ekonometri 1

37
Financial Econometrics 1 Part 2: Volatility Modelling and Forecasting Sigit Wibowo April 7, 2015 Contents 1 Motivations 2 1.1 Stylised Facts in Financial Data ................. 2 1.2 Types of Non-linear Models ................... 4 1.3 Non-linearity Tests ........................ 5 2 EWMA 7 2.1 EWMA Specification ....................... 7 2.2 The Advantages .......................... 7 3 ARCH 7 3.1 ARCH Specification ........................ 7 3.2 ARCH Effect Tests ......................... 9 3.3 Problems with ARCH() Models ................. 10 4 GARCH 10 4.1 GARCH Specification ....................... 10 4.2 The ML Estimation ........................ 12 5 ARCH/GARCH Model Extensions 18 5.1 EGARCH Model .......................... 19 5.2 GJR-GARCH Model ........................ 19 5.3 GARCH-in Mean Model ..................... 21 1

description

ekonometrika

Transcript of ekonometri 1

  • FinancialEconometrics1Part2: VolatilityModellingandForecasting

    Sigit Wibowo

    April7, 2015

    Contents1 Motivations 2

    1.1 StylisedFactsinFinancialData . . . . . . . . . . . . . . . . . 21.2 TypesofNon-linearModels . . . . . . . . . . . . . . . . . . . 41.3 Non-linearityTests . . . . . . . . . . . . . . . . . . . . . . . . 5

    2 EWMA 72.1 EWMA Specication . . . . . . . . . . . . . . . . . . . . . . . 72.2 TheAdvantages . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    3 ARCH 73.1 ARCH Specication . . . . . . . . . . . . . . . . . . . . . . . . 73.2 ARCH EffectTests . . . . . . . . . . . . . . . . . . . . . . . . . 93.3 ProblemswithARCH()Models . . . . . . . . . . . . . . . . . 10

    4 GARCH 104.1 GARCH Specication . . . . . . . . . . . . . . . . . . . . . . . 104.2 TheML Estimation . . . . . . . . . . . . . . . . . . . . . . . . 12

    5 ARCH/GARCH ModelExtensions 185.1 EGARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . 195.2 GJR-GARCH Model . . . . . . . . . . . . . . . . . . . . . . . . 195.3 GARCH-inMeanModel . . . . . . . . . . . . . . . . . . . . . 21

    1

  • 6 VolatilityForecasting 216.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216.2 VolatilityForecasting . . . . . . . . . . . . . . . . . . . . . . . 226.3 TheUseofVolatilityForecasts . . . . . . . . . . . . . . . . . . 236.4 TestingNon-linearRestrictions . . . . . . . . . . . . . . . . . . 24

    7 VolatilityEstimationUsingOxMetrics 25

    References[1] ChrisBrooks IntroductoryEconometricsforFinance, 2ndedition. Cam-

    bridgeUniversityPress, 2008.[2] Ronald J.Wonnacott andThomasH.Wonnacott Econometrics, 2nd

    edition. JohnWiley&Sons, Inc., 1979.

    TimetableWeek Topics References8 Stylisedfactsofnancialtimeseriesvolatility [1], Ch. 89 ExponentialWeightedMovingAverage

    ARCH &GARCH Models10 AsymmetricGARCH models [1], Ch. 811 IntegratedGARCH models

    OtherunivariateARCH/GARCH models12 Volatilitymodelsusingnancialdata [1], Ch. 6, 713 ForecastingwithARCH/GARCH models [2], Ch. 1814 Review(studentpresentation*)

    2

  • 1 Motivations1.1 StylisedFactsinFinancialDataNon-linearityFeaturesinFinancialData

    Thelinearstructural(andtimeseries)modelscannotexplainanumberofimportantfeaturescommontomuchnancialdata

    Leptokurtosisorfattails Volatilityclusteringorvolatilitypooling Leverageeffects

    Commontraditionalstructuralmodel = + + ... + + (1)

    or = +

    whereweassumedthat (0, )

    Whatisvolatility? Volatilityissimplydenedasstandarddeviation

    Varianceisoftenpreferredbecauseitmeasuresinthesameunitsasoriginaldata

    Moredenition: Conditionalvolatility

    =

    1

    =

    ( )

    Realisedvolatility[+]

    Impliedvolatility, e.g. Black-Scholesmodel: = (, , , , )

    Annualisedvolatility, e.g.252

    3

  • FinancialAssetReturnsTimeSeries

    2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 201510

    5

    0

    5rjkse

    2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

    5

    0

    5

    10 rsnp500

    Figure 1: DailyReturnsofJKSE andS&P500, 2002-2014

    Non-linearModelsCampbell, LoandMacKinlay(1997)

    A non-lineardatageneratingprocesscanbewritten = (, , , ...) (2)

    where isanon-linearfunctionand isaniiderrorterm Morespecicdenition

    = (, , ...) + (, , ...) (3)where isafunctionofpasterrortermsonlyand isavarianceterm

    Modelswithnonlinear () arenon-linearinmean, whilethosewithnonlinear () arenon-linearinvariance

    4

  • 1.2 TypesofNon-linearModelsTypesofNon-linearModels

    Manynon-linearrelationshipscanbechangedintolinearusingaspe-cictransformation

    However, manyrelationshipsinnanceareintrinsicallynon-linear Manytypesofnon-linearmodels,

    ARCH/GARCH switchingmodels bilinearmodels

    1.3 Non-linearityTestsTestingforNon-linearity

    Thetraditionaltoolsoftimeseriesanalysismayndnoevidencethatwecouldusealinearmodel, butthedatastillmaynotbeindependent

    Portmanteautestfornon-lineardependence RamseysRESET testcanbeusedtotestnon-lineardependence:

    = + + + ... + +

    Othertests: theBDS testandthebispectrumtest

    HeteroscedasticityRevisited

    A structuralmodelcanbewrittenasfollows: = + + + +

    where (0, ) Thevarianceoferrorsisassumedtobeconstantandisknownas homoscedasticity

    or () =

    5

  • Volatility Forecast

    Models

    Historical Standard

    Deviation

    ARCH Class

    Conditional Volatility

    Time Series Volatility

    Forecasting

    Stochastic Volatility

    Option-based

    Volatility Forecating

    Ra

    nd

    om

    Wa

    lk

    His

    torica

    l Ave

    rag

    e

    Mo

    vin

    g A

    ve

    rag

    e

    Exp

    on

    en

    tia

    l S

    mo

    oth

    ing

    Sm

    oo

    th T

    ran

    sitio

    n

    Sim

    ple

    Re

    gre

    ssio

    n

    Au

    to-R

    eg

    ressiv

    e M

    ovin

    g

    Ave

    rag

    e (

    AR

    MA

    )

    Th

    resh

    old

    Au

    to-R

    eg

    ressiv

    eIn

    teg

    rate

    d

    Au

    to-R

    eg

    ressiv

    e M

    ovin

    g

    Ave

    rag

    e (

    AR

    IMA

    )

    Fra

    tio

    na

    lly I

    nte

    gra

    ted

    Au

    to-R

    eg

    ressiv

    e M

    ovin

    g

    Ave

    rag

    e (

    AR

    FIM

    A)

    Exp

    on

    en

    tia

    lly W

    eig

    hte

    d

    Mo

    vin

    g A

    ve

    rag

    e

    AR

    CH

    Ge

    ne

    raliz

    ed

    AR

    CH

    Th

    resh

    old

    or

    GJR

    AR

    CH

    Exp

    on

    en

    tia

    l AR

    CH

    Asym

    me

    tric

    Po

    we

    r

    GA

    RC

    H

    Dia

    go

    na

    l-V

    ec M

    GA

    RC

    H

    Co

    nsta

    nt

    Co

    rre

    latio

    n

    Ba

    ba

    , E

    ng

    le,

    Kra

    ft,

    Kro

    ne

    r (B

    EK

    K)

    Asym

    me

    try

    Tim

    e-v

    ary

    ing

    Ris

    k

    Pre

    miu

    m

    Mu

    ltiv

    aria

    te G

    AR

    CH

    GA

    RC

    H-in

    -Me

    an

    Dyn

    am

    ic C

    on

    ditio

    na

    l

    Co

    rre

    latio

    n (

    DC

    C)

    Qu

    ad

    ratic G

    AR

    CH

    Figure 2: VolatilityClass, Source: Wibowo(2006)

    6

  • If () , thenheteroscedasticityexistsand thestandarderrorestimatescouldbeincorrect

    Fornancialdata, thevarianceoftheerrorsisnotlikelytobeconstantovertime

    2 EWMA2.1 EWMA SpecicationEWMAExponentiallyWeightedMovingAverage

    = (1 )=

    ( ) (4)

    where denotestheestimateofthevarianceforperiod andalsobecomes

    theforecastoffuturevolatilityforallperiods denotestheaveragereturnestimatedovertheobservations denotesthedecayfactorwhichdetermineshowmuchweightisgiven

    torecentversusolderobservation

    2.2 TheAdvantagesEWMAExponentiallyWeightedMovingAverage

    Twoadvantages: Volatilityislikelyinuencedbyrecentevents, whichcarrymoreweights

    Theeffectonvolatilityofasingleobservationdeclinesatanexpo-nentialrateasweightsattractedtorecenteventsfall

    7

  • 3 ARCH3.1 ARCH SpecicationARCHAutoregressiveConditionallyHeteroscedastic

    Ifheteroscedasticityexists, useamodelwhichdoesnotassumethevari-anceisconstant

    Recallthedenitionofthevariance : = (|, , , ...)

    = [( ())|, , ...]

    Thevarianceisusuallyassumedtobe () = 0 = (|, , ...)

    = [ |, , ...]

    ARCHAutoregressiveConditionallyHeteroscedastic(contd)

    Whatcouldthecurrentvalueofthevarianceoftheerrorspossiblyde-pendupon?

    Previoussquarederrorterms Thisleadstothe AutoRegressive Conditionally Heteroscedasticmodel

    forthevarianceoftheerrors: = + (5)

    Theequation (5) isknownasanARCH(1)model

    ARCHAutoregressiveConditionallyHeteroscedastic(contd)

    Thefullmodelcanbewrittenas = + + ... + + , (0, ) (6)

    where = +

    8

  • TheARCH modelcanbeextendedintothegeneralcasewheretheerrorvariancedependson lagsofsquarederrors:

    = + + + ... + (7)

    Theequation (7) isknownasanARCH()model

    ARCHAutoregressiveConditionallyHeteroscedastic(contd)

    Inmanyliterature, isusedtoaddressthevarianceoftheerrorsinsteadof

    Therefore, = + + ... + + , (0, ) = + + + ... +

    (8)

    ARCHAutoregressiveConditionallyHeteroscedastic(contd)

    Insteadof (8), wecanwrite = + + ... + + = (0, 1) = +

    (9)

    (8) and (9) aredifferentwaytoexpressexactlythesamemodel (8) iseasiertounderstand (9) isrequiredtosimulateanARCH model

    3.2 ARCH EffectTestsTestingARCH Effect

    1. Runanypostulatedlinearregressione.g. = ++ ... ++,andthensavetheresiduals,

    9

  • 2. Squaretheresiduals, andregressthemon ownlagstotestforARCHoforder , forexample

    = + + + ... + +

    where isiid. Alsoobtain fromthisregression3. Theteststatisticisdenedas orthenumberofobservationsmulti-

    pliedbythecoefcientofmultiplecorrelationfromthelastregressionandisdistributedasa ()

    TestingARCH Effect(contd)

    4. Thenullandhypothesesare = 0 and = 0 and = 0 and ... and = 0 0 or 0 or 0 or ... or 0

    Ifthevalueoftheteststatisticisgreaterthanthecriticalvaluefromthe distribution, thenthenullhypothesisisrejected

    Notethat theARCH testisalsosometimesapplieddirectlytoreturnsinsteadoftheresidualsfromStage1

    3.3 ProblemswithARCH()ModelsProblemswithARCH()Models

    Howdowedecideon ? Therequiredvalueof mightbeverylarge Non-negativityconstraintsmightbeviolated

    Since thevariancecannotbenegative, we require > 0 =1, 2, ..., toestimateanARCH model

    A naturalexpansionofanARCH()modelwhichgetsaroundsomeoftheseproblemsisaGARCH model

    10

  • 4 GARCH4.1 GARCH SpecicationGeneralisedARCH (GARCH) Models

    Bollerslev(1986)proposedanewmodelwhichallowsvariancetobedependentuponpreviousownlag

    = + + (10)whichisnowasaGARCH(1,1)model

    Wecanalsowrite = + + = + +

    Substitutinginto (10) for = + + + +

    = + + + + (11)

    GeneralisedARCH (GARCH) Models(contd)

    Substitutinginto (11) for

    = + + + + + + = + + + + + + = 1 + + + 1 + + +

    Aninnitenumberofsuccessivesubstitutionswouldyield

    = 1 + + + 1 + + +

    Therefore, theGARCH(1,1)modelcanbewrittenasaninniteorderARCH model

    11

  • GeneralisedARCH (GARCH) Models(contd)

    WecanextendtheGARCH(1,1)modeltoaGARCH(, ): = + + + ... +

    + + + ... + +

    = +=

    +=

    GeneralisedARCH (GARCH) Models(contd)

    Ingeneral, aGARCH(1,1)modelwillbesufcienttocapturethevolatil-ityclusteringinthe(nancial)data

    WhyisGARCH betterthanARCH? moreparsimonious-avoidsovertting lesslikelytobreachnon-negativityconstraints

    GARCH SpecicationTheUnconditionalVariance

    Theunconditionalvarianceof isgivenby

    () =

    1 ( + )(12)

    when + < 1 Non-stationarityinvarianceisgivenby + 1

    Theconditionalvarianceforecastswillnotconvergeontheirun-conditionalvalueasthehorizonincreases

    IntegratedGARCH isgivenby + = 1

    12

  • 4.2 TheML EstimationEstimationofARCH/GARCH Models

    Becausethemodelisnon-linearform, OLS cannotbeused Therefore, maximumlikelihoodtechniqueisutilised

    Themethodworksbyndingthemostlikelyvaluesoftheparam-etersgiventheactualdata

    Wespecicallyformalog-likelihoodfunctionandmaximiseit

    EstimationofARCH/GARCH ModelsTheProcedure

    1. Specify theappropriateequations for themeanand thevariance, forexampleAR(1)GARCH(1,1)model:

    = + + , (0, ) = + +

    2. Specifythelog-likelihoodfunctiontomaximise:

    = 2 log(2) 12

    =

    log( ) 12

    =

    ( )

    3. Thecomputerwillmaximisethefunctionandgenerateparametervaluesandtheirstandarderrors

    MaximumLikelihoodParameterEstimation

    Forsimplicity, letsconsiderthebivariateregressioncasewithhomoscedas-ticerrors:

    = + + Assumethat (0, ) then ( + , ) Therefore, theprobability density function for a normally distributed

    randomvariablewiththemeanandvarianceisgivenby

    | + , =1

    2exp

    12

    (13)

    13

  • MaximumLikelihoodParameterEstimation(contd)

    Theimplicationof (13) Successivevaluesof would traceout the familiarbell-shapedcurve

    Sincetheassumptionof isiid, then willalsobeiid Thejointpdfforallthe scanbeexpressedasaproductoftheindividual

    densityfunctions:

    , , ..., | + , = | + ,

    | + , ...

    | + ,

    ==

    | + , (14)

    MaximumLikelihoodParameterEstimation(contd)

    Substitutingintoequation (14) forevery fromequation (13)

    , , ..., | + , =

    1

    2 exp

    12

    =

    (15)

    MaximumLikelihoodParameterEstimation(contd)

    Thetypicalsituationwehaveisthatthe and aregivenandwewanttoestimate , ,

    14

  • Ifthisisthecase, then () isknownasthelikelihoodfunction, denoted(, , ), therefore

    (, , ) =1

    2 exp

    12

    =

    (16)

    Maximumlikelihoodestimationcomprisesofchoosingparameterval-ues(, , )thatmaximisethisfunction

    Wewanttodifferentiate (17) w.r.t. , , , but (17) isaproductcon-taining terms

    MaximumLikelihoodParameterEstimation(contd)

    Since max () = max log(()), wecantakelogsof (17) Usingthevariouslawsfortransformingfunctionscontaininglogarithms,

    wegetthelog-likelihoodfunction,

    = log 2 log(2) 12

    =

    ( )

    whichisequivalentto

    = 2 log 2 log(2)

    12

    =

    ( ) (17)

    MaximumLikelihoodParameterEstimation(contd)

    Differentiating (17) w.r.t. , , , weget

    = 12

    =

    ( )2 1 (18)

    = 12

    =

    ( )2 (19)

    =

    21 +

    12

    =

    ( ) (20)

    15

  • MaximumLikelihoodParameterEstimation(contd)

    Setting (18)-(20) to zero tominimise the functions, and putting hatsabovetheparameterstodenotethemaximumlikelihoodestimators

    From (18),( ) = 0

    = 0 = 0

    1

    1 = 0

    = (21)

    MaximumLikelihoodParameterEstimation(contd)

    From (19),( ) = 0

    = 0 = 0

    = = ( ) = +

    =

    =

    (22)

    MaximumLikelihoodParameterEstimation(contd)

    16

  • From (20), =

    =

    ( )

    = 1

    =

    ( )

    = 1 (23)

    TheML andOLS Estimators HowdotheseformulaecomparewiththeOLS estimators

    (21) and (22) areidenticaltoOLS (24) isdifferentwheretheOLS estimatorwas

    = 1

    TheML estimatorofthevarianceofthedisturbancesisconsistent, butitisbiased

    Howdoesthishelpusinestimatingheteroscedasticmodels?

    EstimationofGARCH ModelsUsingML Nowwehave

    = + + , (0, ) = + +

    = 2 log(2) 12

    =

    log( ) 12

    =

    ( )

    However, theLLF foramodelwithtime-varyingvariancescannotbemaximisedanalytically, exceptinthesimplestofcases

    Therefore, anumericalprocedureisutilisedtomaximisethelog-likelihoodfunction

    A potentialproblem: localoptimaormultimodalitiesinthelikelihoodsurface

    17

  • LocalOptimainML Estimation

    ..

    .

    ()

    .A

    . B.C

    Figure 3: TheproblemoflocaloptimainML estimation

    EstimationofGARCH ModelsUsingMLOptimisationProcedure

    1. SetupLLF2. Useregressiontogetinitialguessesforthemeanparameters3. Choosesomeinitialguessesfortheconditionalvarianceparameters4. Specifyaconvergencecriterion-eitherbycriterionorbyvalue

    Non-NormalityandMaximumLikelihood

    Recallthattheconditionalnormalityassumptionfor isessential Thenormalitytestcanbeconductedasfollows:

    = (0, 1)

    = + + =

    Thesamplecounterpartis =

    18

  • Typically arestillleptokurtic, althoughlesssothanthe Thisisnotreallyaproblem, aswecanusetheML witharobustvariance/covarianceestimator

    ML withrobuststandarderrorsiscalledQuasi-MaximumLikeli-hoodorQML

    5 ARCH/GARCH ModelExtensionsExtensionstoARCH/GARCH Models

    ThreeofthemostimportantARCH/GARCH modelextensions/variants: EGARCH model GJR orTGARCH model GARCH-M model

    ProblemswithGARCH(, )models Non-negativityconstraintsmaystillbeviolated GARCH modelscannotaccountforleverageeffects

    5.1 EGARCH ModelTheEGARCH Model

    Nelson(1991)proposedthevarianceequationcanbeexpressedasfol-lows:

    log ( ) = + log () +

    +

    ||

    2

    (24)

    Theadvantagesofthemodel: Becausethemodelhas log( ), willbepositiveevenifthepa-rametersarenegative

    Themodelaccountsfortheleverageeffects: iftherelationshipbe-tweenvolatilityandreturnsisnegative, willbenegative

    19

  • 5.2 GJR-GARCH ModelTheGJR-GARCH Model

    Glosten, Jaganathan, andRunkle(1993)proposedGJR-GARCH (, , )model

    A GJR-GARCH (1, 1, 1)canbewrittenasfollows: = + + + (25)

    where =

    1, if < 00, otherwise

    A GJR-GARCHmodelisconvariancestationaryifandonlyiftheparam-eterrestrictionsaresatisedand + + + < 1

    Foraleverageeffect, > 0 + 0 and 0 isrequiredfornon-negativity

    TheT-GARCH Model

    Zakoian(1994)proposedTARCH(, , )model TARCH(1,1,1)canbewrittenasfollows:

    = + || + || + + 0

    (26)

    where =

    1, if < 00, otherwise

    TheGJR ModelNewImpactCurve

    20

  • ..

    -2

    .

    -1

    .

    0

    .

    1

    .

    2

    .

    0.2

    .

    0.3

    .

    0.4

    .

    0.5

    .

    0.6

    .

    0.7

    .

    0.8

    ..

    .

    GARCH

    .

    GJR-GARCH

    5.3 GARCH-inMeanModelGARCH-inMean

    Theideaistomodelthereturnofasecuritywhichispartlydeterminebyitsrisk

    Engle, LilienandRobins(1987)proposedtheARCH-M specication = + + (0, ) = + +

    (27)

    canbeinterpretedasasortofriskpremium It is possible to combine all or part of thesemodels together to get

    morecomplexhybridmodels, forexampleanARMA-EGARCH(1,1)-M model

    6 VolatilityForecasting6.1 OverviewWhatUseAreGARCH-typeModels

    21

  • GARCH isabletomodelthevolatilityclusteringeffectbecausethecon-ditionalvarianceisautoregressive

    Suchmodelscanbealsousedtoforecastvolatility Wecouldshowthat

    |, , ... = (|, , ...)

    Thereforemodelling willgiveusmodelsandforecastsfor aswell Varianceforecastsareadditiveovertime

    6.2 VolatilityForecastingForecastingVariancesUsingGARCH Models

    ConsiderthefollowingGARCH(1,1)model: = + (0, ) = + +

    Weneedtogenerateforecastsof+| , +| , ..., +| (28)

    where denotesallinformationavailableuptoandincludingobser-vation

    ForecastingVariancesUsingGARCH Models(contd)

    Addingonetoeachofthetimesubscriptsoftheconditionalvarianceequationin (28), andthentwo, andthenthreewouldproduce

    + = + + (29)+ = + + + + (30)+ = + + + + (31)

    22

  • ForecastingVariancesUsingGARCH Models(contd)

    Let , betheonestepaheadforecastfor madeattime

    , canbeobtainedbytakingconditionalexpectationof (29):, = + + (32)

    Given , , the2-stepaheadforecastfor madeattime canbeob-tainedbytakingtheconditionalexpectationsof (30)

    , = + (+| ) + , (33)

    where (+| ) istheexpectation, madeatdate , of +, whichisthesquareddisturbanceterm

    ForecastingVariancesUsingGARCH Models(contd)

    Weget(+| ) = + (34)

    Since + isnotknownatdate , itisreplacedbytheforecastforit,,

    Therefore, the2-stepaheadforecastisgivenby, = +

    , +

    ,

    = + + , (35)

    ForecastingVariancesUsingGARCH Models(contd)

    Usingsimilararguments, the3-stepaheadforecastwillbegivenby, = + + +

    = + + ,

    = + + + + ,

    = + + + + , (36)

    23

  • Any -stepaheadforecast( 2)canwrittenas

    , = =

    +

    + +

    , (37)

    6.3 TheUseofVolatilityForecastsWhatUseAreVolatilityForecasts

    Optionpricing = (, , , , )

    Conditionalbetas, =

    ,,

    Dynamichedgeratios Thesizeofthefuturespositiontothesizeoftheunderlyingexpo-sure, i.e. thenumberoffuturescontractstobuyorsellperunitofthespotgood

    WhatUseAreVolatilityForecasts(contd)

    Assumethattheobjectiveofhedgingistominimisethevarianceofthehedgedportfolio, theoptimalvalueofthehedgeratio

    = where

    = hedgeratio = correlationcoefcientbetweenchangeinspotprice()andchangeinfuturesprice()

    = standarddeviationof = standarddeviationof

    Fortime-varyingcovarianceandcorrelation, thehedgeratiois

    = ,,

    24

  • 6.4 TestingNon-linearRestrictionsTestingNon-linearRestrictionsTestingHypothesisaboutNon-linearModels

    The and testsarestillvalidinnon-linearmodels, butthesearenotexibleenough

    Threehypothesistestingproceduresbasedonmaximumlikelihoodprin-ciples:

    Wald LikelihoodRatio LagrangeMultiplier

    Letsconsiderasingleparameter tobeestimated, betheMLE,and bearestrictedestimate

    LikelihoodRatioTests

    Estimateunderthenullhypothesisandunderthealternative ComparethemaximisedvaluesoftheLLF Estimatetheunconstrainedmodelandachieveagivenmaximisedvalue

    oftheLLF,denoted Estimatethemodelimposingtheconstraint(s)andgetanewvalueof

    theLLF,denoted Whichwillbebigger?

    comparableto TheLR teststatisticisgivenby

    = 2( ) ()

    DiagrammaticRepresentation

    25

  • ..

    .

    ()

    .

    .

    B

    .()

    .

    .

    A

    .

    ( )

    Figure 4: Comparisonoftestingproceduresundermaximumlikelihood

    7 VolatilityEstimationUsingOxMetrics

    26

  • 27

  • 28

  • 2003 2004 2005 2006 2007

    105

    110

    115

    120

    125 JPY

    2003 2004 2005 2006 2007

    2

    1

    0

    1

    2 RJPY

    29

  • 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 120.0 122.5 125.0 127.5

    0.025

    0.050

    0.075

    0.100

    DensityJPY N(s=5.69)

    2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

    0.5

    1.0

    1.5

    2.0Density

    RJPY N(s=0.44)

    30

  • 31

  • 32

  • 2003 2004 2005 2006 20072

    0

    2 RJPY Fitted

    2003 2004 2005 2006 20075

    0

    5r:RJPY (scaled)

    2003 2004 2005 2006 2007

    0.4

    0.6CondSD

    2007624 71 78 715

    0.50

    0.25

    0.00

    0.25

    0.50 Forecasts RJPY

    2007624 71 78 715

    0.0750

    0.0775

    0.0800

    0.0825

    0.0850 CondVar Forecasts

    33

  • 34

  • 35

  • 36

  • References[1] DanielB.Nelson GeneralizedAutoregressiveConditionalHeteroskedasticity. JournalofEconomet-

    rics, Vol.31, No.2(1991), 307?327.

    [2] Robert F. Engle AutoregressiveConditionalHeteroscedasticitywith Estimates of theVariance ofUnitedKingdomInation. Econometrica, Vol.50, No.4(1982), 987-1008

    [3] RobertF.Engle, DavidM.LilienandRussellP.Robins EstimatingTimeVaryingRiskPremiaintheTermStructure: TheArch-M Model. Econometrica, Vol.55, No.2(1987), 391-407.

    [4] LawrenceR.Glosten, RaviJagannathan, DavidE.Runkle OntheRelationbetweentheExpectedValueandtheVolatilityoftheNominalExcessReturnonStocks. TheJournalofFinance, Vol.48,No.5(1993), 1779-1801.

    [5] DanielB.Nelson ConditionalHeteroskedasticityinAssetReturns: A NewApproach. Econometrica,Vol.59, No.2(1991), 347-370.

    37

    1 Motivations1.1 Stylised Facts in Financial Data1.2 Types of Non-linear Models1.3 Non-linearity Tests

    2 EWMA2.1 EWMA Specification2.2 The Advantages

    3 ARCH3.1 ARCH Specification3.2 ARCH Effect Tests3.3 Problems with ARCH(q) Models

    4 GARCH4.1 GARCH Specification4.2 The ML Estimation

    5 ARCH/GARCH Model Extensions5.1 EGARCH Model5.2 GJR-GARCH Model5.3 GARCH-in Mean Model

    6 Volatility Forecasting6.1 Overview6.2 Volatility Forecasting6.3 The Use of Volatility Forecasts6.4 Testing Non-linear Restrictions

    7 Volatility Estimation Using OxMetrics