

′2

′1

7

65 4 3

2

1

′7

′6

′5

θ π=

(a) (b)

Figure 2-1 Stator windings.

Sinusoidally-Distributed Stator Windings

(1) ( ) sin2s

sNn θ θ= 0 θ π≤ ≤

(2) ( ) i cossa a

g

NHp

θ θ= ( )(4) ( ) ( ) i coso sa o a a

g

NB Hpµθ µ θ θ= =

( ) ( )(3) i cossa g a a

NF Hp

θ θ θ= =

Page 10: Electric Drives Note

2-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 2-2 Three-phase windings.

a'a

b

'b

c

'c

ai

bi

ci

axisa −

axisb −

axisc −/j4 3e π

/j2 3e π

j0e

θb

bi

ai

cic

a

(a) (b)

Three-Phase Sinusoidally-Distributed Windings

Page 11: Electric Drives Note

2-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

n

b

c

a

ia

a ax is−

ia

ia

r

leak age

m agn etiz in g

(a)

(b)Figure 2-3 Single-phase magnetizing inductance and leakage

inductance.

Single-Phase Magnetizing Inductance ,1m phaseL −

,,

,1

,(1) a leakagea as self

a a ai onlyaL Ls m phase

magnetizingLi i i

λλ λ

= = +

, ,1(2) s self s m phaseL L L −= +

2,1(3) ( )o sm phase

g

r NLp

πµ− =

Page 12: Electric Drives Note

2-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

n

b

c

a

ia

λ b

Figure 2-4 Mutual inductance .

Stator Mutual Inductance mutualL

0,,

(1) bmutual

a i i rotor openb c

Liλ

==

,11(3)2mutual m phaseL L −= −

, ,(2) cos(120 )ob duetoi a magnetizing dueto ia aλ λ=

Page 13: Electric Drives Note

2-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

a axis−

b axis−

c axis−

θm

ia

ib

ic

iA

iC

iB

A axis−

B axis−

C axis−

ωm

( )a

ia

ib

ic

−− +

+

+

va

vb

vc

Rs

−−

+

+

vA = 0

vB = 0

vC = 0

RriA

iB

iC

Stator circuit Rotor circuit

( )b

− +

Figure 2-5 Rotor circuit represented by three-phase windings.

(b)

Equivalent Windings in A Squirrel-Cage Rotor

,13(2)2m m phaseL L −=

23(3) ( )2

o sm

g

r NLp

πµ=

(4) s s mL L L= +

(1) ( ) ( ) ( ) 0A B Ci t i t i t+ + =

(1) ( ) ( ) ( ) 0a b ci t i t i t+ + =

,13(2)2m m phaseL L −=

(3) r r mL L L= +

,1(4) cosaA m phase mL L θ−= ⋅

Stator

Rotor

Page 14: Electric Drives Note

2-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

( )sF t( )

sF tθ

( )aF t( )bF t

( )cF t

axisc −

axisb −

axisa −

ci = −

bi =−

ai = +

( )aF t

( )bF t

( )cF t

axisc −

axisb −

axisa −

(a) (b)

Figure 2-6 Space vector representation of mmf.

Review of Space Vectors

( ) ( ) ( ) ( )a a a as a b cF t F t F t F t= + +

Page 15: Electric Drives Note

2-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 2-7 Physical interpretation of stator current space vector.

a'a

b'b

c

'cai

bi

ci

axisa −

axisb −

axisc −

/j4 3e π

/j2 3e π

j0e

sI

at time tmagnetic axis of hypothetical winding

ˆwith current sI

axisa −

(a) (b)

si

Physical Interpretation of Current Space Vector

( )0 2 / 3 4 / 3 ˆ(1) ( ) ( ) ( ) ( ) ( )j tia j j j ss a b c si t i t e i t e i t e I t eθπ π= + + =

(2) ( ) ( / ) ( )a as s sF t N p i t=

Page 16: Electric Drives Note

2-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

( )0 2 / 3 4 / 3 ˆ( ) ( ) ( ) ( ) ( )j tva j j j ss a b c sv t v t e v t e v t e V t eθπ π= + + =

( )0 2 / 3 4 / 3 ˆ( ) ( ) ( ) ( ) ( )j ta j j j ss a b c st t e t e t e t eθλπ πλ λ λ λ λ= + + =

Voltage and Flux-Linkage Space Vectors

Page 17: Electric Drives Note

2-10© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 2-8 Relationship between space vector and phasor in sinusoidal steady state.

ˆa js si I e α−=

@ t 0=

(b)

axisa −αα

ref

ˆa aI I α= ∠−

(a)

Relationship between space vector and phasor in sinusoidal steady state

0

32

as ati I

==

3ˆ ˆ2s aI I=

Page 18: Electric Drives Note

2-11© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

ia

ib

ic+−vc

+−vb

+− va

λa t( )

λ b t( )

λ c t( )

a axis−

c axis−

b axis−

e j0

e j4 3π /

e j2 3π / i s s,i

s s,i

B

Fs

s

,,λ

at time t' '

Figure 2-9 All stator space vectors are collinear (Rotor open-circuited).

All stator space vectors are collinear (Rotor open-circuited)

,due to leakage flux due to magnetizing flux

( ) ( ) ( ) ( )a a a as s m s s ss is

t L i t L i t L i tλ = + =

Page 19: Electric Drives Note

2-12© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

a axis−

b axis−

c axis−

θm

iA

iC

iB

A axis−

B axis−

C axis−

ωm

,

, ,

, Br r irFr r ir

i

λat time t' '

Figure 2-10 All rotor space vectors are collinear (Stator open-circuited).

a axis−

b axis−

c axis−

θm

iA

iC

iB

A axis−

B axis−

C axis−

ωm

,

, ,

, Br r irFr r ir

i

λat time t' '

Figure 2-10 All rotor space vectors are collinear (Stator open-circuited).

All rotor space vectors are collinear (Stator open-circuited)

,due to leakage flux due to magnetizing flux

( ) ( ) ( ) ( )A A A Ar r m r r rr ir

t L i t L i t L i tλ = + =

Page 20: Electric Drives Note

2-13© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Making the case for dq-axis analysis

(3) ( ) ( ) ( ) ja a A ms s s m rt L i t L i t e θλ = +

(2) ( ) ( ) ja A mr ri t i t e θ=

a axis−

b axis−

c axis−

θm

ia

ib

ic

iA

iC

iB

A axis−

B axis−

C axis−

ωm

( )a

ia

ib

ic

−− +

+

+

va

vb

vc

Rs

−−

+

+

vA = 0

vB = 0

vC = 0

RriA

iB

iC

Stator circuit Rotor circuit

( )b

− +

Figure 2-5 Rotor circuit represented by three-phase windings.

(b)

(1) ( ) ( )a a as s s m rt L i t L iλ = +

(4) ( ) ( ) ( )a a as s s s

dv t R i t tdtλ= +

Page 21: Electric Drives Note

3-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 3

Dynamic Analysis of Induction Machines in Terms of dq-

Windings

Page 22: Electric Drives Note

3-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Representation of Stator MMF by Equivalent dq Windings

2 / 3 4 / 3(2) ( ) ( ) ( ) ( )a j js a b ci t i t i t e i t eπ π= + +

(3) ( ) ( )a ass s

NF t i tp

=

( )3/ 2(4) ds ssd sq s

N Ni ji ip p

+ =

( ) 2(5)3d

sd sq si ji i+ =

2,1

,1

(1) winding magnetizing inductance =( 3/ 2)

(3 / 2)

(using Eq. 2-12)

m phase

m phase

m

dq L

L

L

−=

=

axisa −

axisb −

axisc −

si

ai

bi

ci

at t

axisa −

axisb −

axisc −

si

at t

axisd −

axisq −

sdi

sqi

axisa −

axisb −

axisc −

si

at t

axisd −

axisq −

projection

projectionsq2i3

= ×projection

projectionsd2i3

= ×

(a)

(b) (c)

3

2 sN

Figure 3-1 Representation of stator mmf by equivalent dq winding currents.

daθ daθ

Page 23: Electric Drives Note

3-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Representation of Rotor MMF by Equivalent dq Windings

2 / 3 4 / 3( ) ( ) ( ) ( )A j jr A B Ci t i t i t e i t eπ π= + +

( )( )/

AA rr

s

F ti tN p

=

Figure 3-2 Representation of rotor mmf by equivalent dq winding currents.

Ai

dAθrqi

a axis−

dωd axis−

q axis−

B axis− A axis−mω

daθ mθ

ri

••

rdi

projection2 projection3rqi = ×

projection2 projection3rdi = ×

Page 24: Electric Drives Note

3-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

a axis−stator

A axis−rotor

d axis−

ωm

isd

isq

q axis−at t

i rq

ird

θm

is

ir

32

isd

32

isq

32

irq 32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

a axis−a axis−stator

A axis−A axis−rotor

d axis−d axis−

ωmωm

isdisd

isqisq

q axis−q axis−at tat t

i rqi rq

irdird

θmθm

isis

irir

32

isd32

isd

32

isq32

isq

32

irq32

irq 32

ird32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

Figure 3-3 Stator and rotor representation by equivalent dq winding currents. The dq winding voltages are defined as positive at the dotted terminals. Note that the relative positions of the stator and the rotor current space vectors are not actual, rather only for definition purposes.

Mutual Inductance between dq Windings on the Stator and the Rotor

sd s sd m rdL i L iλ = +

sq s sq m rqL i L iλ = +

rd r rd m sdL i L iλ = +

rq r rq m sqL i L iλ = +

Page 25: Electric Drives Note

3-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 3-4 Transformation of phase quantities into dq winding quantities.

[ ]abc dqsT →

ai

bi

ci

sdi

sqi

(a) stator

[ ]ABC dqrT →

Ai

Bi

Ci

rdi

rqi

(b) rotordaθ dAθ

Figure 3-4 Transformation of phase quantities into dq winding quantities.

[ ]abc dqsT →

ai

bi

ci

sdi

sqi

(a) stator

[ ]ABC dqrT →

Ai

Bi

Ci

rdi

rqi

(b) rotordaθ dAθ

[ ]abc dqsT →

ai

bi

ci

sdi

sqi

(a) stator

[ ]ABC dqrT →

Ai

Bi

Ci

rdi

rqi

(b) rotordaθ dAθ

[ ]

2 4 ( )cos( ) cos( ) cos( )( ) 2 3 3 ( )( ) 2 43 sin( ) sin( ) sin( ) ( )

3 3

ada da dasdb

sqda da da c

Ts abc dq

i ti t

i ti t

i t

π πθ θ θ

π πθ θ θ

− − = − − − − − [ ]

2 4 ( )cos( ) cos( ) cos( )( ) 2 3 3 ( )( ) 2 43 sin( ) sin( ) sin( ) ( )

3 3

AdA dA dArdB

rqdA dA dA C

Tr ABC dq

i ti t

i ti t

i t

π πθ θ θ

π πθ θ θ

− − = − − − − −

Mathematical Relationship between dq and phase Winding Variables

Page 26: Electric Drives Note

3-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

-axisa

-axisd

-axisα

-axisβ

daθ

i

ii

i

sdisqi

si α

si β- axisq

Figure 3-5 Stator and equivalent windings.dqαβ

(1) s s s sdv R idtα α αλ= +

(2) s s s sdv R idtβ β βλ= +

_ _ _(4) s s s sdv R idt

α α ααβ αβ αβλ= +

_ _(6) ; etc.j das s dqv v e θααβ = ⋅

_(5) ; etc.s dq sd sqv v jv= +

Derivation of Stator Voltages in dq Windings

_(3) ; etc.s s sv v jvααβ α β= +

Page 27: Electric Drives Note

3-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

_ _ _ _(2) s dq s s dq s dq d s dqdv R i jdtλ ω λ= + +

(3) sd s sd sd d sqdv R idtλ ω λ= + −

(4) sq s sq sq d sddv R idtλ ω λ= + +

[M ]rotate

0 1(5)

1 0sd sd sd sd

s dsq sq sq sq

v i dRv i dt

λ λω

λ λ −

= + +

Derivation of Stator Voltages in dq Windings (continued)

_ _ _(1) s s s sdv R idt

α α ααβ αβ αβλ= +

Page 28: Electric Drives Note

3-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

-axisa

-axisd

-axisα

-axisβ

daθ

ii i

i

rdirqi

ri α

ri β

- axisq

Figure 3-6 Rotor and equivalent windings.dqαβ

-axisA

dAθ

Derivation of Rotor Voltages in dq Windings

(1) rd r rd rd dA rqdv R idtλ ω λ= + −

(2) rq r rq rq dA rddv R idtλ ω λ= + +

(3) dA d mω ω ω= −

(4) ( / 2)m mechpω ω=

[M ]rotate

0 1(5)

1 0rd rd rd rd

r dArq rq rq rq

v i dRv i dt

λ λω

λ λ −

= + +

Page 29: Electric Drives Note

3-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

[M ]rotate

0 11 0

sd sd sd sds d

sq sq sq sq

v id Rv idt

λ λω

λ λ −

= − − [M ]rotate

0 11 0

rd rd rd rdr dA

rq rq rq rq

v id Rv idt

λ λω

λ λ −

= − −

Obtaining Flux Linkages: Voltages as Inputs

[ ]_ _ _ rotate _[ ] [ ] [ ] M [ ]s dq s dq s s dq d s dqd v R idt

λ ω λ= − −

[ ]_ _ _ rotate _[ ] [ ] [ ] M [ ]r dq r dq r r dq dA r dqd v R idt

λ ω λ= − −

_s dqv

_r dqv

_s dqλ

_r dqλ

rotate[M ]

rotate[M ]

1s

1s

sR

rR

dAω

dω ×

×

+

+

_s dqddtλ

_r dqddtλ

1[ ]M −

Eq. 3-62

dqi

_s dqi

_r dqi

Figure 3-7 Calculating winding flux linkages and currents.dq

Page 30: Electric Drives Note

3-10© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

a axis−

d axis−q axis−

rqi

rdi

sqi

d

d

add

subtract

due to and sq rqi i

due to rqileakage flux

i

i i

Figure 3-8 Torque on the rotor -axis.d

a axis−

d axis−q axis−

rqi

rdi

sqi

d

d

add

subtract

due to and sq rqi i

due to rqileakage flux

i

i i

a axis−

d axis−q axis−

rqi

rdi

sqi

d

d

add

subtract

due to and sq rqi i

due to rqileakage flux

i

i i

Figure 3-8 Torque on the rotor -axis.d

Electromagnetic Torque on the Rotor d-Axis

0 3/ 2ˆ(1) ( )s rrq sq rq

g m

mmf

N LB i ip L

µ = +

,3 / 2 ˆ(2)

2s

d rotor rq rdNpT r B ip

π

=

20

,3 / 2(3) ( )

2s r

d rotor sq rq rdg m

Np LT r i i ip L

µπ

= +

20

,3(4) ( )

2 2s r

d rotor sq rq rdg m

Lm

Np LT r i i ip L

µπ = +

,(5) ( )2 2d rotor m sq r rq rd rq rd

rq

p pT L i L i i i

λ

λ= + =

Page 31: Electric Drives Note

3-11© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

rqi

rdi

q

add

subtract

due to and sd rdi i

due to rdileakage flux

q axis−d axis−

a axis−

sdi

q

i i

i

Figure 3-9 Torque on the rotor -axis.q

rqi

rdi

q

add

subtract

due to and sd rdi i

due to rdileakage flux

q axis−d axis−

a axis−

sdi

q

i i

i

rqi

rdi

q

add

subtract

due to and sd rdi i

due to rdileakage flux

q axis−d axis−

a axis−

sdi

q

i i

i

Figure 3-9 Torque on the rotor -axis.q

Electromagnetic Torque on the Rotor q-Axis

, ( )2 2q rotor m sq r rq rq rd rq

rd

p pT L i L i i i

λ

λ= − + = −

, ,(1) em d rotor q rotorT T T= +

(2) ( )2em rq rd rd rqpT i iλ λ= −

(3) ( )2em m sq rd sd rqpT L i i i i= −

(4) em Lmech

eq

T Tddt Jω −

=

Net Electromagnetic Torque

Page 32: Electric Drives Note

3-12© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Equivalent d and q Axis Equivalent Circuits

( )sd s sd d sq s sd m sd rdd dv R i L i L i idt dt

ω λ= − + + +

( )sq s sq d sd s sq m sq rqd dv R i L i L i idt dt

ω λ= + + + +

0

( )rd r rd dA rq r rd m sd rdd dv R i L i L i idt dt

ω λ=

= − + + +

0

( )rq r rq dA rd r rq m sq rqd dv R i L i L i idt dt

ω λ=

= + + + +

sR

+

+

+

+

−−

− −

sR

sL

sL rL

rL

mL

mL

sdv

sqv

d sdω λ

d sqω λ

sdi

sqi

dA rqω λ

dA rdω λ

rdv

rqv

+

+

sdddtλ

sqddtλ

+

+

rdddtλ

rqddtλ

(a) -axisd

(b) -axisq

1 2

1 2

1 2

1 2

1

2

1

2

Figure 3-5 -winding equivalent circuits.dq

rdi

rqi

rR

rR

Figure 3-10 dq-winding equivalent circuits.

Page 33: Electric Drives Note

3-13© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 3-11 Per-phase equivalent circuit in steady state.

+

(at )ωaV

+

sj Lω

maImaE

raI ′aIsR

rj Lω

rRs

( )m mj L jXω =

AI

Per-Phase Equivalent Circuit

_ _ _(1) s dq s s dq syn s dqv R i jω λ= +

_ _(4) 0 rdq syr n r dq

R i js

ω λ= +

_ _ _ _ _(2) ( )s dq s s dq syn s s dq syn m s dq r dqv R i j L i j L i iω ω= + + +

_ _ _ _(5) 0 ( )rr dq syn r r dq syn m s dq r dq

R i j L i j L i is

ω ω= + + +

(3) ( )a s a syn s a syn m a AV R I j L I j L I Iω ω= + + +

(6) 0 ( )ra syn r A syn m a A

R I j L I j L I Is

ω ω= + + +

Page 34: Electric Drives Note

3-14© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Obtaining Currents from Flux Linkages

[ ]

sd s m sd

rd m r rdL

L L iL L i

λλ

=

[ ]

sq sqs m

m rrq rqL

iL LL L i

λ

λ

=

[ ]

0 00 0

0 00 0

sd sds msq sqs m

m rrd rd

m rrq rqM

iL LiL L

L L iL L i

λλ

λλ

=

1[ ]

sd sd

sq sq

rd rd

rq rq

ii

Mii

λλ

λλ

=

Page 35: Electric Drives Note

3-15© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Induction Motor Model

_s dqv

_r dqv

_s dqλ

_r dqλ

rotate[M ]

rotate[M ]

1s

1s

sR

rR

dAω

dω ×

×

+

+

_s dqddtλ

_r dqddtλ

1[ ]M −

Eq. 3-62

dqi

_s dqi

_r dqi

emT

LT

Eq. 3-47

1

eqsJmechω

2p

+

+−

Figure 3-12 Induction motor model in terms of windings.dq

Page 36: Electric Drives Note

3-16© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Calculation of Steady State Initial Conditions Using Phasors

ˆ

3ˆ ˆ(0)2

j ia a i s a

Is

I I i I e θθ= ∠ ⇒ =

ˆ

2 2 3 ˆ(0) (0) - = cos( )3 3 2sd s i

Is

i projection of i on d axis I θ = ×

ˆ

2 2 3 ˆ(0) (0) - = sin( )3 3 2sq s i

Is

i projection of i on q axis I θ = ×

Page 37: Electric Drives Note

3-17© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

(1) sd s sd syn sqv R i ω λ= −

(2) sq s sq syn sdv R i ω λ= +

(3) 0 r rd syn rqR i sω λ= −

(4) 0 r rq syn rdR i sω λ= + [ ]

0

0

000 0

s syn s syn m sdsd

syn s s syn m sqsq

syn m r syn r rd

rqsyn m syn r r

A

R L L ivL R L iv

s L R s L iis L s L R

ω ω

ω ω

ω ω

ω ω

− − = − −

[ ] 1

00

sd sd

sq sq

rd

rq

i vi v

Aii

=

Calculation of Steady State Initial Conditions Using Voltage Equations

Page 38: Electric Drives Note

3-18© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Simlink-based dq-Axis Simulation of Induction Motor

Page 39: Electric Drives Note

3-19© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Simulation Results

Page 40: Electric Drives Note

4-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 4

Vector Control of Induction-Motor Drives: A Qualitative Examination

Page 41: Electric Drives Note

4-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

DC Motor Drive

aS

SN

aNemT

PPU

+

− aeav

aL

aR

ai

+

ai

0

0

t

em T aT k i=emT

t

Tem = kT ia

Page 42: Electric Drives Note

4-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Brushless DC Motor Drive

( )rB t

( )si t

o90 NS axisa −

sI

0

0

em T sT k I=emT

t

ˆ em T ST k I=

Page 43: Electric Drives Note

4-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Vector-Controlled Induction Motor Drive

axisa −'( )ri t

'( )rF t( )rB t

( )rF t

( )msB t( )lrB t

( )sv t

speed feedback

currentfeedback

Tacho

IMPPU

( ) perpendicuar to ( ) and ( )r r rB t F t F t′'ˆ ˆ (keeping constant)em T r rT k I B=

Page 44: Electric Drives Note

4-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Analogy to a Current-Excited Transformer With a Shorted

Secondary, 2m iφ , 1m iφ

1i l2φ

N:N

shown explicitly2R

short

net = 0

2v 0=2R

2i

0 t1i

+ -2 2(0 ) = (0 ) = 0λ λ

1 2

+ + +m,i m,i 2(0 ) = (0 ) + (0 )φ φ φ

+ +m2 1

2

Li (0 ) = i (0 )L

Page 45: Electric Drives Note

4-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Analogy to a Current-Excited Transformer With a Shorted

Secondary

2 12

(0 ) (0 )mLi iL

+ +=

22 2( ) (0 ) ti t i e τ−+=

22

2

LR

τ =

φmi, 2 φmi, 1

i1 i1

i2

N1 N2

net =0

R2φ2

∴ = +φ φ φmi mi, ,1 2 2

0 t

t = +0

short

R shown licitly2 exp

( )a

i2

−+

+Lm

L2

+

e2

Nddt

L didt

φ2

2

2=

Nd

dtL di

dtmi

mφ , 2 2=

Noted

dtmi: ,φ

1 0=

t >0

( )b

0

0i2

i1

t

t

LL

im

21 0+d i

( )c

Figure 4-5 Analogy of A Current-Excited Transformer with a Short-Circuited Secondary;

0

1 2N N=

2 2mL L L= +

Page 46: Electric Drives Note

4-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

R1 R2i2

i2

00 tt im

i1i1

L1

L2

Lm

N N N1 2= =

Figure 4-6 Equivalent-Circuit Representation of the Current-Excited Transformer with a Short-Circuited Secondary.

Using the Transformer Equivalent Circuit

2 1 12 2

(0 ) (0 ) (0 )m m

m

L Li i iL L L

+ + += =+

2 21 1

2 2(0 ) (0 ) (0 )m

m

L Li i iL L L

+ + += =+

22 2( ) (0 ) ti t i e τ−+=

Page 47: Electric Drives Note

4-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

d- and q- Axis Winding Representation

sd s

2i = the projection of i (t) vector along the d-axis3

sq s

2i = the projection of i (t) vector along the q-axis3

a axis−stator

A axis−rotor

d axis−

ωm

isd

isq

q axis−at t

i rq

ird

θm

is

ir

32

isd

32

isq

32

irq 32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

a axis−a axis−stator

A axis−A axis−rotor

d axis−d axis−

ωmωm

isdisd

isqisq

q axis−q axis−at tat t

i rqi rq

irdird

θmθm

isis

irir

32

isd32

isd

32

isq32

isq

32

irq32

irq 32

ird32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

Figure 3-3 Stator and rotor representation by equivalent dq winding currents. The dq winding voltages are defined as positive at the dotted terminals. Note that the relative positions of the stator and the rotor current space vectors are not actual, rather only for definition purposes.

Page 48: Electric Drives Note

4-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Initial Flux Buildup Prior to axisq −

axisd −

sqi 0=

sdi

t−∞ 0

, sdm iφ

si

rB

t 0−=

sdi

- - -a m,rated b c m,rated

1ˆ ˆi (0 ) = I and i (0 ) = i (0 ) = - I2

-sd ms,rated m,rated m,rated

2 2 3 3ˆ ˆ ˆi (0 ) = I = ( I ) = I3 3 2 2

sqi = 0

-t = 0

Page 49: Electric Drives Note

4-10© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Step Change in Torque at m 0ω = +=t 0

rB sdi

net = 0

axisa −

slipωlrφ

, rm iφ, sqm iφ

slipω

sqi sqi

sdi

0−∞ t

ωm = 0isd unchangedStep-change in isq

Φq,net = 0sq r

+ + +m,i m,i r(0 ) = (0 ) + (0 )φ φ φ

mem r sq

r

LˆT α B , iL

-t = 0

Page 50: Electric Drives Note

4-11© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Flux Densities at +t = 0

rB

t 0+=

lrBmsB

axisa −

Page 51: Electric Drives Note

4-12© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Transformer Analogy – Voltage Needed to Prevent the Decay of

Secondary Current

+

2i′

( ) ( )2 2 2v R i 0 u t+′ ′ ′=

2R′

mimL

l2L′l1L

( )1i u t⋅

1R t 0>

Page 52: Electric Drives Note

4-13© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Currents and Fluxes at Sometime Later t > 0, Blocked Rotor

m 0ω =

t 0>

rBsdi

net = 0

axisa −

slipωlrφ

, rm iφ, sqm iφsqi

slipω

sqi

axisd −

axisq −

r m r sqslip

r

R , (L /L )i

Bω α

Page 53: Electric Drives Note

4-14© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Vector-Controlled Condition With a Rotor Speed ωm

t 0>

rBsdi

net = 0

axisa −

synωlrφ

, rm iφ, sqm iφsqi

synω

sqi

axisd −

axisq −

syn m slipω = ω + ω

Page 54: Electric Drives Note

4-15© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Torque, Speed, and Position Control

(measured)/d dt

encoder

Motor

PPUregulated

current

to abcdq

to dqabc

*ai*bi*ci

aibici

sdi

sqi

emT

ˆrB

rBθcalculations

mθmω

(measured)mθ mω emT

(measured) (calculated)

P PI PI

∑∑ ∑

−−+ +

−+

+ PImω(measured)

*ˆrB

ˆrB

ˆrB (calculated)

*sdi

*sqi

*mθ

*mω

*emT

(measured)mωmotor mathematical model

syn m slipω (t) = ω (t) + ω (t)

r

t

B syn0θ (t) = 0 + ω (τ) dτ∫ ⋅

Page 55: Electric Drives Note

4-16© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 4-14 (a) Block diagram representation of hysteresis current control; (b) current waveform.

T

1k

*sI

*emT

*( )ai t*( )bi t*( )ci t

Σ ( )Aq t

phasea

( )ai t

dV+−

( )m tθ

+

(a)

(b)

reference current

actual current

t0

.From Eq 10 6−

using Eqs. 10-11 and 10-12

Power-Processing Unit (PPU)

Page 56: Electric Drives Note

5-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 5

Mathematical Description of Vector Control

Page 57: Electric Drives Note

5-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

a axis−stator

A axis−rotor

d axis−

ωm

isd

isq

q axis−at t

i rq

ird

θm

is

ir

32

isd

32

isq

32

irq 32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

a axis−a axis−stator

A axis−A axis−rotor

d axis−d axis−

ωmωm

isdisd

isqisq

q axis−q axis−at tat t

i rqi rq

irdird

θmθm

isis

irir

32

isd32

isd

32

isq32

isq

32

irq32

irq 32

ird32

ird

daθ

dAθ

32 sN

32 sN

32 sN

Figure 3-3 Stator and rotor mmf representation by equivalent dq winding currents.

Figure 5-1 Stator and rotor mmf representation by equivalent dq winding currents. The d-axis is aligned with rλ .

Motor Model with the d-Axis Aligned with the Rotor Flux Linkage Axis

( ) 0rq tλ = mrq sq

r

Li iL

= −( ) 0rqd tdtλ =

Page 58: Electric Drives Note

5-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

sR

+

+

+

+

−−

− −

sR

sL

sL rL

rL

mL

mL

sdv

sqv

d sdω λ

d sqω λ

sdi

sqidA rdω λ

0rdv =

0rqv =

+

+

sdddtλ

sqddtλ

+

+

rdddtλ

0rqddtλ =

(a) -axisd

(b) -axisq

rdi

rqi

rR

rR

+

rqi

Figure 5-2 Dynamic circuits with the d-axis aligned with rλ .

Dynamic Circuits with the d-Axis Aligned with the Rotor Flux Linkage Axis

Calculation of :dAωrq m

dA r sqrd r rd

i LR iωλ τ λ

= − =

Calculation of Torque

2 2m

em rd rq rd sqr

Lp pT i iL

λ λ

= − =

:emT

Page 59: Electric Drives Note

5-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

rL

mLsdi

+

rdddtλ rdi

rR

Figure 5-3 The d-axis circuit simplified with a current excitation.

D-Axis Rotor Flux Dynamics

(1) ( ) ( )mrd sd

r r

sLi s i sR sL

= −+

(2) rd r rd m sdL i L iλ = +

(3) ( ) ( )(1 )

mrd sd

r

Ls i ss

λτ

=+

(4) rd mrd sd

r r

Ld idt

λλτ τ

+ =

Page 60: Electric Drives Note

5-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Motor Model

0( ) 0 ( )

tda dt dθ ω τ τ= + ∫

rFigure 5-4 Motor model with d-axis aligned with .λ

rdλrdλ

1m

r

Lsτ+

DN

N/D1/ sdaθ

emTmω

mechω

dω dAωmL

sqi

sdi

2m

r

Lp

L⋅

2

p

rdλ

×

++

Page 61: Electric Drives Note

5-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Simulation with d-Axis Aligned with the Rotor Flux Linkage (line-fed machine; achieving vector control is not an objective)

Page 62: Electric Drives Note

5-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 5-6 Results of Example 5-1.

Simulation Results match that of Example 3-3

Page 63: Electric Drives Note

5-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Vector-Controlled Induction Motor with a CR-PWM Inverter

Figure 5-7 Vector-controlled induction motor with a CR-PWM Inverter.

emT

isd*

isq*

ia*

ib*

ic*

Current −Regulated

PPU

Motor

( )mech measuredωmechθ

mod elMotor

of Fig.49

sdi

sqi

iaibic

Encoder

Transformations

Transformations

ddt

Eq. 107

Eq. 103

Motor Model(Fig. 5-4)

abctodq

dqtoabc

rdλ

daθ

daθ

Page 64: Electric Drives Note

5-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Speed and Position Loops for Vector Control

Figure 5-8 Vector controlled induction motor drive with a current-regulated PPU.

(measured)/d dt

Motor

PPUregulated

current

to abcdq

to dqabc

*ai*bi*ci

aibici

sdi

sqiemTrdλdaθ

Fig. 5-4

mechθmechω

(measured)

mechθ mechω emT

(calculated)

P PI PI

∑∑ ∑

−−+ +

−+

+ PImechω *

rdλ*rdλ

mechω

rdλ (calculated)

*sdi

*sqi

*mechθ

*mechω *

emT

(measured)

daθ

mechωEstimated Motor Model

Page 65: Electric Drives Note

5-10© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Design of Speed Loop

rd m sdL iλ =

2*

2m

em sd sqrk

LpT i iL

=

∑+

mechωk

( )sqi si

pkks

+1

eqsJ

*mechω emT

Page 66: Electric Drives Note

5-11© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Simulation of CR-PWM Vector Controlled Drive using Simulink

Page 67: Electric Drives Note

5-12© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 5-11 Simulation results of Example 5-2.

Simulation Results of a Vector Controlled Induction Motor Drive

Page 68: Electric Drives Note

5-13© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Calculation of Stator Voltages in Vector Control

2(1) 1 m

s r

LL L

σ = −

(2) msd s sd rd

r

LL iL

λ σ λ= +

(3) sq s sqL iλ σ=,

(5) msq s sq s sq d rd d s sd

rvsq vsq comp

Ldv R i L i L idt L

σ ω λ ω σ

= + + +

Figure 5-12 Vector control with applied voltages.

isd*

isq*

PI

PI

∑ ∑

∑+

+

++

+

+

isd

isq

ia

ic

ib

va*

vb*

vc*

Motorvsd*

vsq*

Transformations

M o to rM o d e l

isd

isq

Encodermechθ( )mech measuredω

Transformations

Modulated

SpaceVector

PPU

rdλemT

daθ

daθ

,sd compv

,sq compv

sdv′

sqv′

,

(4) msd s sd s sd rd d s sq

rvsd vsd comp

Ld dv R i L i L idt L dt

σ λ ω σ

= + + −

Page 69: Electric Drives Note

5-14© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 5-13 Design of the current-loop controller.

∑+−

( )sdi s( )sdv s′* ( )sdi sPI

1

s sR s Lσ+

Design of the Current-Loop Controller

(1) sd s sd s sddv R i L idt

σ′ = +

(2) sq s sq s sqdv R i L idt

σ′ = +

1(3) ( ) ( )sd sds s

i s v sR s Lσ

′=+

1(4) ( ) ( )sq sqs s

i s v sR s Lσ

′=+

Page 70: Electric Drives Note

5-15© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Simulation of Vector Controlled Drive with supplied Voltages

Page 71: Electric Drives Note

5-16© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 5-15 Simulation results of Example 5-3.

Simulation Results of Vector Controlled Drive with supplied Voltages

Page 72: Electric Drives Note

6-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 6

Detuning Effects in Induction Motor Vector Control

Page 73: Electric Drives Note

6-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

sdi

0sqi =

rλ-axisa-axisd

-axisq

0t −=

-Figure 6-1 windings at 0 .dq t =

Initial conditions

0t −=*

sd sdi i=

, 0da da estθ θ= =

Page 74: Electric Drives Note

6-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

Effect of Detuning due to Incorrect Rotor Time Constant

,(1) r

r estkτ

ττ

=

( ) ( ), ,,_ _ _(3) j jd d est d estda da est errs dq s dq s dqi i e i eθ θ θ− − −= =

,(4) err da da estθ θ θ= −, * *_(2) d est

sd sqs dqi i ji= +

Page 75: Electric Drives Note

6-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

* *(3) cos sinsd sd err sq erri i iθ θ= +

* *(4) cos sinsq sq err sd erri i iθ θ= −

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

-axisd

-axisestd

-axisa

-axisq

-axisestq

_s dqi

sdi

*sdi

*sqi

sqi

sdi

*sdi

*sqi

sqi

,da estθdaθ

0t >

Figure 6-2 windings at 0; drawn for 1.dq t kτ> <

Effect of Detuning due to Incorrect Rotor Time Constant (continued)

( ) ( ), ,,_ _ _(1) j jd d est d estda da est errs dq s dq s dqi i e i eθ θ θ− − −= =

,err da da estθ θ θ= −

, * *_(2) d est

sd sqs dqi i ji= +

Page 76: Electric Drives Note

6-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Estimated Motor Model (Rotor Blocked)

*sdi

*sqi

dqtoabc

CR-PWMInv.

*ai

*bi

*ci

ai

bi

ci

abctodq

sdi

sqi

1m

r

Lsτ+

mL

DN ND

dAω 1s

dAθ

rdλ

,rd estλ,1

m

r est

Lsτ+

,r estτ

,dA estθ

,dA estθ

abctodq

mLN

D,dA estω

ND

1s

*,sd est sdi i=

*,sq est sqi i=

(ideal)

Estimated Motor Model(Rotor Flux and Slip Estimator)

Actual Motor Model

Figure 6-3 Actual and the estimated motor models (blocked-rotor).

Page 77: Electric Drives Note

6-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Simulation of Vector Control with Estimated Motor Parameters

Page 78: Electric Drives Note

6-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 6-5 Simulation results of Example 6-1.

Effect of Detuning in Dynamic and Steady States

Page 79: Electric Drives Note

6-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

-axisd

-axisestd

-axisa

-axisq-axisestq _s dqi

sdi

*sdi

sqi

*sqi

daθ ,da estθ

0t >

Figure 6-6 windings at 0; drawn for 1.dq t kτ> <

,i estsθ

isθ

Calculations of Steady State Errors

1 sqdA

r sd

ii

ωτ

=

*

, *1

,sq

dA estsd

i

ir estω

τ=

*

*,

,

1 1sq sq

r est r sdsddAdA est

i iii

ωω

τ τ=

2 22 2 * *_ˆsd sq sd sq s dqi i i i I+ = + =

Page 80: Electric Drives Note

6-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

-axisd

-axisestd

-axisa

-axisq-axisestq _s dqi

sdi

*sdi

sqi

*sqi

daθ ,da estθ

0t >

Figure 6-6 windings at 0; drawn for 1.dq t kτ> <

,i estsθ

isθ

Calculations of Steady State Errors (continued) *

*sq

sd

im

i=

2

* 2 21

1sd

sd

i mi k mτ

+=

+ ⋅

* *sq sd

sq sd

i iki i

τ=

1 1tan ( ) tan ( )err m k mτθ − −= − ⋅

,err i est is sθ θ θ= −

2

* 21

1 ( )em

em

T mkT k m

ττ

+=

+ ⋅

Page 81: Electric Drives Note

7-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 7

Space-Vector Pulse-Width-Modulated (SV-PWM) Inverters

Advantages

• Full Utilization of the DC Bus Voltage

• Same simplicity as the Carrier-Modulated PWM

• Applicable in Vector Control, DTC and V/f Control

Page 82: Electric Drives Note

7-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Synthesis of Stator Voltage Space Vector

Figure 7-1 Switch-mode inverter.

aq bq cq

+

dV

ab

c

N

+−av

bv+

cv +

ai

bi

ci

0 2 / 3 4 / 3(1) ( ) ( ) ( ) ( )a j j js a b cv t v t e v t e v t eπ π= + +

(2) ; ;a aN N b bN N c cN Nv v v v v v v v v= + = + = +

0 2 / 3 4 / 3(3) 0j j je e eπ π+ + =

0 2 / 3 4 / 3(4) ( )a j j js aN bN cNv t v e v e v eπ π= + +

0 2 / 3 4 / 3(5) ( ) ( )a j j js d a b cv t V q e q e q eπ π= + +

Page 83: Electric Drives Note

7-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

0 7Figure 7-2 Basic voltage vectors ( and not shown).v v

-axisa

sv

1(001)v

3(011)v2(010)v

6(110)v

4(100)v5(101)v

sector 1

sector 2

sector 3

sector 4

sector 5

sector 6

Basic Voltage Vectors

00

12 / 3

2/ 3

34 / 3

45 / 3

5

6

7

(000) 0

(001)

(010)

(011)

(100)

(101)

(110)

(111) 0

asa js da js da js da js da js da js das

v v

v v V e

v v V e

v v V e

v v V e

v v V e

v v V e

v v

π

π

π

π

π

= =

= =

= =

= =

= =

= =

= =

= =

Page 84: Electric Drives Note

7-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Synthesis of Voltage Vector in Sector 1

01

jdv V e=

/ 33

jdv V e π=

ˆ j ss sv V e θ=

1xv

3yv

Figure 7-3 Voltage vector in sector 1.

1 31(1) [ 0]a

s s s ss

v xT v yT v zTT

= + + ⋅

1 3(2) asv xv yv= +

(3) 1x y z+ + =

0 / 3ˆ(4) j j jss d dV e xV e yV eθ π= +

Page 85: Electric Drives Note

7-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Synthesis using Carrier-Modulated PWM

0 7Figure 7-4 Waveforms in sector 1; .z z z= +

sT

/ 2sT7z

0 / 2z 0 / 2z

/ 2y/ 2y

/ 2x / 2xaNv

bNv

cNv

0

0

0

dV

dV

dV

0

,control avtriv

,control bv

,control cv

,

,

,

ˆ / 2

ˆ / 2

ˆ / 2

control a a k

dtri

control b b k

dtri

control c c k

dtri

v v vVV

v v vVV

v v vVV

−=

−=

−=

max( , , ) min( , , )2

a b c a b ck

v v v v v vv +=

( ) ( ) ( ) 0a b cv t v t v t+ + =

Page 86: Electric Drives Note

7-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Synthesis of Space Vector using Carrier-Modulated PWM in Simulink

Page 87: Electric Drives Note

7-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 7-6 Simulation results of Example 7-1.

Control Waveforms for Carrier Pulse-Width-Modulation

Page 88: Electric Drives Note

7-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Limit on the Amplitude of the Stator Voltage Space Vector

,max,max

ˆ(4) ( ) 3 0.707

2 2phase d

LL dV VV rms V= = =

,max3(5) ( ) 0.612

2 2LL d dV rms V V= = (sinusoidal PWM)

030,maxsV

dV

dV

ˆFigure 7-7 Limit on amplitude .sV

,max ,maxˆ(1) ( ) j ta syns sv t V e ω

=

0,max

60 3ˆ(2) cos( )2 2s d dV V V= =

,max ,max2ˆ ˆ(3)3 3

dphase s

VV V= =

Page 89: Electric Drives Note

8-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 8

Direct Torque Control (DTC) and Encoder-less Operation of

Induction Motors

Page 90: Electric Drives Note

8-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

DTC System Overview

Measured Inputs: Stator Voltages and Currents

Estimated Outputs: 1) Torque, 2) Mechanical Speed, 3) Stator Flux Amplitude and 4) its angle

+−dV aq

bq

cq

aibici

IM

∑ ∑PI+ +− −

+∑−

*mechω

mechω

*emT

*ˆsλ

ˆsλ

emT

sθ∠

Estimator

Selectionof

sv

Figure 8-1 Block diagram of DTC.

Page 91: Electric Drives Note

8-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Principle of DTC Operation

Figure 8-2 Changing the position of stator flux-linkage vector.

( )s tλ

( )s t Tλ −∆sv T∆i

( ) ( )r rt t Tλ λ≈ −∆

-axisa

Rotor -axisAArθ

2ˆ ˆ sin

2m

em s r srLpTLσ

λ λ θ=

sr s rθ θ θ= −

Page 92: Electric Drives Note

8-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

22 3

ˆ2em

slip rr

TRp

ωλ

=

m r slipω ω ω= −

(2 / )mech mpω ω=

ˆ( ) ( ) ( )t j ss s s s s s

t Tt t T v R i d e θλ λ τ λ

−∆= −∆ + − ⋅ =∫

ˆ( ) jr rr s s s rm

L L i eL

θλ λ σ λ= − =( ) ( )r r

r rt t Td

dt Tω

ω

θ θω θ − − ∆= =

Im( )2

conjem s s

pT iλ=

21 m

s r

LL L

σ = −

Calculation of Stator Flux:

Calculation of Rotor Flux:

where

Estimating Torque:

Estimating Mechanical Speed:

s s s sdv R idtλ= + ⇒

Page 93: Electric Drives Note

8-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Inverter Basic Vectors and Sectors

a-axis1(001)v

3(011)v2(010)v

6(110)v

4(100)v 5(101)v

b-axis

c-axis

1

23

4

5

6

Figure 8-3 Inverter basic vectors and sectors.

Page 94: Electric Drives Note

8-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Stator Voltage Vector Selection in Sector 1

sector 1sλ

1v

3v2v

4v 5v6v

Figure 8-4 Stator voltage vector selection in sector 1.

Page 95: Electric Drives Note

8-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Selection of the Stator Voltage Space Vector

sector 1sλ

1v

3v2v

4v 5v6v

Figure 8-4 Stator voltage vector selection in sector 1.

sector 1sλ

1v

3v2v

4v 5v6vsector 1sλ

1v

3v2v

4v 5v6v

Figure 8-4 Stator voltage vector selection in sector 1.

Effect of Voltage Vector on the Stator Flux-Linkage Vector in Sector 1.

increasedecrease

decreasedecrease

decreaseincrease

increaseincreasesv

3v

2v

4v

5v

emT ˆsλ

a-axis1(001)v

3(011)v2(010)v

6(110)v

4(100)v 5(101)v

b-axis

c-axis

1

23

4

5

6

Figure 8-3 Inverter basic vectors and sectors.

Page 96: Electric Drives Note

8-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Effect of Zero Stator Voltage Space Vector

( ) ( )s st t Tλ λ≈ −∆

-axisa

Rotor -axis at t- tA ∆

Arθ Rotor -axis at tA

( )r t Tλ −∆( )r tλ

mθ∆

sin ( )sr s rθ θ θ≈ −

( )em s rT k θ θ−

0sθ∆

0Arθ∆

Ar m r mθ θ θ θ∆ = ∆ + ∆ ∆ ( )em mT k θ∆ − ∆

Page 97: Electric Drives Note

8-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

DTC in Simulink

Page 98: Electric Drives Note

8-10© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Fig. 2 Torque Waveforms.

Page 99: Electric Drives Note

8-11© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Fig. 3 Speed Waveforms.

Page 100: Electric Drives Note

8-12© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Fig. 4 Stator Flux.

Page 101: Electric Drives Note

8-13© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Fig. 5 Stator and Rotor Fluxes.

Page 102: Electric Drives Note

9-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 9

Vector Control of Permanent-Magnet Synchronous-Motor Drives

Page 103: Electric Drives Note

9-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Non-Salient Permanent-Magnet Synchronous Motor

sd s sd fdL iλ λ= + sq s sqL iλ =

axisc −

axisa −

axisb−

N

S

bi

ai

ci

( )a

axisc −

axisa −

axisb −

N

S

bi

ai

ci

rB

'a

a

-axisq

( )b

-axisd

Figure 9-1 Permanent-magnet synchronous machine (shown with =2).p

Page 104: Electric Drives Note

9-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

sd s sd sd m sqdv R idtλ ω λ= + −

sq s sq sq m sddv R idtλ ω λ= + +

2m mechpω ω=

( )2em sd sq sq sdpT i iλ λ= − [( ) ]

2 2em s sd fd sq s sq sd fd sqp pT L i i L i i iλ λ= + − =

em Lmech

eq

T Tddt Jω −

=

Non-Salient Permanent-Magnet Synchronous Motor (Continued)

Page 105: Electric Drives Note

9-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

sd s sd m s sqv R i L iω= −

Per-Phase Steady Stead Equivalent Circuit

sq s sq m s sd m fdv R i L iω ω λ= + +

3/ 2s s s m s s m fd

e fs

v R i j L i jω ω λ= + +

23a s a m s a m fd

E fa

V R I j L I jω ω λ= + +

2ˆ3fa fd m E m

kE

E kλ ω ω= =

23E fdk λ=

sR

aV

m mLωm sLω

m lsLω

ˆ( )fa fa E mE E k ω=

+

aI

+

Figure 9-2 Per-phase equivalent circuit in steady state ( in elect. rad/s)mω

Page 106: Electric Drives Note

9-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Controller in the dq Reference Frame

compd

( )sd s sd s sd m s sqdv R i L i L idt

ω= + + −

compq

( )sq s sq s sq m s sd fddv R i L i L idt

ω λ= + + +

22, ,

3ˆ ˆ( )2sd sq dq rated a ratedi i I I+ ≤ =

Figure 9-3 Controller in the dq reference frame.

ai

bi

ci

Motor

+ Σ

+−

Σ

+−

Σ*sqi

*sdi

( )2m mechpθ θ=

sensorposition

abctodq

+ Σ+

+

( )m s sd fdL iω λ+

m s sqL iω−

*sdv

*sqv Inverter

PWMi

pk

ks

+

mωsqi

sdi

decouplingterms

1s

toabc

dq

*av

ipk

ks

+

*bv

*cv

Page 107: Electric Drives Note

9-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Vector Control of a Permanent-Magnet Synchronous-Motor Drive

Page 108: Electric Drives Note

9-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 9-5 Simulation results of Example 9-1.

Simulation Results

Page 109: Electric Drives Note

9-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Salient-Pole Synchronous Machine

sd md sL L L= +

sq mq sL L L= +

fd md fdL L L= +

rd md rdL L L= +

rq mq rqL L L= +

sd sd sd md rd md fdL i L i L iλ = + +

sq sq sq mq rqL i L iλ = +rd rd rd md sd md fdL i L i L iλ = + +

rq rq sq mq sqL i L iλ = +

fd fd d md sd md rdL i L i L iλ = + +

-axisa

-axisd

-axisb-axisq

-axisc

× -axisa

-axisd-axisq

sqi

rqi

rdisdi

fdi

( )a

( )b

Figure 9-6 Salient-pole machine.

Page 110: Electric Drives Note

9-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

sd s sd sd m sqdv R idtλ ω λ= + −

sq s sq sq m sddv R idtλ ω λ= + + ( 0)

rd rd rd rddv R idtλ

=

= +

( 0)rq rq rq rq

dv R idtλ

=

= +fd fd fd fd

dv R idtλ= +

Winding Voltages

+

+

+

+

+

( ) -axisa d

( ) -axisb q

sdv

sqv

sqi

sdi

rqi

rdi

fdi

rdv

rqv

fdvsR m sqω λ sL rdL rdR

mdL

sR m sdω λ sL rqL rqR

mqL

fL fdR

Figure 9-7 Equivalent circuits for a salient-pole machine.

Page 111: Electric Drives Note

9-10© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

field+damper in d-axis saliency

[ ( ) ( ) ]2em md fd rd sq sd sq sd sq rq sdmqpT L i i i L L i i L i i= + + − −

Electromagnetic Torque

( )2em sd sq sq sdpT i iλ λ= −

sd sd sd md rd md fdL i L i L iλ = + +

sq sq sq mq rqL i L iλ = +

Page 112: Electric Drives Note

9-11© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Space Vector Diagram in Steady State

sd sd sd md fdL i L iλ = + sq sq sqL iλ =

sd s sd m sq sqv R i L iω= − sq s sq m sd sd m md fdv R i L i L iω ω= + +

sd sq s sd s sq m sd sd m md fd m sq sqv jv R i jR i j L i j L i L iω ω ω+ = + + + −

23sd sq sv jv v+ =

23sd sq si ji i+ =Figure 9-8 Space vector and phasor diagrams.

-axisd

-axisq

sdv 2 / 3 sv

2 / 3 si

sqv

aV

aI

Re

Im

( )a ( )b

Page 113: Electric Drives Note

10-1© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Chapter 10

Switched-Reluctance Motor (SRM) Drives

Page 114: Electric Drives Note

10-2© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

mechθo0mechθ =

da

ad

c c

b

b

Figure 10-1 Cross-section of a four-phase 8/6 switched reluctance machine.

Cross-Section of a Switched-Reluctance Machine

Page 115: Electric Drives Note

10-3© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

mechθo0mech

al

θθ

==

b

a

a

b

c c

d

d

mechθ

o0mechθ =

b

a

a

b

c c

d

d

unθ

(a) (b)

Figure 10-2 Aligned position for phase a; (b) Unaligned position for phase a.

Aligned and Unaligned Positions for Phase-a

Page 116: Electric Drives Note

10-4© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

unaligned position

aligned position

(V-sec)aλ

(A)aiFigure 10-3 Typical flux-linkage characteristics of an SRM.

Typical Flux-Linkage Characteristics

Page 117: Electric Drives Note

10-5© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 10-4 Calculation of torque.

ai1I

1λ2λ

0

12

1θ1 mechθ θ+ ∆

Calculation of Torque

mech em mechW T θ∆ = ∆

1 2(1 2 1)elecW area λ λ∆ = − − − −

2 1(0 2 0) (0 1 0)storageW area areaλ λ∆ = − − − − − − −

mech elec storageW W W∆ = ∆ −∆

1 2 2 1

1 2 1 2(0 1 2 0)2

(1 2 1) (0 2 0) (0 1 0) (1 2 1) (0 1 0) (0 2 0)

(0 1 2 0)

em

area

T area area areaarea area area

areaλ

θ λ λ λ λλ λ λ λ

− − − −

∆ = − − − − − − − − − − − −= − − − − + − − − − − − −

= − − −

(0 1 2 0)em

mech

areaTθ− − −

=∆ constant

emmech ia

WTθ =

′∂=∂

Page 118: Electric Drives Note

10-6© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 10-5 Performance assuming idealized current waveform.

( )ai A

( sec)a

Vλ−

,

( )em aTNm

( )ae V

(deg)mechθ

unθ

unθalθ

alθ

Waveforms Assuming Ideal Current Waveforms

a a av Ri e= +

( , )a a a mechde idtλ θ=

a aa a mech

a mech imech a

d de ii dt dtθ

λ λ θθ

∂ ∂= +

∂ ∂

a aa mech mech

mech mechi ia amech

dedtω

λ λθ ωθ θ∂ ∂

= =∂ ∂

Page 119: Electric Drives Note

10-7© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

(A)ai

(V-sec)aλ

,

(Nm)em aT

onθ unθ

onθ unθ

onθ unθ offθ alθ

offθ alθ

offθ alθ

offθ alθonθ unθ

emT

,em aT,em bT ,em cT ,em dT(Nm)

Figure 10-6 Performance with a power-processing unit.

Performance with a Power Processing Unit

Page 120: Electric Drives Note

10-8© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Figure 10-7 Flux-linkage trajectory during motoring.

0

emW

ai

fW

unalignedposition

alignedposition

offθ

Role of Magnetic Saturation

em

em f

WEnergyConversion FactorW W

=+

Page 121: Electric Drives Note

10-9© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

Dc1

Sc1

Pha

se a

Dd1

Dc2

Sa1

Sc2

Pha

se d

Sd1

Pha

se b

Sa2

Pha

se c

Db2

Da1 Db1

Da2

Sd2Sb2

Dd2

Sb1

dcV

+

Figure 10-8 Power converter for a four-phase switched reluctance drive.

Power Processing Unit

Page 122: Electric Drives Note

10-10© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

∫v

−+ Σ

λ

i( , )iθ λ

mechθ

iR

Figure 10-9 Estimation of rotor position.

Determining Rotor Position for Encoder-less Operation

Page 123: Electric Drives Note

10-11© Copyright, Ned Mohan, 2001 Reference: Advanced Electric Drives www.MNPERE.com

positions

*mechω

+−

refIPI

currentcontroller

powerconverter

gate

signals

Σ

mechω

Figure 10-10 Control block diagram for motoring.

Control in Motoring Mode