Effects of parameterizations of the drop size distribution...

16
Katharina Schinagl , Christian Rieger, Clemens Simmer, Silke Trömel, Petra Friederichs TR32 Conference – April 6th, 2017

Transcript of Effects of parameterizations of the drop size distribution...

Page 1: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Effects of parameterizations of

the drop size distribution with

variable shape parameter on

polarimetric radar moments

Katharina Schinagl, Christian Rieger, Clemens Simmer, Silke Trömel, PetraFriederichs

TR32 Conference – April 6th, 2017

Page 2: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

A pattern

Page 3: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Polarimetric radar

horizontal orientation

vertical orientation

→ identify hydrometeor shape/size/type, estimaterain rates, ...

drop size distribution (DSD)polarimetric observables

I horizontal reflectivity ZHI horizontal reflectivity ZVI differential reflectivity ZDRI specific differential phase KDPI cross-correlation coefficient ρHV

data assimilation

→ NWP models need to reproduce physicallyplausible polarimetric moments

www. roc. noaa. gov/ wsr88d/

dualpol/

Page 4: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Polarimetric radar forward operators

polarimetric radar forward operators, e.g.

I horizontal reflectivity ZH(~x , t) =4λ4

radar

π4|Kw |2

∫ Dmax

Dmin

|fHH(π,D,~x , t)|2N(D,~x , t)dD[mm6m−3

]I differential reflectivity

ZDR(~x , t) = 10 logZH(~x , t)

ZV (~x , t)[dB]

I cross-correlation coefficient

ρHV (~x , t) =

∫ Dmax

Dmin

f∗HH(π,D,~x , t)fVV (π,D,~x , t)N(D,~x , t)dD√∫ Dmax

Dmin

fHH(π,D)2N(D,~x , t)dD∫ Dmax

Dmin

fVV (π,D)2N(D,~x , t)dD

N(D, ~x , t) is the DSD in space and time

Page 5: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Role of ZDR

ZDR = 10 logZHZV

[dB]

Dm = 1.619Z0.485DR (Bringi, Chandrasekar 2001)

Florida 1991, S-band weather radar and airborne

particle imaging probe

Page 6: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

DSD parameterization

gamma DSD N(D) = N0Dµ exp (−ΛD)

NWP: two-moment-schemes typically predict 0th and 3rd moment of DSDNT (number concentration rain), qr (specific rain content):

NT = M(0) =

∫ ∞0

N(D)dD, ρqr = M(3) =

∫ ∞0

D3N(D)dD

parameterization of DSD given M(0), M(3)?

...while taking into account model-specific challenges (size sorting)

DSD parameter µ diagnosed from D′m =(

M(3)M(0)

)1/3(mean-mass diameter)

mean volume diameter Dm = M(4)M(3)

→ µ-D′m-relations

Page 7: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

DSD parameterization: µ− D′m-relations

Seifert, 2008:

µ =

{6 tanh

[(c1(D′m − Deq)

]2 + 1, D′m ≤ Deq

30 tanh[(c2(D′m − Deq)

]2 + 1, D′m > Deq

c1 = 4000m−1, c2 = 1000m−1

Deq = 0.0011m equilibrium diameter

Λ = [(µ + 3)(µ + 2)(µ + 1)]13 D′−1

m

[m−1]

N0 =NT

Γ(µ+1) Λ(µ+1)[m−(µ+4)

]similar relations from e.g. Milbrandtand Yau, 2005 and Milbrandt andMcTaggart-Cowan, 2010

Page 8: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Synthetic polarimetric moments

frequency 9.3e9 (BoXPol)

oblate shape, water phase

Dmin = 0.05e − 3 [m] ,Dmax = 8e − 3 [m] ,Di = 0.05e − 3 [m]

T = 290K

ZH [dBZ] ZH [dBZ]

Page 9: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Synthetic polarimetric moments

frequency 9.3e9 (BoXPol)

oblate shape, water phase

Dmin = 0.05e − 3 [m] ,Dmax = 8e − 3 [m] ,Di = 0.05e − 3 [m]

T = 290K

ZDR [dB] ZDR [dB]

Page 10: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Synthetic polarimetric moments

frequency 9.3e9 (BoXPol)

oblate shape, water phase

Dmin = 0.05e − 3 [m] ,Dmax = 8e − 3 [m] ,Di = 0.05e − 3 [m]

T = 290KρHV ρHV

Page 11: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Synthetic polarimetric moments

frequency 9.3e9 (BoXPol)

oblate shape, water phase

Dmin = 0.05e − 3 [m] ,Dmax = 8e − 3 [m] ,Di = 0.05e − 3 [m]

T = 290K

KDP[degkm−1

]KDP

[degkm−1

]

Page 12: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Synthetic polarimetric moments

frequency 9.3e9 (BoXPol)

oblate shape, water phase

Dmin = 0.05e − 3 [m] ,Dmax = 8e − 3 [m] ,Di = 0.05e − 3 [m]

T = 290K

R[mmh−1

]R[mmh−1

]

Page 13: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Constrained-gamma DSDs

Zhang et al, 2001: µ = −0.016Λ2 + 1.213Λ− 1.957disdrometer observations, east-central Florida (tropical climate), summer 1998

Lam et al, 2015: Λ = 0.041µ2 + 0.310µ+ 1.740disdrometer observations, Kuala Lumpur, Malaysia (equatorial climate), january 1992 -

december 1994

→ derived µ-D′m-relations

Page 14: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

ZDR: empirical relations

Dm = 1.619Z 0.485DR (Bringi, Chandrasekar 2001)

Page 15: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Summary

DSDs as used in modelling do not yield fully convincing polarimetricmoments

→ consequences for data assimilationdifferent approaches of radar scientists and modellers

I radar scientists: ’constrained-gamma’ with Λ− µ-relationI modellers: µ-D′m-relations based on mean-mass diameter D′m

DSD parameterization needs further work

3-moment-schemes

finite maximum diameter

Page 16: Effects of parameterizations of the drop size distribution ...conference.tr32.de/friday/2E_Katharina_Schinagl_tr32conf_vortrag.pdf · polarimetric radar moments Katharina Schinagl,

Thank you for your attention!Questions?

Bringi, V N and V Chandrasekar: Polarimetric Doppler weather radar: principles and applications.

Cambridge university press, 2001.

Lam, Hong Yin, Jafri Din, and Siat Ling Jong: Statistical and physical descriptions of raindrop size distributions in equatorial malaysia from

disdrometer observations.Advances in Meteorology, 2015, 2015.

Milbrandt, JA and R McTaggart-Cowan: Sedimentation-induced errors in bulk microphysics schemes.

Journal of the Atmospheric Sciences, 67(12):3931–3948, 2010.

Milbrandt, JA and MK Yau: A multimoment bulk microphysics parameterization. part i: Analysis of the role of the spectral shape

parameter.Journal of the Atmospheric Sciences, 62(9):3051–3064, 2005.

Seifert, Axel: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model.

Journal of the Atmospheric Sciences, 65(11):3608–3619, 2008.

Xie, Xinxin, Raquel Evaristo, Clemens Simmer, Jan Handwerker, and Silke Trömel: Precipitation and microphysical processes observed by

three polarimetric x-band radars and ground-based instrumentation during hope.Atmospheric Chemistry and Physics, 16(11):7105–7116, 2016.

Zhang, Guifu, Jothiram Vivekanandan, and Edward Brandes: A method for estimating rain rate and drop size distribution from

polarimetric radar measurements.Geoscience and Remote Sensing, IEEE Transactions on, 39(4):830–841, 2001.