Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

download Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

of 16

Transcript of Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    1/42

    Source Coding Channel CodingInformation source

    and input transducerModulator

    Channel

    Source Decoding Channel DecodingInformation sink

    and output transducer

    Demodulator

    (Matched Filter)

    Ch7.1: Binary

    Communications

    Ch7.1: Baseband Communications & Noise

    • Questions to be answered:

    System Model: AWGN Channel

    White Gaussian Noise: A Random Process

    Suboptimal Receiver: Integrate-and-Dump

    Performance Evaluation: How Good is the

    Receiver?

    Elec3100 Chapter 7.1 1

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    2/42

     System Model

     White Gaussian Noise

     Suboptimal Receiver

     Performance Evaluation

     BER

      A General Case

    Ch7.1: Baseband Communications & Noise

    Elec3100 Chapter 7.1 2

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    3/42

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    4/42

    Baseband Digital Data Transmission

    • The system model for baseband digital data

    transmission is

    (+ A,- A)   Receiver Transmitter 

    n t    : PSD  12 N 0

     

     s t 

     

     y t 

     AWGN

    Binary signal

    Elec3100 Chapter 7.1 4

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    5/42

     • Example of a digital signal and transmitted waveform is

    1 0 0 0 1 

    • Example of a noise-corrupted received signal is

     s t 

    Baseband Digital Data Transmission

    Elec3100 Chapter 7.1 5

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    6/42

     System Model

     White Gaussian Noise

     Suboptimal Receiver

     Performance Evaluation

     BER

      A General Case

    Ch7.1: Baseband Communications & Noise

    Elec3100 Chapter 7.1 6

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    7/42

    • In this course, we assume internal noise sources are

    much more significant than external ones and deal with

    these only.

    • Noise internal to a communications system arises as aresult of random motion of  charge carriers within the

    devices (transistors, resistors, diodes, etc)

    composing the system.

    • Internal noise is classified as thermal  , shot,

    flicker  or others.

    Types of Noise 

    Elec3100 Chapter 7.1 7

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    8/42

     • Thermal noise arises from the random motion of chargesin conducting medium (such as resistors) and is the mostsignificant noise source  we need to consider in

    ELEC3100.

    • Essentially, by connecting a very sensitive oscilloscope

    across a resistor we can observe thermal noise.

    •  A typical noise output would look like: 

    Thermal Noise 

    Elec3100 Chapter 7.1 8

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    9/42

     Nyquist Theorem

    • The signal  is completely random  and cannot be

    predicted. It has an average value  of zero  but hasassociated with it a certain mean square voltage.

    • The mean square voltage associated with the thermalnoise can be found from the Nyquist Theorem:

    where

    T  = Temperature of the resistor in Kelvink  = Boltzmann’s constant 1.38 x 10-23 joule/K

    B = Bandwidth of interest

    R  = Resistance

    kTBRvn 42

    [K] = [°

    C] + 273.15

    Elec3100 Chapter 7.1 9

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    10/42

    Noise can be modeled as a Random Process

    • Definition: A random process maps a probability space S to a set of functions,  (, ).

    • It assigns to every outcome  a time function (, ) for ∈  where  is a discrete or continuous index set.

    • If  is discrete (e.g. integer valued),  (, ) is a discrete-timerandom process.

    • If  is continuous, (, ) is a continuous-time randomprocess.

    • For a fixed t , (, ) is a random variable.

    • Basically, we can understand a random process as a

    sequence of random variables.

    S  

    Elec3100 Chapter 7.1 10

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    11/42

    Random Process: Example• Suppose that  is selected at random from S = [0,1] and

    consider

    time

      t t t  X  for)cos(),(     

      r  a  n   d  o  m  n  e  s  s

    31 

    3

    Elec3100 Chapter 7.1 11

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    12/42

    Characterization of A RP:

    Mean and Variance Functions

     Mean

    Variance

    Note that the mean and variance may be functions of

    time. However, since the randomness comes from “”, wetreat “t” as a constant in the above calculations. 

    ( )( ) [ ( )] ( ) X X t m t E X t xf x d x

    Elec3100 Chapter 7.1 12

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    13/42

    Characterization of A RP:

    Autocorrelation and Autocovariance

    o Autocorrelation

    o Autocovariance

    o Correlation coefficient

    1 21 2 1 2 ( ), ( )( , ) [ ( ) ( )] ( , ) X X t X t  R t t E X t X t xyf x y dxdy

    )()(),()]()())(()([(),(

    2121

    221121

    t mt mt t  Rt mt  X t mt  X  E t t C 

     X  X  X 

     X  X  X 

    1 21 2

    1 1 2 2

    ( , )( , )( , ) ( , )

     X  X 

     X X 

    C t t t t C t t C t t  

        

    Elec3100 Chapter 7.1 13

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    14/42

    Wide Sense Stationary

    • Definition: A process () is wide sense stationary

    (WSS) if and only if its mean is constant and itsautocorrelation function (1, 2) (or autocovariancefunction) depends only upon the time difference 1  2.

    • Suppose () is WSS with autocorrelation () wheret = 1  2.– (0) is the average power  of the process, E[ X (t )2].

    – () is an even function of t .

     –  |R X (t )| ≤  R X (0)(the autocorrelation function is maximum at the origin)

    1 2 1 2 1 2( ) for all ( , ) ( ) for all , X X X m t m t C t t C t t t t  

    Elec3100 Chapter 7.1 14

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    15/42

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    16/42

    Gaussian Process 

    The additive noise in a communications system can be

    modeled as a Gaussian process  (by the central limit

    theorem)

    - at a particular time t , the noise signal amplitude will be

    Gaussian distributed.

    - we further assume that the Gaussian process is stationary andhas zero mean:

    and its autocorrelation is

    ni ,,2,1  

    )(2

    )()()(   t  t t    oii X  N 

    t  X t  X  E  R     ni ,,2,1    

     (t i)  E X (t i) 0

    Elec3100 Chapter 7.1 16

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    17/42

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    18/42

    Why White noise?

    Elec3100 Chapter 7.1 18

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    19/42

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    20/42

     • One of the significant differences  between analog anddigital communications systems is that for digital systems,

    the probability of error   is used as a measure ofperformance where as in analog systems SNR is used.

    • We have modeled the AWGN. The next question is how to

    build a receiver to obtain a good performance.

    •  A possible receiver structure  (integrate-and-dump) fordetecting the digital transmitted signals is shown below

    >0 choose +A 

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    21/42

    Integrate-and-Dump

    • Not necessarily optimum in all situations.• The integrator  averages out the noise received so that the

    output waveform will look like

    Elec3100 Chapter 7.1 21

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    22/42

     • We know that the noise at the input to the receiver is AWGN.• We can expect the output from the integrator to have a

    Gaussian noise distribution.

    • Putting these ideas into a mathematical framework we get

    1 Decision V  

    AWGN 

    0

    dt 0

    n t  ~  S  N    f    N 0

    2

     s t  Gaussian distribution

    Linear System

    t  y

    Integrate-and-Dump

    Elec3100 Chapter 7.1 22

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    23/42

     

    with 

     s t    A A 

    0  t   T  if "1" transmitted0  t   T  if "0" transmitted

      V     s t   n t  0

      dt  

      AT   N  if "1" is sent

     AT   N    if " 0" is sent

     N     n t  dt 0

     N  is Gaussian distributed

    Linear combination of Gaussian

    Integrate-and-Dump

    Elec3100 Chapter 7.1 23

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    24/42

     System Model

     White Gaussian Noise

     Suboptimal Receiver

     Performance Evaluation

     BER

      A General Case

    Ch7.1: Baseband Communications & Noise

    Elec3100 Chapter 7.1 24

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    25/42

    Key Figure of Merit

    • The probability of receiving a bit in error 

    for digital systems is an important measure

    of performance.

    • Digital communications relies heavily on

    these error calculations - VIP 

    Elec3100 Chapter 7.1 25

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    26/42

     

    Conditional Error Probability 

    Prior Probability 

     P e  P (V   01) P 1  P V   00  P  0

    Problem

    P e  P  0 received 1 sent  P 1 sent  P  1 received 0  P  0 sent

    Assume the decision threshold is set at 0

     P e  P ( E 1) P 1  P E 0  P  0 Total probability theorem

    Elec3100 Chapter 7.1 26

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    27/42

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    28/42

     • The key  to estimating the error probability is to find

    out the distribution of the received signal.

    • This in turn relies on the distribution of the noise. 

    • The noise mean can be calculated as

     E N   E n t  dt 0T 

      E n t  0

      dt   0

    0

    Conditional Distribution 

    Elec3100 Chapter 7.1 28

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    29/42

     Var N    E N 2   E n t  dt 0

      E n t  n v 0

    0

      dtdv

      R

    n  t 

     v

    0

    0

      dtdv

      N 

    0

    2    t   v

    0

    0

      dtdv

      N 02

    dv0

      N 0

    2  2

     AWGN

     f

    S n(f)

    t - n  

     R(t - n  )

     N o /2

     N o /2

    Noise Variance 

    Elec3100 Chapter 7.1 29

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    30/42

    AT

     f  V    v1

    n

     E V 1  AT Var V 1  2 

      f  V    v1 ~  N AT , 2

    0

    -AT

     f  V    v 0

    n

     E V 0  AT Var V 0  

    2

     

      f  

      v 0

    ~  N   AT , 2

    0

    Shifted positive due to

    The positive pulse +A

    Conditional Probabilities 

    Elec3100 Chapter 7.1 30

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    31/42

    AT

     f  V   v1

    n

    -AT n

     P E  | 0  P V   0 0 sent   f  V   v 0 dv0 

     P E  | 0  P  1 received |0 sent

    P E  |1  P  0 received |1 sent P E  |1  P V   0 1 sent   f  V   v1 dv

    0

    Threshold = 0

    Threshold = 0

    0

    0

    Conditional Probabilities 

    31

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    32/42

     • Thus, we know that the output noise from theintegrator   will have  the following Gaussiandistribution 

    • Now,

     N  ~  N  0,  2

     

      f  n   n 12  2exp     n

    2

    2  2

     

     

     P E 0  P V   00 sent   f  V   v 0 dv0

     P E 1  P V   01 sent   f  V   v1 dv

    0

    Conditional Error Probability 

    Elec3100 Chapter 7.1 32

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    33/42

     • Assumptions:1. Symmetry,

    2. “0” and “1” are equally likely, then 

     P E 0  P E 1

     

      P e  P E 0  P E 1  P  0  P  1 1

    2

     P e  P E 0   f  V   v 0 dv0

      12 

    e   v AT   

    2

    2 2 dv0

    • We therefore have

     P e  P ( E 1) P  1  P E 0  P  0 12

     P E 0  P E 0  P E 0

    Noise distribution

    is the same at “1”

    and “0” 

    Total Error Probability 

    33

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    34/42

     • Let

    • where

     x   v  AT  

     dx   dv 

     

     P e 

    1

    2  e

     x2

    2

    dx AT  

        Q  AT 

     

     

    Q( x) 1

    2  e t 

    2

    2 dt  x

    Q(.) function 

    VIP Transformation 

    Evaluation Relies on Q-Function

    Elec3100 Chapter 7.1 34

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    35/42

     System Model

     White Gaussian Noise

     Suboptimal Receiver

     Performance Evaluation

     BER

     A General Case

    Ch7.1: Baseband Communications & Noise

    Elec3100 Chapter 7.1 35

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    36/42

     •  Next, note that one can represent as  (“0”

    sent) or  (“1” sent). 

     s t 

     

     s0   t   

    A

    t

    T-A

    tT

     s1   t 

     

     s0   t 

     E 1   s12 t  dt 

    0

       A2T    E 0   s02 t  dt 0T 

       A2T 

    Energy 

    bit “1”  bit “0” 

     s1   t 

    A General Case

    Elec3100 Chapter 7.1 36

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    37/42

    37

    • We can use  these energy calculations  to find a more

    general result for the error probabilities. That is,

    where

    10

    10

    2

    1

    sent"1"sent"0"Energy/bit

     E  E 

     P  E  P  E  E b

     But E 1  E 0  A2T .

     P e  Q  AT 

     

    Q  A2T 2

     2

     

     2

     N 0T 

    2

    A General Result

    Elec3100 Chapter 7.1

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    38/42

     • Therefore,

    where

    with

    uu erf 1erfc  

     

      ut dt eu

    0

    22erf 

     

     

     P e Q   A2

    2

     2

    Q   A

    2

    T  2

     

    Q  2 E b

     N 0

     1

    2erfc

      E b N 

    0

    Complementary

    Error Function 

    Error Function 

    Signal Energy to

    Noise Power Spectral

    Density Ratio 

    Relation with SNR?

    SNR vs. Eb/No

    38

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    39/42

    • A graph of  P e for baseband signaling is

    where

    10-2 

    1.0

    10-1 

    10-3 

    10-4 

    Actual  

    P e 

    10log10Z   

    -10 5 0 5 10

     P e  Q 2 Z  12

    erfc   Z    Z     E b N 

    0

    Bit Error Rate (BER)

    Elec3100 Chapter 7.1 39

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    40/42

     

    Example 7.1 A baseband digital Tx system sends   A valued

    rectangular pulses through a channel at a rate of1Mbps with amplitude 1V when the noise PSD is 10-7  

    W/Hz.

     Answer :Q 2 E b / N 0

    Q 2 A2T / N 0

    T   1/1000000 106 Q 2 106 /(2 107)

    Q( 10)  Q(3.16)

    Q(u)   eu

    2 / 2

    u 2 

    Q(3.16)  0.00085

    Probability of Error, Pe

    40

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    41/42

     Example 7.2

     Digital data is to be transmitted through a baseband system

    with N 0=10

    -7 

     W/Hz and the received signal amplitude A=20mV.

    (a) If 1000 bits per second (bps) are transmitted what is the error

     probability?  Ans. P e = 2.58  . 10-3.

    (b) If 10000 bps are transmitted, to what value must A be adjusted

    in order to attain the same error probability as in part a)?

     Ans. A = 63.2  . 10-3 V = 63.2mV.

    Elec3100 Chapter 7.1 41

  • 8/20/2019 Elec3100 2014 Ch7.1 BasebandCommunicationsNoise

    42/42

     P e  Q   A2

    T 2

     2

    Q   A2

    T  

    2

     

    Q 2 E b N o

    • In the last example, for a fixed amplitude, error probability

    increases as bit rate increases.• This can be understood by looking at the error probability

    expression

    • Increase in bit rate  smaller bit period T

     higher noise power lower signal energy

     N 

     AQ P 

    oe

    22

    Are they happening at the same time?

    BER vs. Data Rate