Eigen Values, Eigen Vectors_afzaal_1

download Eigen Values, Eigen Vectors_afzaal_1

of 81

Transcript of Eigen Values, Eigen Vectors_afzaal_1

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    1/81

    Linear Algebra

    Eigenvalues, Eigenvectors

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    2/81

    2

    Eigenvalues and Eigenvectors

    If A is an n x n matrix and x is a vector in , then

    there is usually no general geometric relationship

    between the vector x and the vector Ax. However,

    there are often certain nonzero vectors x such that x

    and Ax are scalar multiples of one another. Suchvectors arise naturally in the study of vibrations,

    electrical systems, chemical reactions, quantum

    mechanics, mechanical stress, economics and

    geometry.

    nR

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    3/81

    3

    Eigenvalues, Eigenvectors

    If A is an n n, then a non zero vector xin Rnis called an eigenvectorof Aif Axis a scalarmultiple of x; that is

    for some scalar . The scalar is called aneigenvalue of A, and x is called theeigenvectorof A corresponding to .

    Eigen values are also called the propervalues or characteristic values they arealso called the Latent roots.

    Ax x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    4/81

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    5/81

    5

    Graphical Interpretation

    Eigen values and Eigen vectors have also a useful

    graphical interpretation in R2 and R3. If is the

    eigenvalue of A corresponding to x then Ax=x so

    that the multiplication by A dilates x, contracts x, or

    reverses the direction of x, depending upon the value.

    Dilation(>1) Contraction(0<

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    6/81

    6

    Finding Eigen values

    To find the eigenvalues of nn matrix A we

    write Ax=x as

    For to be the eigenvalue ,there must be a

    nonzero solution of the above equation.

    However above equation will have a nonzerosolution if and only if

    ( ) 0

    Ax x

    I A x

    det( ) 0I A

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    7/81

    7

    Characteristic Equation

    det(I-A)=0 is called the characteristic

    equation of A; the scalars satisfying this

    equation are called the eigenvalues of A.

    When expanded , the determinant det(I-A) isa polynomial in called the characteristic

    polynomialin A.

    Example: Find the eigenvalues and

    eigenvectors of the matrix

    3 2

    1 0A

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    8/81

    8

    Example 1(Eigenvalues)

    Solution:

    The characteristic polynomial in A.

    Characteristic Equation:

    1 0 3 2

    0 1 1 0

    3 2

    1

    I A

    I A

    23 2det( ) 3 21

    I A

    2

    3 2 0

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    9/81

    9

    Example 1(Eigenvectors)

    The solution of this equation are =1 and =2;

    these are the eigenvalues of A.

    Since Ax=x

    Eigenvector corresponding to =1

    Putting =1 gives

    1

    2

    3 20

    1

    x

    x

    1

    2

    2 20

    1 1

    x

    x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    10/81

    10

    Example 1(Eigenvectors)

    The above matrix gives two equations

    which gives the general solution in the form

    1 2x x

    1 2

    1 2

    2 2 0

    0

    x x

    x x

    2

    1x 1 1 xLet

    1

    Then

    The eigenvector corresponding to is

    1

    1

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    11/81

    11

    Example 1(Eigenvectors)

    Similarly 12

    1

    2

    1 2

    1 2

    1 2

    2 1

    3 20

    1

    Putting 2

    1 2

    0givesequations1 2

    2 0

    2 0

    Thesolution of aboveequations is

    2

    1 2

    Eigenvector correspponding to 2is

    2

    1

    x

    x

    x

    x

    x x

    x x

    x x

    let x then x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    12/81

    12

    Multiple Eigenvalues

    The order Mof an eigenvalue as a root of

    characteristic polynomial is called the

    algebraic multiplicityof .

    The number m of linearly independenteigenvectors corresponding to is called the

    geometric multiplicityof .

    Thus m is the dimension of the eigenspace

    corresponding to this .

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    13/81

    13

    Multiple Eigenvalues

    The characteristic polynomial has a degree

    n, the sum of all algebraic multiplicity must

    equal n.

    In general m M The defectof is defined as

    Example :Find the eigenvalues and

    eigenvectors of the matrix

    M m

    2 2 3

    2 1 6

    1 2 0

    A

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    14/81

    14

    Example 2(1/7)

    Eigenvalues

    The characteristic polynomial

    have three latent root (eigenvalues) as

    2 2 3

    2 1 6

    1 2

    det( ) 0

    A I

    A I

    3 2 21 45 0

    1 2 35, 3

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    15/81

    15

    Example 2(2/7)

    The algebraic multiplicity of =-3 is 2

    M-3=2

    and that of =5 is M5=1

    Eigenvectors: To find the eigenvectors apply

    the gauss elimination to the system (A-I)x=0

    first =5 and =-3.

    Putting =5 gives1

    2

    3

    7 2 3

    ( ) 2 4 6 0

    1 2 5

    x

    A I x x

    x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    16/81

    16

    Example 2(3/7)

    Performing Gauss elimination on the matrix

    above gives1 2 5

    0 1 2

    0 0 0

    A I

    1 2 3

    2 3

    2 5 0

    2 0

    x x x

    x x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    17/81

    17

    Example 2(4/7)

    The above matrix can be written in the

    equation form which gives

    1 2 3

    2 3

    3 2 1

    1

    (2 5 )

    2

    Let 1 then 2 and 1

    The eigen vector corresponding to 5

    1

    2

    1

    x x x

    x x

    x x x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    18/81

    18

    Example 2(5/7)

    Putting =-3 and performing Gauss

    Elimination gives

    1 2 3

    3 0 0 0

    0 0 0

    A I

    1 2 3

    1 2 3

    2 3 0

    2 3

    x x x

    or

    x x x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    19/81

    19

    Example 2(6/7)

    Or

    So there are two linearly independent vectors

    corresponding to

    1

    0

    3

    0

    1

    2

    32

    3

    2

    1

    xx

    x

    x

    x

    3

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    20/81

    20

    Example 2(7/7)

    Since there are two Linear Independent

    vectors corresponding to =-3 the geometric

    multiplicity of

    m-3=2m5=1

    The defect of =-3 is

    -3 =M-3m-3-3=0

    5=0

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    21/81

    21

    Example:

    Find the Eigenvalues and Eigenvectors of the matrix

    Solution:

    The algebraic multiplicity is

    00

    10A

    0

    1

    10

    01

    00

    10IA

    001

    det 2

    IA

    021

    20 MM

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    22/81

    22

    Example (Contd)

    To find Eigenvector

    The solution is

    The Eigenvector is

    The geometric multiplicity is

    Thus

    0

    0

    00

    10

    2

    1

    x

    x

    12 .0xx

    0

    1

    12

    1

    xx

    x

    10 mm

    00 Mm

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    23/81

    23

    Theorems

    If A is an nn triangular matrix (upper

    triangular, lower triangular or diagonal) then

    the eigenvalues of A are entries on main

    diagonal of A. Example :

    1 2 3

    1 0 0

    2

    21 0

    3

    1 5 8

    4

    TheEigenvaluesare

    1 2 1

    , ,2 3 4

    A

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    24/81

    24

    Theorems

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    25/81

    25

    Theorems

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    26/81

    26

    Example

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    27/81

    27

    Theorems

    If k is a positive integer, is an eigenvalue of

    a matrix A, and x is a corresponding

    eigenvector, then k is an eigenvalue of Ak

    and x is a corresponding eigenvector.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    28/81

    28

    Example:

    Eigenvalues of are:

    1282,11 7327

    1

    1 2 3

    0 0 2

    If 1 2 1

    1 0 3then find Eigenvalues for if eigenvalues

    for are 1, 2

    A

    7A

    A

    7A

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    29/81

    29

    Theorems

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    30/81

    30

    Theorems

    If x is an eigenvector of a matrix A to an

    eigenvalue ,so is kxwith any k 0.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    31/81

    31

    Example

    Let

    The eigenvalues of A are 3, 0, and 2. Theeigenvalues of B are 4 and 1.

    What does it mean for a matrix to have an eigenvalueof 0 ?

    This happens if and only if the equation has

    a nontrivial solution. Equivalently, Ax=0 has anontrivial soltion if and only if A is not invertible. Thus

    0 is an eigenvalue of A if and only if A is notinvertible.

    435

    012

    004

    and

    200

    600

    863

    BA

    0xxA

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    32/81

    32

    Diagonalization

    The Eigenvector Problem:

    Given an matrix A, does there exist abasis for consisting of eigenvectors of A?

    The Diagonalization Problem:Given an matrix A, does there exist aninvertible matrix P such that isa diagonal matrix?

    Apparently above two problems are different butthey are equivalent thats why diagonalizationproblem is considered in the discussion ofeigenvectors.

    n nnR

    n n1D P AP

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    33/81

    33

    Diagonalizable Matrix

    Definition:

    A square matrix A is said to bediagonalizable if there exist an invertiblematrix P such that is a diagonalmatrix.

    Theorem:

    If A is an matrix then the following are

    equivalent: A is diagonalizable

    A has n linearly independent eigenvectors.

    1D P AP

    n n

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    34/81

    34

    Procedure for Diagonalization

    1. Find eigenvalues of A.

    2. Find n linearly independent eigenvectors

    of A, say,

    3. Form matrix P having asits columns.

    4. Construct . The matrix D will be

    diagonal with as itssuccessive diagonal entries, where is the

    eigenvalue corresponding to .

    1 2 3 4, , , ,..., .np p p p p

    1 2 3 4, , , ,..., np p p p p

    1D P AP

    1 2 3 4, , , ,...,

    n

    i

    , 1, 2,...,ip i n

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    35/81

    35

    Example 1 (1/10)

    Find a matrix P that diagonalizes

    0 0 2

    1 2 1

    1 0 3

    A

    Step 1

    Find the eigenvalues of A

    Solution:

    1 0 0 0 0 2

    0 1 0 1 2 1

    0 0 1 1 0 3

    I A

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    36/81

    36

    0 0 0 0 2

    0 0 1 2 1

    0 0 1 0 3

    0 2 1 2 1

    1 0 3

    0 2

    det( ) 1 2 1

    1 0 3

    I A

    Example 1 (2/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    37/81

    37

    The characteristic equation of A is3 25 8 4 0

    In factored form

    2

    1 2 0 Verify!

    Thus, the eigenvalues of A are

    1 2 31, 2

    Example 1 (3/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    38/81

    38

    Step 2

    Find the corresponding eigenvectors

    By definition1

    2

    3

    x

    x

    x

    x

    is an eigenvector of A corresponding to if and

    only if x is a non-trivial solution of

    that is

    0I A x

    1

    2

    3

    0 2 0

    1 2 1 0

    1 0 3 0

    x

    x

    x

    Example 1 (4/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    39/81

    39

    If , then21

    2

    3

    2 0 2 0

    1 0 1 0

    1 0 1 0

    x

    x

    x

    Solving this system yields

    1 3 x x x2,,x3 (free variables)

    The eigenvectors of A corresponding to

    are nonzero vectors of the form 2

    0 1 0

    0 0 1

    0 1 0

    s s

    t t s t

    s s

    x

    Example 1 (5/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    40/81

    40

    As

    are linearly independent, so they form the basisfor eigenspace corresponding to 2

    1 0

    0 , 1

    1 0

    If , then1

    1

    2

    3

    1 0 2 0

    1 1 1 0

    1 0 2 0

    x

    x

    x

    Example 1 (6/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    41/81

    41

    Solving this system yields

    1 32 x x x3 (free variable)

    The eigenvectors corresponding to are

    nonzero vectors of the form

    1

    2 2

    1

    1

    s

    s s

    s

    x So2

    1

    1

    2 3x x

    =>

    1 2 3

    1 0 2

    0 , = 1 , 1

    1 0 1

    p p p

    Example 1 (7/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    42/81

    42

    Step 3 It is easy to verify that are

    linearly independent so that

    diagonalizes A.

    Step 4 The resulting diagonal matrix is

    1 2 3{ , , }p p p

    1 0 20 1 1

    1 0 1

    P

    1

    2 0 0

    0 2 0

    0 0 1

    D P AP

    Example 1 (8/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    43/81

    43

    To verify that

    1

    2 0 0

    0 2 0

    0 0 1

    A P P

    We can compute

    PA DP Verify it for the given case

    Example 1 (9/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    44/81

    44

    Remark:

    There is no preferred order for the columns of

    P. Since the ithdiagonal entry of is an

    eigenvalue corresponding to ith

    column vectorof P, changing the order of columns of P will

    change the order of eigenvalues on the

    diagonal of .

    1P AP

    1P AP

    1 2 0

    0 1 1

    1 1 0

    P

    For example

    1

    2 0 0

    0 1 0

    0 0 2

    D P AP=>

    Example 1 (10/10)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    45/81

    45

    Example 2 (1/3)

    Diagonalize

    The characteristic equation of A is

    Thus, is the only eigenvalue of A, and

    corresponding eigenvectors are the solutions of

    3 2

    2 1

    A

    1

    ( ) 0 I A x

    2( 1) 0.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    46/81

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    47/81

    47

    Example (3/3)

    Since A does not have two linearly

    independent eigenvectors i.e. the eigenspace

    is 1-dimensional, therefore, A is not

    diagoalizable.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    48/81

    48

    Conditions for Diagonalizability

    Theorem 1:

    If are eigenvectors of A

    corresponding to distinct eigenvalues

    ,thenare linearly independent.

    Theorem 2:

    If an matrix A has ndistinct eigenvalues,

    then A is diagonalizable.

    1 2 3 4, , , ,..., nv v v v v

    n n

    1 2 3 4, , , ,..., n 1 2 3, , ,..., nv v v v

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    49/81

    49

    Example

    Whether A is

    diagonalizable or not?0 1 0

    0 0 1

    4 17 8

    A

    The eigenvalues of A are

    1 2 34, 2 3, 2 3

    Since A has three distinct eigenvalues, so A can

    be diagonalized. We can verify that

    1

    4 0 0

    0 2 3 0

    0 0 2 3

    D P AP

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    50/81

    50

    LU-Factorization

    With Gaussian elimination and Gauss-Jordan

    elimination, a linear system is solved by

    operating systematically on the augmented

    matrix.Another approach is based on factoring the

    coefficient matrix into a product of lower (L)

    and upper (U) triangular matrix (LU-

    Decomposition). LU-decomposition speeds up the solution of

    Ax b

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    51/81

    S l i Li S t b

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    52/81

    52

    Step 3

    Use (2) to rewrite (1) as and solve for y

    Step 4

    Substitute yin (2) and solve for x

    L y = b

    x b

    y

    Multiplication by A

    Solving Linear Systems by

    LU-Factorization

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    53/81

    53

    LU Factorization

    The LU factorization is motivated by the fairlycommon industrial and business problem of solving asequence of equations, all with the same coefficientmatrix A:

    (1)

    When A is invertible, one could compute and thencompute and so on. However, it is moreefficient to solve the first equation in (1) by row

    reduction and obtain an LU factorization of A at thesame time. Thereafter, the remaining equations in (1)are solved with LU factorization.

    n21 bx,,bx,bx AAA 1A

    ,, 21

    1

    1 bAbA

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    54/81

    E l S l i Li

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    55/81

    55

    1

    2

    3

    2 0 0 1 3 1 2

    3 1 0 0 1 3 24 3 7 0 0 1 3

    x

    x

    x

    Step 1

    Rewriting the system as

    Step 2

    Defining vector y as y=[y1, y2, y3]T

    1 1

    2 2

    3 3

    1 3 1

    0 1 3

    0 0 1

    x y

    x y

    x y

    ExampleSolving Linear

    Systems by LU-Factorization

    E ample Sol ing Linear

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    56/81

    56

    Equivalently1

    1 2

    1 2 3

    2 2

    3 2

    4 3 7 3

    y

    y y

    y y y

    Solving using forward substitution, we get

    1 2 31, 5, 2y y y

    Step 3

    1

    2

    3

    1 3 1 1

    0 1 3 5

    0 0 1 2

    x

    x

    x

    ExampleSolving Linear

    Systems by LU-Factorization

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    57/81

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    58/81

    58

    LU decomposition

    Theorem:

    If A is a square matrix that can be reduced to

    a row-echelon form U without using row

    interchanges, then A can be factored asA = LU, where L is a lower triangular matrix.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    59/81

    59

    Procedure for LU decomposition

    Step 1 : Reduce A to a row-echelon form U without

    row interchanges, keeping track of the multipliers

    used to introduce the leading 1sand the multipliers

    used to introduce the zeros below the leading 1s.

    Step 2: In each position along the main diagonal ofL, place the reciprocal of the multiplier that introduced

    the leading 1 in that position in U.

    Step 3: In each position below the main diagonal of

    L, place the negative of the multiplier used tointroduce the zero in that position in U.

    Step 4: Form the decomposition A=L U

    LU Decomposition

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    60/81

    60

    LU Decomposition

    Example

    Find an LU-decomposition of

    Solution: We begin by reducing A to row-echelon form,keeping track of all multipliers.

    573

    119

    026

    A

    LU Decomposition

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    61/81

    61

    LU Decomposition

    Example

    573

    119

    026

    573

    119

    0311 61Multiplier

    580

    120

    0311

    3Multiplier

    9Multiplier

    5802

    110

    03

    11

    2

    1Multiplier

    1002

    110

    0311

    8Multiplier

    1002

    110

    0311

    1Multiplier

    LU Decomposition

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    62/81

    62

    LU Decomposition

    Example

    Constructing L from the multipliers yields the LU-

    decomposition

    1002

    1100311

    183

    029006

    LUA

    Iterative Solution of Linear

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    63/81

    63

    Iterative Solution of Linear

    Systems

    Although Gaussian elimination or Gauss-

    Jordan elimination is generally the method of

    choice for solving a linear system of n

    equations in n unknowns, there are otherapproaches to solving linear systems, called

    iterativeor indirect methods, that are better in

    certain situations.

    The Gauss-Seidel method is the mostcommonly used iterative method.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    64/81

    64

    Gauss-Seidel Method

    Basic Procedure:

    Algebraically solve each linear equation for xi

    Assume an initial guess

    Solve for each xiand repeat

    Use absolute relative approximate error after each

    iteration to check if error is within a prespecified

    tolerance.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    65/81

    65

    A set of nequations in nunknowns:

    11313212111 ... bxaxaxaxa nn

    22323222121 bxa...xaxaxa nn

    nnnnnnn

    bxaxaxaxa ...332211

    . .

    . .

    . .

    Gauss-Seidel Method (Algorithm)

    The system Ax=b is reshaped by solving the firstequation for x1, the second equation for x2, and thethird forx3, and n

    thequation forxn.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    66/81

    66

    Rewriting each equation

    11

    131321211

    a

    xaxaxabx nn

    nn

    nn,nnnn

    n

    ,nn

    n,nnn,nn,n,nn

    n

    nn

    a

    xaxaxabx

    a

    xaxaxaxab

    x

    axaxaxabx

    112211

    11

    12212211111

    1

    22

    232312122

    Gauss-Seidel Method (Algorithm)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    67/81

    67

    Solve for the unknowns

    Assume an initial guess forx

    n

    -n

    2

    x

    x

    x

    x

    1

    1

    Use rewritten equations to

    solve for each value of xi.

    Important:Remember to

    use the most recent value

    of xi. Which means to

    apply values calculated to

    the calculations remainingin the current iteration.

    Gauss-Seidel Method (Algorithm)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    68/81

    68

    Calculate the Absolute Relative Approximate Error

    100new old

    i i

    x newi

    i

    x x

    x

    So when has the answer been found?

    The iterations are stopped when the absolute relative

    approximate error is less than a pre-specified tolerance for all

    unknowns.

    Gauss-Seidel Method (Algorithm)

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    69/81

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    70/81

    70

    Gauss-Seidel Method: Example 1

    Given the system of equations

    15312 321 x-xx

    2835 321 xxx

    761373 321 xxx

    1

    0

    1

    3

    2

    1

    x

    x

    x

    With an initial guess of

    The coefficient matrix is:

    12 3 5

    1 5 33 7 13

    A

    Will the solution convergeusing the Gauss-Seidel

    method?

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    71/81

    71

    Gauss-Seidel Method: Example 1

    12 3 5

    1 5 3

    3 7 13

    A

    Checking if the coefficient matrix is diagonally dominant

    43155232122

    aaa

    10731313 323133 aaa

    8531212 131211 aaa

    The inequalities are all true and hence the matrix A is

    strictlydiagonally dominant.

    Therefore: The solution should converge using the Gauss-

    Seidel Method

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    72/81

    72

    Gauss-Seidel Method: Example 1

    1

    2

    3

    12 3 5 1

    1 5 3 28

    3 7 13 76

    x

    x

    x

    Rewriting each equation

    12

    531 321

    xxx

    5328 312 xxx

    13

    7376 213

    xxx

    With an initial guess of

    1

    0

    1

    3

    2

    1

    x

    x

    x

    50000.0

    12

    150311

    x

    9000.4

    5

    135.0282

    x

    0923.3

    13

    9000.4750000.03763

    x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    73/81

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    74/81

    74

    Gauss-Seidel Method: Example 1

    8118.3

    7153.314679.0

    3

    2

    1

    x

    xx

    After Iteration #1

    14679.0

    12

    0923.359000.4311

    x

    7153.35

    0923.3314679.0282

    x

    8118.3

    13

    900.4714679.03763

    x

    Substituting the x values into the equations

    After Iteration #2

    0923.3

    9000.4

    5000.0

    3

    2

    1

    x

    x

    x

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    75/81

    75

    Gauss-Seidel Method: Example 1

    Iteration #2 absolute relative approximate error

    x 1

    0.14679 0.50000100 240.62%

    0.14679

    x 2 3.7153 4.9000 100 31.887%3.7153

    x 3

    3.8118 3.0923100 18.876%

    3.8118

    The maximum absolute relative error after the first iterationis 240.62%

    This is much larger than the maximum absolute relative

    error obtained in iteration #1. Is this a problem?

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    76/81

    76

    Gauss-Seidel Method: Example 1

    Repeating more iterations, the following values are obtained

    1x

    2x

    3x

    Iteration x1 x2 x3

    1

    23

    4

    5

    6

    0.50000

    0.146790.74275

    0.94675

    0.99177

    0.99919

    67.662

    240.6280.23

    21.547

    4.5394

    0.74260

    4.900

    3.71533.1644

    3.0281

    3.0034

    3.0001

    100.00

    31.88717.409

    4.5012

    0.82240

    0.11000

    3.0923

    3.81183.9708

    3.9971

    4.0001

    4.0001

    67.662

    18.8764.0042

    0.65798

    0.07499

    0.00000

    4

    3

    1

    3

    2

    1

    x

    x

    x

    0001.4

    0001.3

    99919.0

    3

    2

    1

    x

    x

    xThe solution obtained

    is close to the exact solution of

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    77/81

    77

    Gauss-Seidel Method: Example 2

    Solve the following linear system by Gauss-Seidel method.

    1 2 3

    1 2 3

    1 2 3

    3 2

    6 4 11 1 5 2 2 9

    x x x

    x x xx x x

    Solution

    We can verify that the system is not strictlydiagonally dominant, so the Gauss-Seidel

    method does not guaranteed to converge.

    1 3 1

    6 4 11

    5 2 2

    A

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    78/81

    78

    Definiteness of Matrices

    A matrix is Positive Definite iff xTAx>0 for allx.

    A matrix is Negative Definiteiff xTAx0 for some x

    and xTAx

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    79/81

    79

    Checking for Definiteness

    There are different methods to check thedefiniteness of a matrix. One method is based

    on Eigenvalues of the given matrix. If all

    eigenvalues of the matrix are positive, then

    the matrix would be positive definite. If all the

    eigenvalues are negative, then the matrix

    would be negative definite.

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    80/81

    Checking for Definiteness -

  • 8/13/2019 Eigen Values, Eigen Vectors_afzaal_1

    81/81

    Checking for Definiteness

    Example

    Check the definiteness of the matrix.

    12 2

    2 10A

    Solution

    12 2

    2 10

    12 2

    2903

    1 2

    1

    6E E

    Since the two diagonal elements are +ve,

    therefore matrix A is +ve definite.