ELEC 202 Electric Circuit Analysis II -...

107
THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street, Charleston, SC 29409 Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms

Transcript of ELEC 202 Electric Circuit Analysis II -...

Page 1: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(a)

Complex Arithmetic and

Rectangular/Polar Forms

Page 2: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

2

Real vs. Complex Numbers

1j

The product of a real number & the

operator j is an imaginary number. 2

3 , , , 5.17

j j j j

The sum of a real number & an imaginary

number is a complex number, z . 2 4 , 1j j

…where the real part is denoted Rea z

…and the imaginary part is denoted Imb z

Re 2 4 2, Im 2 4 4j j

rectangular

form

Page 3: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

3

Addition & Subtraction

Graphical addition & subtraction

are performed like vector addition

(“tip-to-tail”).

3 1M j

2 2N j

Algebraic addition & subtraction

are performed piece-wise:

1 1

2 2

1 2 1 2

M a b j

N a b j

M N a a b b j

5 1M N j

Page 4: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

4

Multiplication: Rectangular Form

5 3M j

2 4N j

Multiplication may be accomplished in rectangular form…

1 1 1z a b j

2 2 2z a b j

1 2 1 1 2 2

2

1 2 1 2 2 1 1 2

1 2 1 2 2 1 1 2

1 2 1 2 1 2 2 1

z z a b j a b j

a a a b j a b j b b j

a a a b a b j b b

a a b b a b a b j

2

5 3 2 4

10 20 6 12

22 14

M N j j

j j j

j

…but it is more easily accomplished in polar form.

Page 5: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

5

Exponential Form

cos sin

cos sin

j

j

j

e j

z e z j z

z e a b j

cos

sin

a z

b z

assume |z| is

positive, real

2 22 2 2 2

2 22 2 2 2

2 2

cos sin

cos sin

a b z z

a b z z

a b z

sintan

cos

b

a

Page 6: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

6

Rectangular Exponential Form

Re

Im

a z

b z

4 3M j

|z|

2 2

tanb

a

z a b

2 2

1

4 3 5

tan 3 4 37

z

375 jM e

|z| = magnitude of z

= phase/angle of z

Page 7: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

7

Polar Form

jz a b j z e z

polar rectangular exponential

Polar form is a shorthand

for the exponential form.

374 3 5 5 37jM j e

|z| = magnitude of z

= phase/angle of z

Page 8: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

8

Multiplication: Polar Form

3 4 5 53

3 33 45

2 2

M j

N j

Multiplication in polar form is carried out using exponentials…

1

2

1 1 1 1

2 2 2 2

j

j

z a b j z e

z a b j z e

1 2

1 2

1 2

1 2 1 2

1 2

1 2

j j

j j

j

z z z e z e

z z e

z z e

5 53 3 45

15 98

M N

1 1 1 2 2 1,z z z z 1 2 1 2 1 2z z z z

Page 9: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

9

Division: Polar Form

1 2

1 2

2 2

1 1 1

2 2 2

j jj j

j j

z e z zee

z e z e z

1 1 1 2 2 1,z z z z

11 11 2

2 2 2

zz

z z

6 8 10 53

5 55 45

2 2

M j

N j

10 53 5 45

2 8

M N

Page 10: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

10

Complex Conjugate

The complex conjugate of z is denoted z

then z a b j and if z a b j

3 1M j

3 1M j

The conjugate of z is the same

number, except that the

imaginary part is negated.

Graphically, the complex

conjugate of z is the

mirror image of z

across the Real axis.

Page 11: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(b)

Complex Arithmetic Examples

and Matlab Scripts

Page 12: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

12

Example: Complex Addition

9 2 Aj 3 1 Aj 2 6 Aj

>> i1 = 9 + 2*j;

>> i2 = -3 + j;

>> i3 = -2 + 6*j;

>> i = i1 + i2 + i3

i = 4.0000 + 9.0000i

Page 13: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

13

9 2 Aj 3 1 Aj 2 6 Aj

4 9 Aj

>> i1 = 9 + 2*j;

>> i2 = -3 + j;

>> i3 = -2 + 6*j;

>> i = i1 + i2 + i3

i = 4.0000 + 9.0000i

Example: Complex Addition

Page 14: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

14

Example: Complex Multiplication

Find v x i in rectangular form:

7 3 mV

5 4 mA

v j

i j

2

7 3 5 4

35 15 28 12

47 13 μW

v i j j

j j j

j

2 9 V , 3 5 Av j i j

2 9 3 5

6 27 10 45

51 17 W

v i j j

j j

j

>> V = 2 + 9*j;

>> I = -3 + 5*j;

>> p = V * I

p = -51.0000 -17.0000i

Page 15: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

15

Find v x i in rectangular form:

7 3 mV

5 4 mA

v j

i j

2

7 3 5 4

35 15 28 12

47 13 μW

v i j j

j j j

j

2 9 V , 3 5 Av j i j

2 9 3 5

6 27 10 45

51 17 W

v i j j

j j

j

>> V = 2 + 9*j;

>> I = -3 + 5*j;

>> p = V * I

p = -51.0000 -17.0000i

Example: Complex Multiplication

Page 16: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

16

Example: Complex Arithmetic

Determine the quantity va – vb

in polar form if vn = 0 .

va

vb

vn 110 0 V

110 120 V

110 240 V

vc

>> v_a = 110*exp(j*0);

>> v_b = 110*exp(j*-2*pi/3);

>> v = v_a - v_b;

>> abs(v)

ans = 190.5256

>> angle(v)*180/pi

ans = 30.0000

Page 17: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

17

Determine the quantity va – vb

in polar form if vn = 0 .

va

vb

vn 110 0 V

110 120 V

110 240 V

190.5 30 V

22 1

110 0 110 120

110cos0 110sin 0

110cos 120 110sin 120

110 0 110 1 2 110 3 2

165 55 3

165 55 3 tan 55 3 165

a bv v

j

j

j j

j

vc

>> v_a = 110*exp(j*0);

>> v_b = 110*exp(j*-2*pi/3);

>> v = v_a - v_b;

>> abs(v)

ans = 190.5256

>> angle(v)*180/pi

ans = 30.0000

Example: Complex Arithmetic

Page 18: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

18

Example: Complex Division

Determine the ratio of VL to IL:

LLVL IL

L L

VV

I I

VL

+

IL

3 3 3 mVj 1 3 mAj

>> V_L = -3*sqrt(3)+3*j;

>> I_L = 1+j*sqrt(3);

>> Z = V_L / I_L

Z = -0.0000 + 3.0000i

>> abs(Z)

ans = 3.0000

>> angle(Z)*180/pi

ans = 90.0000

Page 19: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

19

2 2 1

22 1

3 3 3 mV

1 3 mA

3 3 3 tan 1 3 6 150

2 601 3 tan 3

L

L

j

j

V

I

3 90

Example: Complex Division

Determine the ratio of VL to IL:

VL

+

IL

3 3 3 mVj 1 3 mAj

LLVL IL

L L

VV

I I

>> V_L = -3*sqrt(3)+3*j;

>> I_L = 1+j*sqrt(3);

>> Z = V_L / I_L

Z = -0.0000 + 3.0000i

>> abs(Z)

ans = 3.0000

>> angle(Z)*180/pi

ans = 90.0000

Page 20: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

20

Example: Complex Conjugate

Write the quantity V x I* in polar form, given 3 5 V

6 7 mA

j

j

V

I

>> V = 3 - 5*j;

>> I = 6 + 7*j;

>> S = V * conj(I)

S = -17.0000 -51.0000i

>> abs(S)

ans = 53.7587

>> angle(S)*180/pi

ans = -108.4349

Page 21: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

21

Write the quantity V x I* in polar form, given

3 5 6 7

18 30 21 35

17 51 mW

j j

j j

j

V I

>> V = 3 - 5*j;

>> I = 6 + 7*j;

>> S = V * conj(I)

S = -17.0000 -51.0000i 2 2 117 51 tan 51 17

53.8 108 mW

V I

>> abs(S)

ans = 53.7587

>> angle(S)*180/pi

ans = -108.4349 34 59 85 49

34 85 59 49

53.8 108 mW

V I

3 5 V

6 7 mA

j

j

V

I

Example: Complex Conjugate

Page 22: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(c)

Sinusoids and

Sinusoidal Steady-State

Page 23: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

23

Alternating Current (Sinusoidal)

0 0sin , 0mv t V t

Vm = amplitude (in Volts), 0 = phase (in radians)

= frequency (in radians/second)

T = period (in seconds)

f = frequency (in cycles/second) = 1/T = / 2

0 0sin cos 2m mV t V t

+ – v t

A

B

A

B

Page 24: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

24

Review of Sinusoids

v2 “leads” v1 by

v1 “lags” v2 by

1 2sin , sinm mv t V t v t V t

Page 25: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

25

Sinusoids & Exponential Form

1 2sin , sinm mv t V t v t V t

cos sinj t

m m mV e V t j V t

cos sinj

e j

Im sinj t

m mV e V t

Re cos

j t

m mV e V t

Page 26: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

26

RL Circuit with a Sinusoidal Source

i

0 cosVd R

i t i t tdt L L

0 cosV t

-- oscillates forever

-- never settles to a DC value (e.g. zero)

0 cosi t I t It’s possible that the solution is of the form

Substituting i(t) into the differential equation…

Solving for I0 and substituting back into i(t) yields

00 0sin cos cos

VRI t I t t

L L

10

2 2 2cos tan

V Li t t

RR L

amplitude scaling,

phase shift

Page 27: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

27

RL Circuit with a Sinusoidal Source

vs vs

iL

iL

The RL circuit’s transient response

is negligible after 5t .

The remaining response is sinusoidal.

400 μH

5 5 5 1μs2 kΩ

L

Rt

tran

sien

t

Page 28: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

28

RC Circuit with a Sinusoidal Source

vs

vs vC

+

tran

sien

t

vC

The RC circuit’s transient response

is negligible after 5t .

The remaining response is sinusoidal.

5 5

5 2 kΩ 100 pF 1μs

RCt

Page 29: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

29

RLC Circuit with a Sinusoidal Source

is

vC

vC

+

tran

sien

t 5 1.6 msst

1 2 3cos sint

c d dv t e V t V t V

1 1 rad3125

2 2 10 16 μF sRC

The RLC circuit’s transient response

is negligible after ts .

The remaining response is sinusoidal.

Page 30: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(d)

Phasors

Page 31: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

31

2cosmI t

1cosmV t

Phasor Notation

2mI

1mV

1 1 1

1 1cos Re Rej t j jj t

m m m m mV t V e V e e V e V

2 2 2

2 2cos Re Rej t j jj t

m m m m mI t I e I e e I e I

Assume all voltages & currents

oscillate with frequency = 2 f …

Pick off the amplitude & phase for each v/i ;

write each in polar form.

phasor notation

(longer derivation provided in

textbook section 10.3)

Page 32: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

32

Let all phasors be referenced to a cosine (zero phase).

Convert the following time-domain functions to the phasor domain :

(a) 40cos(t + 30°) mV, = 100 rad/s

(b) 25cos(t – 75°) A, = 400 rad/s

(c) 70cos(2 f + 45°) V, f = 20 MHz

(d) 36sin(2 f + 110°) mA, f = 8 MHz

sin cos 2t t

(a)

(b)

(c)

(d)

Example: Phasor vs. Time Domain

Page 33: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

33

Let all phasors be referenced to a cosine (zero phase).

Convert the following time-domain functions to the phasor domain :

(a) 40cos(t + 30°) mV, = 100 rad/s

(b) 25cos(t – 75°) A, = 400 rad/s

(c) 70cos(2 f + 45°) V, f = 20 MHz

(d) 36sin(2 f + 110°) mA, f = 8 MHz

(a) 40 30 mV

(b) 25 75 A

(c) 70 45 V

(d) 36 20 mA sin cos 2t t

Example: Phasor vs. Time Domain

Page 34: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

34

Example: Phasors and Voltage/Current

Let = 2000 rad/s with phasors be referenced to a cosine (zero phase).

Determine the instantaneous value, at t = 1 ms ,

of the current corresponding to this phasor: 20 + 10j A .

omega = 2000;

I = 20 + 10*j;

T = 2*pi/omega;

delta_t = T/1000;

t = 0:delta_t:2*T;

i_t = abs(I)*cos(omega*t + angle(I));

plot(t,i_t)

grid

axis([0 2*T -Inf Inf])

ylabel('Current (A)')

xlabel('Time (s)')

Page 35: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

– 17.5 A

35

2 2 120 10 20 10 tan 10 20 22.4 26.6 Aj

22.4 cos 2000 0.464 A

1 ms 22.4cos 2.464

i t t

i

omega = 2000;

I = 20 + 10*j;

T = 2*pi/omega;

delta_t = T/1000;

t = 0:delta_t:2*T;

i_t = abs(I)*cos(omega*t + angle(I));

plot(t,i_t)

grid

axis([0 2*T -Inf Inf])

ylabel('Current (A)')

xlabel('Time (s)')

Example: Phasors and Voltage/Current

Let = 2000 rad/s with phasors be referenced to a cosine (zero phase).

Determine the instantaneous value, at t = 1 ms ,

of the current corresponding to this phasor: 20 + 10j A .

Page 36: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(e)

Phasors & Ohm’s Law, KVL/KCL

Page 37: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

37

Phasor Voltage vs. Current: R, L, C

v t R i t

For this equation to be true,

1 2andm mV I R

L L

dv t L i t

dt

1cosmv t V t 2cosmi t I t

1 2 90 , m

m

VL

I 2 1 90 , m

m

IC

V

C C

di t C v t

dt

For this equation to be true, For this equation to be true,

V = R I V = jL I

v leads i

by 90°

v and i are

in phase I = jC V i leads v

by 90°

Page 38: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

38

Example: KCL, Phasor Domain

+

Determine v(t).

v t

2 nF 70

10

mH

68cos 2 10 30 mAsi t t

Page 39: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

39

V

+

Determine v(t).

v t

• Convert to phasor form… +

IR IL IC

8 30 mAs I

2 nF 70

2 nF

10

mH 70

• Employ the appropriate Kirchhoff Law(s)…

0s j CR j L

V V

I V

6 9

6 68 30 2 10 2 10 0

70 2 10 10 10j

j

V VV

10

mH

68cos 2 10 30 mAsi t t

Example: KCL, Phasor Domain

Page 40: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

40

+

Determine v(t).

v t

2 nF

10

mH 70

• Convert between rectangular & polar forms as necessary…

6 9

6 68 30 2 10 2 10 0

70 2 10 10 10j

j

V VV

1 10.0126 8 30

70 62.8j

j

V

0.0143 0.0159 0.0126 8 30j j V

0.0143 0.0033 8 30j V

0.0147 13 8 30 V

68cos 2 10 30 mAsi t t

Example: KCL, Phasor Domain

Page 41: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

41

+

68cos 2 10 30 mAsi t t

Determine v(t).

v t

2 nF

10

mH 70

omega = 2*pi*10^6;

I = 8*exp(j*30*pi/180);

R = 70;

L = 10e-6;

C = 2e-9;

Y = (1/R + 1/(j*omega*L) + j*omega*C);

V = I / Y;

abs(V)

ans = 545.2174

angle(V)*180/pi

ans = 43.1941

Example: KCL, Phasor Domain

Page 42: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

42

+

68cos 2 10 30 mAsi t t

Determine v(t).

v t

2 nF

10

mH 70

• Convert between rectangular & polar forms as necessary…

0.0147 13 8 30 V

8 30 mA544 43 mV

0.0147 13

V

omega = 2*pi*10^6;

I = 8*exp(j*30*pi/180);

R = 70;

L = 10e-6;

C = 2e-9;

Y = (1/R + 1/(j*omega*L) + j*omega*C);

V = I / Y;

abs(V)

ans = 545.2174

angle(V)*180/pi

ans = 43.1941

• Convert from phasors to time domain…

6544cos 2 10 43 mVv t t

Example: KCL, Phasor Domain

Page 43: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(f)

Impedance

Page 44: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

44

Impedance

Impedance, Z is the ratio of phasor voltage to phasor current

for an electrical element or network. like resistance, but it is complex

-- It is a measure of an element/network’s ability to impede current flow.

V

ZI

For a resistor, RR R V I Z

For an inductor, Lj L j L V I Z

For a capacitor, 1Cj C j C

j C

I V Z

-- current and voltage are always in-phase

-- there is no frequency dependence

-- voltage always leads current by 90°

-- at higher frequencies, less current is passed (for constant V )

-- current always leads voltage by 90°

-- at higher frequencies, more current is passed (for constant V )

Page 45: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

45

Impedance vs. Frequency

0

R

R

R

R

R

Z

Z

Z

R = 100

90

L

L

L

j L

L

Z

Z

Z

2 f

1

1

90

C

C

C

j C

C

Z

Z

Z

L = 3 mH

C = 300 pF

Page 46: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

46

Impedance vs. Frequency

100 , RR R Z

300 pF, 1CC j C Z

freq = 2e6:1e3:10e6;

omega = 2*pi*freq;

R = 100;

Z_R = R*ones(1,length(omega));

L = 3e-6;

Z_L = j*omega*L;

C = 300e-12;

Z_C = 1./(j*omega*C);

2 MHz 10 MHz, 2f f

3μH, LL j L Z

figure(1)

subplot(2,1,1)

plot(freq/10^6,abs(Z_R))

axis([-Inf Inf 0 300])

set(gca,'Xtick',[2:1:10])

ylabel('| Z_R | (ohms)')

title('{\bf Resistor Impedance ...

vs. Frequency}')

subplot(2,1,2)

plot(freq/10^6,phase(Z_R)*180/pi)

axis([-Inf Inf -180 180])

set(gca,'Xtick',[2:1:10])

ylabel('phase[ Z_R ] (degrees)')

xlabel('Frequency (MHz)')

figure(2)

subplot(2,1,1)

plot(freq/10^6,abs(Z_L))

axis([-Inf Inf 0 300])

set(gca,'Xtick',[2:1:10])

ylabel('| Z_L | (ohms)')

title('{\bf Inductor Impedance ...

vs. Frequency}')

subplot(2,1,2)

plot(freq/10^6,phase(Z_L)*180/pi)

axis([-Inf Inf -180 180])

set(gca,'Xtick',[2:1:10])

ylabel('phase[ Z_L ] (degrees)')

xlabel('Frequency (MHz)')

figure(3)

subplot(2,1,1)

plot(freq/10^6,abs(Z_C))

axis([-Inf Inf 0 300])

set(gca,'Xtick',[2:1:10])

ylabel('| Z_C | (ohms)')

title('{\bf Capacitor Impedance ...

vs. Frequency}')

subplot(2,1,2)

plot(freq/10^6,phase(Z_C)*180/pi)

axis([-Inf Inf -180 180])

set(gca,'Xtick',[2:1:10])

ylabel('phase[ Z_C ] (degrees)')

xlabel('Frequency (MHz)')

Page 47: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

47

Impedances in Series & Parallel

1

N

s n

n

R R

1

N

s n

n

Z Z

Impedances in series

are combined

like resistors in series.

Z1

Z2

Z3

ZN

V1

V2

V3

VN

Vs

I

1

s

N

n

n

VI

Z

Impedances in parallel

are combined

like resistors in parallel. 1

1

s

N

n

n

IV

Z

1

1 1N

np nR R

1

1 1N

np n

Z Z

Page 48: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

48

Example: Equivalent Impedance

Determine the equivalent

impedance of the network at

terminals A–B if = 5 rad/s. 2

100

mF

1.6 H 33.3

mF

4

A

B

Page 49: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

49

Determine the equivalent

impedance of the network at

terminals A–B if = 5 rad/s. 2

100

mF

2 –2j

1.6 H

8j –6j

33.3

mF

4

4

• Convert all resistances,

inductances, capacitances

into impedances…

A

B

A

B

R

L

C

R

j L

j C

Z

Z

Z

Example: Equivalent Impedance

Page 50: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

50

• Combine impedances in series &

parallel, starting away from A–B

and working towards A–B…

1

2 2 4 902 45 1

2 2 8 45

jj

j

Z

2 1 8 6

1 8 6 1

j j

j j j j

Z ZZ1

Example: Equivalent Impedance

Page 51: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

51

• Combine impedances in series &

parallel, starting away from A–B

and working towards A–B…

Z2

2

2

4 1 4

4 1 4

4 4 32 45.0

5 26 11.4

A B

j

j

j

j

ZZ

Z

1.1 33.6

If a test source were applied at terminals A–B : test 1 0 A I

then the voltage across A–B would be test 1 0 1.1 33.6 1.1 33.6 V V

Example: Equivalent Impedance

Page 52: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

52

Determine the equivalent

impedance of the network at

terminals A–B if = 5 rad/s. 2

100

mF

1.6 H 33.3

mF

4

A

B

omega = 5;

C1 = 100e-3;

C2 = 33.3e-3;

R1 = 2;

R2 = 4;

L1 = 1.6;

Z_C1 = 1/(j*omega*C1);

Z_C2 = 1/(j*omega*C2);

Z_R1 = R1;

Z_R2 = R2;

Z_L1 = j*omega*L1;

Z_eq1 = Z_C1*Z_R1/(Z_C1 + Z_R1);

Z_eq2 = Z_eq1 + Z_L1 + Z_C2;

Z_ab = Z_R2*Z_eq2 / (Z_R2 + Z_eq2)

Z_ab =

0.9217 + 0.6120i

abs(Z_ab)

ans = 1.1063

phase(Z_ab)*180/pi

ans = 33.5837

Example: Equivalent Impedance

Page 53: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

53

Example: Phasor Analysis

(a) Determine vC(t).

(b) Plot vC(t) and the source

versus time for 2 cycles. 3 cos(2×106t + 20°) V

1 k

1 nF

+

vC

Page 54: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

54

Example: Phasor Analysis

(a) Determine vC(t).

(b) Plot vC(t) and the source

versus time for 2 cycles.

vS

vC

3 cos(2×106t + 20°) V

1 k

1 nF

+

vC

Page 55: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

+

55

• Convert the circuit from the time domain

to the phasor domain.

VC 6 92 10 10 160 ΩC j C j j Z–160j

1 k 3 20

V

• Use KVL/KCL to solve for V/I

in the phasor domain.

3 20 1000 160 0

160C

j

j

I I

V I

I

(a) Determine vC(t).

(b) Plot vC(t) and the source

versus time for 2 cycles.

Example: Phasor Analysis

3 cos(2×106t + 20°) V

1 k

1 nF

+

vC

Page 56: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

56

• Perform complex algebra to find V/I…

• Convert back to the time domain…

6472cos 2 10 60.9 mVCv t t

2 2 1

160 160 903 20 3 20

1000 160 1000 160 tan 160 1000

160 903 20 0.472 60.9

1013 9.1

C

j

j

V

(a) Determine vC(t).

(b) Plot vC(t) and the source

versus time for 2 cycles.

Example: Phasor Analysis

+

VC –160j

1 k 3 20

V

I

Page 57: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

57

Example: Plotting Sinusoids, Matlab

(a) Determine vC(t).

(b) Plot vC(t) and the source

versus time for 2 cycles.

omega = 2*pi*10^6;

T = 2*pi/omega;

delta_t = T/100;

t = 0 : delta_t : 2*T - delta_t ;

v_S = 3.000 * cos( omega*t + 20.0*pi/180 );

v_C = 0.472 * cos( omega*t - 60.9*pi/180 );

figure(1)

plot(t/10^-6, v_S, 'r--', ...

t/10^-6, v_C, 'b-', 'LineWidth', 2)

ylabel('Voltage (V)')

xlabel('Time (\mus)')

legend('v_S','v_C')

grid

6472cos 2 10 60.9 mVCv t t

3 cos(2×106t + 20°) V

1 k

1 nF

+

vC

Page 58: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

58

Example: Transient AC Circuit, PSpice

6472cos 2 10 60.9 mVCv t t

Amplitude is 472 mV

as determined by

written analysis.

Page 59: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

59

Example: Frequency Response, Matlab

9

9 1010 ΩC

jj C j

Z

9

9

103 20 3 20

1000 1000 10

CC

C

j

j

ZV

Z

Plot the amplitude of vC(t) versus f0

for 500 kHz < f0 < 2 MHz.

V_s = 3 * exp( j*20*pi/180 );

R = 1000;

C = 1e-9;

f = 500e3 : 1e3 : 2e6 ;

omega = 2 * pi * f;

Z_C = -j ./ (omega * C);

V_C = V_s * Z_C ./ (R + Z_C);

plot(f/10^3, abs(V_C), 'LineWidth', 2)

ylabel('|V_C| (volts)')

xlabel('Frequency (kHz)')

grid

6 6

6

for 10 Hz ( 2 10 rad s) ...

472cos 2 10 60.9 mVC

f

v t t

Frequency (kHz)

3 cos(2×106t + 20°) V

1 k

1 nF

+

vC

Page 60: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

60

Example: Frequency Response, PSpice

Plot the amplitude of vC(t) versus f0

for 500 kHz < f0 < 2 MHz.

“VAC” part,

“SOURCE”

library

Page 61: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

61

Example: Frequency Response, PSpice

Plot the amplitude of vC(t) versus f0

for 500 kHz < f0 < 2 MHz.

“VAC” part,

“SOURCE”

library

6 6

6

for 10 Hz ( 2 10 rad s) ...

472cos 2 10 60.9 mVC

f

v t t

Page 62: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(g)

Nodal & Mesh Analysis

in the Phasor Domain

Page 63: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

63

Nodal Analysis with Phasors

Analysis Steps

(1) Choose a reference node (usually ground or the bottom node) to have a voltage of zero.

(2) Assign a unique voltage variable to each node that is not the reference (v1, v2, v3, … vN–1).

(3) For independent & dependent voltage sources, identify a supernode

and write the voltage across the supernode in terms of node voltages.

Write a KCL equation at all N – 1 nodes including the supernode

(and not the reference, or a supernode which includes the reference).

(4) Solve the N – 1 node equations + source equations simultaneously.

0

v1 v2

0

V1 V2 V3 v3

SAME as with DC circuits. Now use complex arithmetic.

Page 64: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

64

Example: Nodal Analysis, Phasors

Write a valid matrix equation whose

solution includes the phasor form of v(t).

+

v(t)

0.5iA

iA

Page 65: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

65

Write a valid matrix equation whose

solution includes the phasor form of v(t).

+

V

0

V1

V2

V3 V4

320 70 10 1.4LZ j L j j

320 250 10 0.2CZ j C j j

1.4 j

0.2 j 0.2 j

9 0 V 9 90 V

• Convert to phasor form…

• Identify supernode(s)… 1 2 0.5 AV V I

• Write KCL equations…

• Identify v sources next to the reference…

3 1 3 2 3 4 3 00.2 1.4 0.2 3

V V V V V V V

j j j

1 49, 9V V j

• Write equations governing

dep. src. ctrl…

IA

0.5IA

0

v1

v2

v3 v4

0.5iA

iA

3

3A

VI

+

v(t)

Example: Nodal Analysis, Phasors

Page 66: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

66

Write a valid matrix equation whose

solution includes the phasor form of v(t).

+

V

0

V1

V2

V3 V4

0.5IA

1.4 j

0.2 j 0.2 j

9 0 V 9 90 V IA

• Rearrange into matrix form…

3 1 3 2 3 4 3 00.2 1.4 0.2 3

V V V V V V V

j j j

1 49, 9V V j 1 2 0.5 AV V I

1 2 3 4

15 5 5 5 0

1.4 1.4 3

j jj V V j j V j V

1

4

9

9

V

V j

1 2 0.5 0AV V I

3

3A

VI

2V V

3 3 0AV I

1

3

4

105 9.3 5 0

1.4 39

1 0 0 0 09

0 0 0 1 00

1 1 0 0 0.50

0 0 1 3 0 1 A

jVj j j

V

V j

V

I

8.3 5.5 VV

8.3cos 20 5.5 Vv t t

Example: Nodal Analysis, Phasors

Page 67: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

67

Write a valid matrix equation whose

solution includes the phasor form of v(t).

+

V

0

V1

V2

V3 V4

0.5IA

1.4 j

0.2 j 0.2 j

9 0 V 9 90 V IA

3 1 3 2 3 4 3 00.2 1.4 0.2 3

V V V V V V V

j j j

1 49, 9V V j

3

3A

VI

>> A = [ -5*j j/1.4 9.29*j+1/3 -5*j 0 ;

1 0 0 0 0 ;

0 0 0 1 0 ;

1 -1 0 0 -0.5 ;

0 0 -1/3 0 1 ];

>> B = [0 ; 9 ; -9*j ; 0 ; 0 ];

>> x = A^-1 * B

>> V = x(2);

>> abs(V)

>> angle(V) * 180/pi

x =

9.0000 - 0.0000i

8.2703 + 0.7913i

4.3784 - 4.7477i

0.0000 - 9.0000i

1.4595 - 1.5826i

ans =

8.3080

ans =

5.4653

1 2 0.5 AV V I

Example: Nodal Analysis, Phasors

8.3 5.5 VV

Page 68: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

68

Mesh Analysis with Phasors

Analysis Steps

(1) Draw a mesh current for each mesh.

(2) Identify supermeshes.

(3) Write KVL around each supermesh,

then KVL for each mesh that is

not part of a supermesh.

(4) Express additional unknowns

(e.g. dependent-source V/I)

in terms of mesh currents.

(5) Solve the simultaneous equations.

SAME as with DC circuits.

Now use complex arithmetic.

i1 i2

I1 I2

Page 69: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

69

Example: Mesh Analysis, Phasors

Write a valid matrix equation whose

solution includes the phasor form of v(t).

v(t)

+

0.5iA

iA

Page 70: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

70

320 70 10 1.4LZ j j

320 250 10 0.2CZ j j

• Convert to phasor form…

• Identify supermesh(es)…

• Write KVL equations…

1 2 1 4

2 3 2 1

3 2 3 3 4

4 1 4 3

9 0.2 3 0

0.5 1.4 0.2 0

1.4 5 9 0.2 0

3 0.2 9 0

A

j I I I I

I j I I j I I

j I I I j j I I

I I j I I j

• Write equations governing

dep. src. ctrl… 1 4AI I I

v(t)

+

i2 i3

i1 i4

0.5iA

iA

I2 I3

I1 I4

+

V

9 0 V

9 Vj

0.5IA

IA

Write a valid matrix equation whose

solution includes the phasor form of v(t).

0.2 j 0.2 j

1.4 j

Example: Mesh Analysis, Phasors

Page 71: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

71

Write a valid matrix equation whose

solution includes the phasor form of v(t).

• Rearrange into matrix form…

1

2

3

4

0.2 3 0.2 0 3 0 0 9

0.2 1.2 1.4 0 0.5 0 0

0 1.4 1.2 5 0.2 0 0 9

3 0 0.2 3 0.2 0 0 9

1 0 0 1 1 0 0

0 0 5 0 0 1 0

A

j j I

j j j I

j j j I j

j j I j

I

V

8.3 5.5 VV 8.3cos 20 5.5 Vv t t

I2 I3

I1 I4

+

V

9 0 V

9 Vj

0.5IA

IA

0.2 j 0.2 j

1.4 j

1 2 1 4

2 3 2 1

3 2 3 3 4

4 1 4 3

9 0.2 3 0

0.5 1.4 0.2 0

1.4 5 9 0.2 0

3 0.2 9 0

A

j I I I I

I j I I j I I

j I I I j j I I

I I j I I j

1 4AI I I 35V I

1 2 4

1 2 3

2 3 4

1 3 4

1 4

3

0.2 3 0.2 3 9

0.2 1.2 1.4 0.5 0

1.4 1.2 5 0.2 9

3 0.2 3 0.2 9

0

5 0

A

A

j I j I I

j I j I j I I

j I j I j I j

I j I j I j

I I I

I V

Example: Mesh Analysis, Phasors

Page 72: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

72

Write a valid matrix equation whose

solution includes the phasor form of v(t).

I2 I3

I1 I4

+

V

9 0 V

9 Vj

0.5IA

IA

0.2 j 0.2 j

1.4 j

1 2 1 4

2 3 2 1

3 2 3 3 4

4 1 4 3

9 0.2 3 0

0.5 1.4 0.2 0

1.4 5 9 0.2 0

3 0.2 9 0

A

j I I I I

I j I I j I I

j I I I j j I I

I I j I I j

1 4AI I I 35V I

A = [ -0.2*j+3 0.2*j 0 -3 0 0 ;

0.2*j 1.2*j -1.4*j 0 0.5 0 ;

0 -1.4*j 1.2*j+5 0.2*j 0 0 ;

-3 0 0.2*j 3-0.2*j 0 0 ;

1 0 0 -1 -1 0 ;

0 0 -5 0 0 1 ];

B = [ 9 ; 0 ; -9*j ; 9*j ; 0 ; 0 ];

x = A^-1 * B

V = x(6);

abs(V)

angle(V) * 180/pi

x =

-18.1368 +20.4776i

5.6121 - 2.6198i

1.6540 + 0.1583i

-19.5970 +22.0609i

1.4602 - 1.5833i

8.2699 + 0.7916i

ans =

8.3077

ans =

5.4679

Example: Mesh Analysis, Phasors

8.3 5.5 VV

Page 73: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(h)

Thevenin Equivalence

in AC Circuits

Page 74: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

74

Review of Thevenin Equivalents

• allows us to replace a large, complicated circuit with a much

simpler 2-element series/parallel circuit

• the simpler circuit allows for rapid calculations of V, I, P that the

original circuit can deliver to a load

• helps us to choose the best value of load resistance to maximize

the power delivered (e.g. from an amplifier, to a speaker)

Page 75: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

75

Review of Thevenin Equivalents

only ind.

src.?

To determine VTH ...

To determine ZTH ...

• source transformation

• find VTH = VOC

• find VTH = VOC

YES NO

only ind.

src.?

• deactivate src., find ZTH = Zeq

• source transformation

• find ISC, use ZTH = VOC/ISC

• insert test source, find ZTH = Vtest/Itest

YES NO

VTH = 0 ?

• find ISC, use ZTH = VOC/ISC

• insert test source, find ZTH = Vtest/Itest

NO

• insert test source,

find ZTH = Vtest/Itest

YES

Page 76: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

76

Determine the Thevenin

equivalent of Network A using

open-circuit voltage and

short-circuit current.

OC TH

6 612 12 8 V =

6 3 9V

V V

+

VOC

SC

1 7 84 A

1 2 1 7 9

I

OCTH

SC

89

8 9

VZ

I

ISC

Review of Thevenin Equivalents

Page 77: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

77

Determine the Thevenin

equivalent of Network A

by using a test source.

TH8 V V

+

VOC

Itest

Vtest

Vtest

Itest

2

testtest

2 7

VI

testTH

test

9 V

ZI

Review of Thevenin Equivalents

Page 78: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

78

Example: Thevenin & Sinusoids

Determine the phasor voltage

difference V1 – V2 (with –j10 ) .

Use the Thevenin equivalent

at V1 , V2 (without –j10 ) .

Page 79: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

79

TH OC A B 1 0 4 2 0.5 90 2 4

4 2 0.5 2 4 4 2 2 6 3 V

j j

j j j j j j

V V V V

VA VB

TH 4 2 2 4 6 2j j j Z

1 2

106 3

6 2 10

3 6 6.7 63.4 V

jj

j j

j

V V

Example: Thevenin & Sinusoids

Determine the phasor voltage

difference V1 – V2 (with –j10 ) .

Use the Thevenin equivalent

at V1 , V2 (without –j10 ) .

Page 80: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(i)

Phasors &

Superposition

Page 81: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

81

Linearity

linear

network

N

1x t 1y t 2x t 2y t

1 1x t t 1 1y t t

1 1 1 2 2 2A x t t A x t t

linear

network

N

N

1 1 1A x t t 1 1 1A y t tN

1 1 1 2 2 2A y t t A y t t

x = input or

source or

stimulus

y = output or

response

N

N

Page 82: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

82

Superposition: Voltage Sources

2 k

2 k

4 V

8 V

16 V

32 V

Determine the current i using superposition.

16 4 4 mAi 32 4 8 mAi

8 4 2 mAi 4 4 1mAi

deactivate all but 1 solve sum

60 V

60 4 15 mAi

4 8 2 1

15 mA

i i i i i

Page 83: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

83

Determine the voltage v

using superposition.

deactivate all but 1

solve sum

3 6 A 6 12 A 24 A

6 0 12 V3 6

v vv

12 0 24 V3 6

v vv

24 0 48 V3 6

v vv

12 24 48

60 Vv

Superposition: Current Sources

Page 84: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

84

Example: Superposition & Sinusoids

Determine the phasor

voltage difference V1 – V2 .

Use superposition.

Page 85: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

85

Example: Superposition & Sinusoids

1V 2

V 2V

1V

1 2 1 2 2

1V V V V V V

1 2

4 21 10 2 4 V

4 2 2 6

jj j

j j

V V

2

2 40.5 10 1 2 V

2 4 4 12

jj j j

j j

1

V V

1

1 2 3 6 9 36 tan 2

6.7 63.4 V

j

V V

Determine the phasor

voltage difference V1 – V2 .

Use superposition.

Page 86: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(x,1)

Thevenin Equivalent

Example

Page 87: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

87

Determine the Thevenin equivalent

circuit with respect to terminals a–b.

Example: Thevenin & Sinusoids, #2

Page 88: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

88

Determine the Thevenin equivalent

circuit with respect to terminals a–b.

TH eq

5 10 55 || 10 5

5 10 5

25 502.5 5

10

j jj j

j j

jj

Z Z

TH OC

1 10 53 30 10 5

1 10 5 1 5

13.0 10.6 V

RLs RL

RL C

jj

j j

j

YV V I Z

Y Y

Example: Thevenin & Sinusoids, #2

Page 89: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

89

Determine the Thevenin equivalent

circuit with respect to terminals a–b.

TH OC SC

13.0 10.6 3 30

2.5 5 j

Z V I

2.5 5 j

13.0 10.6 Vj

Example: Thevenin & Sinusoids, #2

Page 90: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

90

Determine the Thevenin equivalent

impedance with respect to terminals a–b.

TH 2.5 5 j Z

Example: Thevenin & Sinusoids, #2

Page 91: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(j)

Phasors &

Source Transformation

Page 92: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

92

Review of Source Transformation

If these two circuits provide the same v/i characteristics at their

outputs (vL, iL), the two circuits are equivalent.

sV

max s sI V R

max sV V

max sI I

max s pV I R

ss p

s

VR R

I

condition

for equivalence

sI

Page 93: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

93

Source Transformation & Phasors

If these two circuits provide the same V/I characteristics at their

outputs (VL, IL), the two circuits are equivalent.

sV

max s sI V Z

max sV V

max sI I

max s p V I Z

ss p

s

V

Z ZI

condition

for equivalence

sZ LI

LV

LI

LVpZsILZ LZ

Page 94: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

94

Example: Src. Transform. & Sinusoids

Determine the phasor

voltage difference V1 – V2 .

Use source transformation(s).

Page 95: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

95

Example: Src. Transform. & Sinusoids

VS1 VS2

Z2 Z1

1 2 S1 S2

1 2

10

10

j

j

V V V V

Z Z

1

2

4 2

2 4

j

j

Z

Z

S1 1 0 4 2

4 2 V

j

j

V

S1 0.5 90 2 4

0.5 2 4 2 V

j

j j j

V

1 2

104 2 2

10 4 2 2 4

106 3 3 6

8 6

6.7 63.4 V

jj j

j j j

jj j

j

V V

Determine the phasor

voltage difference V1 – V2 .

Use source transformation(s).

Page 96: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(k,1)

PSpice for

AC Circuits

Page 97: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

97

• From nodal analysis…

3 1 3 3 4 3 00.2 1.4 0.2 3

V V V V V V V

j j j

1 49, 9V V j 1 2 0.5 AV V I

3

3A

VI

1

3

4

105 9.3 5 0

1.4 39

1 0 0 0 09

0 0 0 1 00

1 1 0 0 0.50

0 0 1 3 0 1 A

jVj j j

V

V j

V

I

8.3 5.5 VV

8.3cos 20 5.5 Vv t t

Example #1: Written Analysis

+

V

0

V1

V2

V3 V4

1.4 j

0.2 j 0.2 j

9 0 V 9 90 V IA

0.5IA

0.5iA

iA

+

v(t)

Solve for v(t) .

Page 98: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

98

+

V V1

V2

V3 V4

0.5IA

1.4 j

0.2 j 0.2 j

9 0 V 9 90 V IA

• Rearrange into matrix form…

3 1 3 2 3 4 3 00.2 1.4 0.2 3

V V V V V V V

j j j

1 49, 9V V j

3

3A

VI

1 2 0.5 AV V I

8.3 5.5 V V

8.3cos 20 5.5 Vv t t

Example #1: Matlab

Solve for v(t) .

>> A = [ -5*j j/1.4 9.29*j+1/3 -5*j 0 ;

1 0 0 0 0 ;

0 0 0 1 0 ;

1 -1 0 0 -0.5 ;

0 0 -1/3 0 1 ];

>> B = [0 ; 9 ; -9*j ; 0 ; 0 ];

>> x = A^-1 * B

>> V = x(2);

>> abs(V)

>> angle(V) * 180/pi

x =

9.0000 - 0.0000i

8.2703 + 0.7913i

4.3784 - 4.7477i

0.0000 - 9.0000i

1.4595 - 1.5826i

ans =

8.3080

ans =

5.4653

Page 99: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

99

Example #1: PSpice

Amplitude is 8.4 V

as determined by

written analysis.

Plot v(t) using PSpice.

8.3 5.5 V V

8.3cos 20 5.5 Vv t t

Page 100: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

100

Determine the phasor

voltage difference V1 – V2 .

Confirm this answer

using PSpice.

VS1 VS2

Z2 Z1

1 2 S1 S2

1 2

10

10

j

j

V V V V

Z Z

1

2

4 2

2 4

j

j

Z

Z

S1 1 0 4 2

4 2 V

j

j

V

S1 0.5 90 2 4

0.5 2 4 2 V

j

j j j

V

1 2

104 2 2

10 4 2 2 4

106 3 3 6

8 6

6.7 63.4 V

jj j

j j j

jj j

j

V V

Example #2: Written Analysis

+

+

Page 101: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

101

1 2 6.7 63.4 V V V

Example #2: PSpice

“IAC” part,

“SOURCE”

library

Determine the phasor

voltage difference V1 – V2 .

Confirm this answer

using PSpice.

Page 102: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(k,2)

Op Amps

in AC Circuits

Page 103: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

103

Example #3: Phasors & Op Amps

200

2 k

125 nFSketch |Vout/Vin| vs. for 1 rad/s < < 100 krad/s .

Determine vout(t) for vin(t) = cos(4x104t) V .

Page 104: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

104

200

out

in

||1 1

1

1 400010

1 4000

f f f f f

i i i f f

f f f

i f f

R j C R j C

R R R j C

R R C

R j R C j

ZV

V Z

2 k

125 nF

out

2 2in

400010

4000

V

V

4000

Sketch |Vout/Vin| vs. for 1 rad/s < < 100 krad/s .

Determine vout(t) for vin(t) = cos(4x104t) V .

4

4

out in3

4 10 104 10 7.1 135 V

4 10 4000 1j j

V V

4

out 7.1cos 4 10 135 Vv t t

Example #3: Phasors & Op Amps

Page 105: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA

171 Moultrie Street, Charleston, SC 29409

Dr. Gregory J. Mazzaro

Spring 2016

ELEC 202 – Electric Circuit Analysis II

Lecture 10(k,3)

AC Thevenin Equivalent

w/ a Dependent Source

Page 106: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

106

Example #4: Thevenin, Dependent Src

A

B

Determine the Thevenin equivalent

of this circuit at terminals A–B .

Page 107: ELEC 202 Electric Circuit Analysis II - Citadelece.citadel.edu/mazzaro/ELEC425_F17/ELEC202_lecture10.pdf · ELEC 202 – Electric Circuit Analysis II Lecture 10(b) Complex Arithmetic

107

Example #4: Thevenin, Dependent Src

A

B

Determine the Thevenin equivalent

of this circuit at terminals A–B .

OC

10 30 30 5 25 0

25

a a a

a

j

j

I I I

I V

OC

10 300.28 75

25 25

25 0.28 75 7.07 15 V

aj

j

I

V

SC

SC

10 30 30 5 25 0

25 50 0

a a a

a

j

j

I I I I

I I

SC

25 25 30 10 30

25 50 0

aj

j

I

I SC 106 2 mA I7.07 15 V

TH

7.07 15

0.106 2

66.7 13

Z

A

B