Effects of future strong earthquakes and other aftershocks on...

41
Effects of future strong earthquakes and other aftershocks on large rockfill dams already submitted to strong shaking __________ Effets des futures séismes forts sur les barrages en enrochements déjà soumis à de fortes secousses Bachir Touileb 1 , Mathieu ROY 1 , Frederic ANDRIAN 1 , Guillaume VEYLON 2 1 Artelia Group, France, 2 Irstea, France Saint-Malo, France 1 er Septembre 2016

Transcript of Effects of future strong earthquakes and other aftershocks on...

Page 1: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

Effects of future strong earthquakes and other

aftershocks on large rockfill dams already submitted to strong shaking

__________

Effets des futures séismes forts sur les barrages en enrochements déjà soumis à de

fortes secousses

Bachir Touileb 1, Mathieu ROY 1, Frederic ANDRIAN 1, Guillaume VEYLON 2

1 Artelia Group, France, 2 Irstea, France

Saint-Malo, France

1er Septembre 2016

Page 2: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

2

PARTIE I: Impact des répliques sismiques fortes sur les barrages en enrochements

1. Considération des répliques sismiques dans la conce ption et la revue des sûreté des barrages

2. Evidence de l’intensité forte des répliques sismiqu es

3. Evaluation des paramètres sismiques des répliques d e plus forte intensité (Touileb, 2013)

4. Analyse non-linéaire obligatoire (La méthode linéai re équivalente ne s’applique pas)

5. Rupture de barrages due à des répliques sismiques ( Barrage naturel en Chine, Barrage minier au Chili)

PARTIE II: Barrage Aratozawa. Mesures versus Calcul s (Touileb et al., 2014, JCOLD-CFBR)

PARTIE III: Impact des séismes forts récurrents sur les grands barrages

(Barrages soumis à deux ou plusieurs séismes forts durant leur cycle de vie)

A. Mesures versus Calculs

B. Impact d’un nouveau séisme de même intensité sur le barrage

1. Augmentation du cycle de vie des grands barrages mo dernes, et augmentation de la probabilité qu’un gra nd

barrage soit soumis à plusieurs séismes forts proch es du SMP (MCE)

2. Un séisme de fore intensité modifient considérablem ent les conditions initiales qui prévaudront lors d e

l’occurrence d’un prochain séisme fort

3. Application au barrage Aratozawa:

1. Scénario adopté pour les calculs: Quel est l’impa ct sur le barrage Aratozawa s’il sera soumis à un

nouveau séisme fort identique à celui qu’il a déjà subi (PGA=1g);

2. Impact du second séisme versus le premier séisme

3. Conclusion

Programme de la Présentation

Page 3: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

3

PARTIE I: Impact des répliques sismiques fortes sur les barrages en

enrochements

1. Considération des répliques sismiques dans la conce ption et la revue des sûreté des barrages

2. Evidence de l’intensité forte des répliques sismiqu es

3. Evaluation des paramètres sismiques des répliques d e plus forte intensité (Touileb, 2013)

4. Analyse non-linéaire obligatoire (La méthode linéai re équivalente ne s’applique pas)

5. Rupture de barrages due à des répliques sismiques ( Rupture catastrophique d’un Barrage naturel en

Chine, Barrage minier au Japon)

Référence:

Bachir Touileb, 2013. “On the consideration of aftershocks in dam design and safety.” 9th Symposium of

the European Club, Venice, Italy. April.

Programme de la Partie I

Page 4: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

4

� Man-made Dams performance against aftershocks

Dam performance records show that no man-made dam has collapsed due to an aftershock.

However, No.2 dike, a tailings dam at the Mochikoshi gold mine near Izu Oshima in Japan couldhave failed as a result of the M5.7 aftershock (15 January 1978: 7.32am) following the M7.0earthquake (14 January 1978: 12:24am). Officially, the No.2 dike is reported to have failedbetween 12:30pm and 1:00pm. An aerial photograph was apparently taken at 10:00am (i.e., 2.5hours after the aftershock), proving the dike was still stable. One of the tailings dams (DamNo.1) failed during the mainshock.� Marcusson III. W.F., Ballard Jr. R.F., Ledbetter R.H. (1979). Liquefaction failure of tailings dams resulting

from the near Izu Oshima earthquake, 14 and 15 January 1978. Proceedings of the Panamerican Conferenceon Soil Mechanics and Foundation, 69-80.

� Ishihara K. (1984). Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit. In Proc.,Inter. Conf. on Case Histories in Geotechnical Engineering, Rolla, Missouri, May 6-11, Vol. 3, 1129-1143.

� Landslide (natural) dams performance against aftershocks

Chinese historical documents recorded that on 1 June 1786, a strong M=7.75 earthquakeoccurred in the Kangding-Luding area, Sichuan, south-western China, resulting in a largelandslide that blocked the Dadu River. A 70m high natural landslide dam formed and created a50,106m3 reservoir. The researchers demonstrated, by means of historical documents andgeomorphic evidence, that the landslide dam suddenly breached due to a major aftershock on10 June 1786, i.e., ten (10) days after the mainshock. Historic records reported over 100,000deaths from the resulting flood.� Daia F.C., Lee C.F., Deng J.H., Tham L.G. (2005). The 1786 earthquake-triggered landslide dam and

subsequent dam-break flood on the Dadu River, southwestern China. Journal of Geomorphology, 65 (2005)205–221.

I.1 Dam accidents due to Aftershocks Accidents de barrages dûs aux répliques

Page 5: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

5

Consideration of aftershocks in dam design: A case history

From the available literature, an aftershock with one order of magnitude less than the main earthquake was considered in only a single case; this was for the 85m high Mokihinui RCC

dam in New-Zealand.

Reference: Amos P., Gillon M. (2010). Dams and earthquakes in New-Zealand. International Symposium, Dams and Sustainable Water Development. Icold, Hanoi, Vietnam.

Consideration of aftershocks in dam safety assessment for research purposes

Consideration, for a 90m high gravity dam, of a 0.3g pga mainshock, that was followed by a 0.16g aftershock was analyzed.. Seismic displacements and cracks opening were accounted for in order to establish the initial

conditions that would prevail before the aftershock shaking.

Reference: Alliard P., Léger, P. (2008). Earthquake Safety Evaluation of Gravity Dams Considering Aftershocks and Reduced Drainage Efficiency.” J. Eng. Mech., 134(1), 12–22.

FERC guidance for the consideration of aftershocks

FERC suggests that aftershocks should be considered as one of the most relevant post-earthquake loading cases.

Reference: Federal Energy Regulatory Commission (FERC) (1999). Engineering Guidelines for the Evaluation of Hydropwer Projects, Chapter 11 – Arch Dams. Washington, DC 20426, October.

.

I.2 Aftershocks vs Design and safety

Page 6: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

6

Practical contributions for aftershocks characterization

Chaudhuryet H.M, Srivastava H.N. (1973). The time of occurrence and the magnitude of the largest aftershock over India. E&E Sc., Pure and Applied Geophysics. 105(1), 770-780.

Tahir M. Grasso J., Amorése D. (2012). The largest aftershock: how strong, how far away, how delayed? Geophys. Res. Lett., 39, L04,301.

Bachir Touileb, 2013. “On the consideration of aftershocks in dam design and safety.” 9th Symposium of the European Club, Venice, Italy. April.

.

I.3 Aftershocks vs Design and safety

Page 7: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

7

Aftershocks characterization

Aftershocks determination are mainly governed by Omori (1894) and Båth (1965), and Utsu(1961)

� Omori F. (1894). Investigation of aftershocks. Rep. Earthquake Inv. Comm, 2:103–139.

� Utsu T. (1961). A statistical study on the occurrence of aftershocks, Geophys. Mag, 30(4), 521–605.

� Utsu T., Ogata Y., Matsu’ura R. (1995). The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, 43(1), 1–33.

� Båth M. (1965). Lateral inhomogeneities in the upper mantle. Tectonophysics 2, 483–514.

� Helmstetter A., Sornette D. (2003). Båth’s’s law derived from the Gutenberg-Richter law and from aftershock properties. Geophys. Res. Lett., 30(20):2069 – 2072.

New and very complex consideration of aftershocks characteristics are under development, and tested in real time after real earthquakes for population

evacuation for instance (ex. California)

� Wiemer S., Gerstenberger M., Hauksson E. (2002), . Properties of the Aftershock Sequence of the 1999 Mw 7.1 Hector. Geophys. Res. Lett., 27(20), 3405-3408. October. Bulletin of the Seismological Society of America, Vol. 92, No. 4, pp. 1227–1240, May.

� Wiemer S., Katsumata K. (1999). Spatial variability of seismicity parameters in aftershock zones. J. Geophys. Res. 104, 13,135-13,151.

� Tahir M. (2011). Aftershock properties and its triggering mechanism, (PhD thesis), Grenoble University, France.

� Narteau C., Shebalin P., Holschneider M. (2005). Onset of power law aftershock decay rates in southern California. Geophys. Res. Lett., Vol. 32, L22312.

� Reasenberg P.A., Jones M.M. (1989). Earthquakes hazard after a mainshock in California, Science, 243, 1173-1176.

� Reasenberg P.A., Jones M.M. (1994). Earthquakes aftershocks: Update. Science, 265, 1251-1252.

I.4 Aftershocks vs Design and safety

Page 8: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

8

I.5 Some remarkable earthquakes and associated

largest aftershocks

Page 9: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

9

PGA of aftershock versus PGA of main shock(Touileb, 2013, European Club Venice Symposium)

I.6 Aftershock vs Main shockRéplique vs Séisme principal

Page 10: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

10

PGA of largest aftershock versus time of its occurrence and corresponding probability of occurrence

(Touileb, 2013, European Club Venice Symposium)

I.7 Largest aftershock evaluationEvaluation des caractéristiques de la réplique de plus forte intensité

Page 11: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

11

II.1 Méthode linéaire équivalente vs les méthodes non-linéairesEquivalent linear vs Non-Linear Methods

Limitations et avantages de la MLE:

Très utilisée;

Approximation de la non-linéarité des sols.

Limitations et avantages des MNL:

Moins utilisée, mais usage en très forte augmentation;

Meilleure simulation de la non-linéarité des sols;

Plus adéquate pour les séismes de forte intensité;

Meilleure pour les cas de génération et dissipation de pressions interstitielles

Meilleure pour les cas de liquéfaction

Aune déformation plastique

irréversible.

Les boucles (ττττ vs γγγγ) restent

centrées autour de zéro.

Déformations plastiques

irréversibles possibles.

Les boucles(ττττ vs γγγγ) peuvent se

décentrer.

Page 12: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

12

La méthode des éléments finis pourrait s’avérer insuffisante pour la localisation des zones de plastification (ex. Amorce d’une surface de glissement dans la pente d’un barrage en remblai):

Référence:

F. Zabala1 , R.D. Rodari1 and L.O. Oldecop, 14th WCEE, 2008, Beijing, China

“SEISMIC ANALYSIS OF EARTHDAMS USING A LAGRANGIAN PARTICLE METHOD.”

Application au barrage CFRD, H=136m, Los Caracoles, Argentine (Construit en 2009). PGA/MCE = 1.02g.

II.2 Los Caracoles Dam (Argentina) – PGA = 1,02g

Page 13: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

13

Programme de la Partie III-A

PARTIE III: Impact des séismes forts récurrents (Ba rrages soumis à deux ou

plusieurs séismes forts durant son cycle de vie)

A. Measures versus Calculs

1. Rappel des résultats du Colloque 2014 (Touileb et al., 2014, Matsumoto, 2014, )

2. Conclusions

Références

Matsumoto, N. 2014. “The observed seismic damages on embankment dams and the crucial items

be modeled”. Special Conference of JCOLD-CFBR Seminar, Chambery, France.

Touileb, B., Kirousi, F. Mercklé, S., and Andrian, F. 2014. "Comparison: Dynamic Approaches

equivalent linear and non-linear. Dynamic analysis of two rockfill dams located in Japan:

Measurements versus calculations." Special Conference of CFBR (ICOLD French National Chapter),

Chambery, France.

Nagayama Isao, Yoshikazu Yamaguchi, Takashi Sasaki, Akira Nakamura, Hideaki Kawasaki and

Daisuke Hirayama (2004). “Damage to Dams due to Three Large Earthquakes Occurred in 2003, in

Japan 36th Joint Meeting Panel on Wind and Seismic Effects 17-22 May 2004.

Tatsuo Ohmachi and Tetsuya Tahara (2011). “Nonlinear Earthquake response characteristics of a

central clay core rock fill dam” Soils and Foundations Vol.51 No.2, 227 238.

Page 14: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

14

• Barrage en enrochement H<100m, avec noyau central• Séisme avec accélération maximale très forte• Distance à l’épicentre: 15 km• 3 sismographes considérés (base, milieu et crête)• Mesure des 3 composantes (amont-aval, longitudinal, verticale)

III.A.1 Le barrage en enrochements ARATOZAWA (Japon)

BARRAGE ARATOZAWA

Page 15: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

15

Accélérations maximales enregistrées et spectres

Dommages au barrage (Observations):Tassement de la crête: 20 cm

III.A.2 Barrage ARATOZAWA

MESURES

Composante

LocationAmont-

aval(cm/s²)

Vertical(cm/s²)

Longitudinal (cm/s²)

Crête(EL279m) 525 622 455

Mi-hauteur (Noyau)

(EL250m)535 470 478

Galerie/Base(EL204m)

1024 691 899

Page 16: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

16

III.A.3 Paramètres des sols

Paramètres du calcul - Etape-0

Reference Correlation Units Limitations

Seed et al. (1984) Gmax=220 (K2)max (σ’m)1/2 kPa Granular soils

Kokusho & Esashi,

1986 kPa

Granular soils (ν=0.3)

Hardin & Black, 1968

kPa

Cohesive soils (ν =0.45)

Ishibashi and Zhang (1993)

kPa Cohesive soils

Page 17: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

17

Seed and Idriss (1970) et Kramer (1996).

� Sols granulaires:

III.A.4 Paramètres des sols

Module de cisaillement Gmax

Logiciel Quake/w

Page 18: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

18

Hardin & Drnevich (1972), Hardin (1978) and Mayne & Rix (1993).

� Sols cohérents:

e = Indice des vides;

OCR = Degré de surconsolidation;

Pa = Pression atmosphérique;

σ’m = Contrainte effective moyenne;

k = Exposant fonction de l’indice de plasticité (PI = IP);

III.A.5 Paramètres des sols

Module de cisaillement Gmax

Logiciel Quake/w

Page 19: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

19

III.A.6 Paramètres des sols

Réduction du Module de cisaillement (Courbe G/Gmax)

Formulation unifiée: Ishibashi et Zhang (1993)

Amortissement

Page 20: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

20

III.A.7 Paramètres des sols

Courbes G/Gmax et amortissement (Makdisi et Seed)

Page 21: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

21

Gmax = ρ . Vs2

III.A.8 Paramètres des sols

Vitesses de propogation des ondes de cisaillement:

Relations empiriques de Sawada(Développées sur les barrages du Japon)

Barrage #2Nouveaux paramètres des sols (Etape-1)

Page 22: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

22

La taille des éléments (L) est fonction de la fréquence maximale fmax que l’on souhaite représenter (Kuhlemeyer and Lysmer, 1973).

En général : fmax=25Hz.

L <= λ /10

avec :

λ = Longueur d’onde = Vs/f;

Vs = Vitesse de propagation des ondes de cisaillement.

III.A.9 Modélisation du milieu

Discrétisation du milieu (Eléments finis)

Page 23: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

23

III.A.10 Barrage Aratozawa - Modèle Linéaire Equivalent vs Mesures

Résultats (Artelia – Irstea, 2014)

CasFondation

rocheuse priseen compte

Module de cisaillement

G

Modèle Composante du séisme

AccélérationMaximale

horizontaleAmont-Aval en

Crête

(g)

Conditions frontières

absorbantes

Mesures - - - - - 0.525 -

Calculs

Etape-0 NonSeed & Idriss

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.94 Non

Etape-1 OuiSeed & Idriss

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.76 Non

Etape-1Non Sawada

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.7 Non

Etape-1Oui Sawada

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.54 Non

Page 24: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

24

RESULTATS

III.A.11 Barrage Aratozawa– ANALYSE NON-LINEAIRE (FLAC)

2 – Barrage avec fondation rocheuse (Frontières absorbantes)

1 - Barrage sans fondation rocheuse (Frontières absorbantes)

Page 25: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

25

III.A.12 BARRAGE Aratozawa – ZONES DE PLASTIFICATION

Note: Toutes ces zones de plastification n’ontpas été observées sur le terrain.

Sur le terrain on observe un tassement de 40cm. Pas de fissures.

2 – Barrage avec fondation rocheuse (Frontières absorbantes)

1 - Barrage sans fondation rocheuse (Frontières absorbantes)

Page 26: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

26

III.A.13 Barrage Aratozawa – Méthode Non-Linéaire (Flac) vs Mesures

Résultats PARTICIPANT#1

CasFondation

rocheuse priseen compte

Module de cisaillement

G

Constitutive model

Composante du séisme

AccélérationMaximale

horizontaleAmont-Aval en

Crête

(g)

Conditions frontières

absorbantes

Mesures - - - - - 0.525 -

Calculs

Etape-0 NonSeed & Idriss

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.94 Non

Etape-1 OuiSeed & Idriss

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.76 Non

Etape-1Non Sawada

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.7 Non

Etape-1Oui Sawada

Equivalent Lineaire

QUAKE)

horizontal+Vertical 1.54 Non

Etape-1Non Sawada

Non-linéaire

(Flac 2D)horizontal 0.91 Non

Etape-1Oui Sawada

Non-linéaire

(Flac 2D)horizontal 0.75 Oui

Page 27: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

27

o Séismes de forte intensité (Cas du barrage Aratozaw a - PGA fort):

o Apparition d’une forte non-linéarité dans les sols.

o La méthode Linéaire équivalente atteint ses limites d’application;

o L’utilisation des modèles non-linéaires devient néc essaire;

o Important de considérer des conditions frontières a bsorbantes.

o Travaux onéreux de réhabilitation des barrages (aid e à la décision)

o Justification au moyen des Méthodes non-linéaires.

III.A.14 CONCLUSIONS

Page 28: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

28

PARTIE III: Impact des séismes forts récurrents (Ba rrages soumis à deux ou

plusieurs séismes forts durant son cycle de vie)

B. Impact d’un nouveau séisme de même intensité sur le barrage

1. Augmentation du cycle de vie des grands barrages mo dernes, et augmentation de la probabilité qu’un

grand barrage soit soumis à plusieurs séismes forts proches du SMP (MCE)

2. Un séisme de fort intensité modifient considérablem ent les conditions initiales qui prévaudront lors d e

l’occurrence d’un prochain séisme fort

3. Application au barrage Aratozawa:

1. Scénario adopté pour les calculs: Quel est l’impa ct sur le barrage Aratozawa s’il sera soumis à

un nouveau séisme fort identique à celui qu’il a dé jà subi (PGA=1g);

2. Impact du premier séisme (Colloque JCOLD-CFBR, 20 14, France)

3. Impact du second séisme

4. Conclusion

Programme de la Partie III-B

Page 29: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

29

III.B.1 Barrage Aratozawa – Sollicitations sismiques - Input motions

Input motion of 2003 PGA=1g earthquake (0-20sec) followed by its duplicate for evaluation of the impact of a hypothetical second but similar earthquake on Aratozawa

dam.

Page 30: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

30

III.B.2 Barrage Aratozawa - 2ème choc vs 1er

Choc – 2nd Schock vs 1st Shock

Maximum shear strains: 1st shock

Maximum shear strains: 2nd shock

Page 31: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

31

X displacements :

1st shock

X displacements :

2nd shock

III.B.3 Barrage Aratozawa - 2ème choc vs 1er

Choc – 2nd Schock vs 1st Shock

Page 32: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

32

III.B.4 Barrage Aratozawa - 2ème choc vs 1er

Choc – 2nd Schock vs 1st Shock

Y displacements : 2nd shock

Y displacements : 1st shock

Page 33: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

33

Middle of Dam Crest (Note: This is not the location of maximum displacements)

Horizontal (X) and Vertical (Y) displacements : 2nd shock vs 1st shock

TRIAL using Quake/W (Non-Linear) : Not Recommended (Inconsistencies and limitations found/Agreed by Developer in Calgary. To be used with caution)

III.B.5 Barrage Aratozawa - 2ème choc vs 1er

Choc – 2nd Schock vs 1st Shock

Page 34: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

34

Middle of Dam Crest (Note: This is not the location of maximum displacements)

Horizontal (X) and Vertical (Y) displacements : 2nd shock vs 1st shock

Flac Non-Linear

III.B.6 Barrage Aratozawa - 2ème choc vs 1er

Choc – 2nd Schock vs 1st Shock

-20cm

-80cm

Page 35: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

35

Downstream side of Dam Crest (Note: This is not the location of maximum displacements)

Horizontal (X) displacements : 2nd shock vs 1st shock

Flac Non-Linear (Input EQ reduced to its core of about 11seconds)

III.B.7 Barrage Aratozawa - 2ème choc vs 1er Choc – 2nd Schock vs 1st Shock

60cm

135cm

Page 36: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

36

Downstream side of Dam Crest (Note: This is not the location of maximum displacements)

Vertical (Y) displacements : 2nd shock vs 1st shock

Flac Non-Linear (Input EQ reduced to its core of about 11seconds)

III.B.8 Barrage Aratozawa - 2ème choc vs 1er Choc – 2nd Schock vs 1st Shock

-10cm

-30cm

Page 37: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

37

Pour les barrages qui ont subi des séismes de forte intensité (ex. Barrage Aratozawa avec PGA=1g),

la revue de la sécurité, incluant une réévaluation de la sécurité sous l’effet d’un futur nouveau

séisme de forte intensité, il faudra considérer que les conditions initiales ont été drastiquement

modifiés par le premier séisme fort (PGA=1g).

Les calculs montrent que les plans de glissement - s ous chacune des pentes - qui ont été initiés par

le premier séisme se propagent de manière plus impo rtante lors du second séisme.

La méthode linéaire équivalente ne s’applique plus. Déjà que la méthode atteignait, et même

dépassait, sa limite d’utilisation dans le cas du p remier séisme avec un PGA = 1g.

La croyance selon laquelle l’impact et les dommages seraient moins importants sous l’effet d’un

séisme d’intensité inférieur ou équivalent n’est su pportée ni par les observations ni par les calculs.

Partie III.B. CONCLUSIONS

Page 38: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

38

For dams that suffered earthquakes of high intensit y (eg. Aratozawa Dam with PGA = 1g), the safety

review, including a reassessment of the security un der the effect of a future new major earthquake

will require consider that the initial conditions w ere drastically changed by the first strong

earthquake (PGA = 1g).

Calculations show that the slip planes - under each of the slopes - which were initiated by the first

quake spread to more important during the second ea rthquake.

The equivalent linear method no longer applies. Alr eady the method reached and even exceeded, its

limit of use in the case of the first earthquake wi th PGA = 1g.

The belief aiming that the impact and damage would be lower as a result of a future earthquake of

lower or equivalent intensity is supported neither by the observations nor by calculations.

Partie III.B. CONCLUSIONS (English)

Page 39: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

39

I. L’effet des répliques sismiques n’est pas encore adéquatement pris en compte. Un travail est à acco mplir à ce

sujet en particulier dans le cas des barrages conte nant des matériaux peu denses. Dans tous les cas, u ne évaluation

de la durée nécessaire à la dissipation des pressio ns interstitielles induites par le séisme est requi se.

II. L’usage des méthodes non-linéaires devient obli gatoire car le modèle linéaire équivalent (Modèle d e Seed et

Idriss) ne conserve pas de mémoire au sujet des déf ormations plastiques accumulés à la suite du premie r séismes.

III.A Les calculs au moyen du modèle non-linéaire m ontrent une bonne corrélation avec les mesures. Cep endant,

toutes les nuances relevés par le calcul n’ont pas été toutes observés sur le terrain (zones de fortes déformations

de cisaillement, initiation de plans de glissement, zones plastifiées, etc.)

III.B Pour les barrages qui ont subi des séismes de forte intensité (ex. Barrage Aratozawa avec PGA=1g ), la revue de

la sécurité, incluant une réévaluation de la sécuri té sous l’effet d’un futur nouveau séisme de forte intensité, il

faudra considérer que les conditions initiales ont été drastiquement modifiés par le premier séisme fo rt (PGA=1g).

CONCLUSIONS GENERALES

Page 40: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

20

/09

/20

16

ARTE

LIA

40

I. The effect of aftershocks is not yet adequately addressed. Work is to be done about it especially i n the case of

dams containing low density materials. In all cases , an estimate of the time necessary for the dissipa tion of pore

pressures induced by the earthquake is required.

II. The use of nonlinear methods becomes mandatory since the equivalent linear model (Seed and Idriss) does not

feature memory about the accumulated plastic strain after the first earthquake.

III.A Calculations using the non-linear model corre late well with measurements. However, all the nuanc es identified

by the computation has not all been observed in the field (areas of high shear deformations, slip plan es initiation,

plasticized zones, etc.)

III.B For dams that suffered earthquakes of high in tensity (eg. Aratozawa Dam with PGA = 1g), the safe ty review,

including a reassessment of the security under the effect of a future new major earthquake we should c onsider that

the initial conditions were drastically changed by the first strong earthquake (PGA = 1g).

CONCLUSIONS GENERALES

Page 41: Effects of future strong earthquakes and other aftershocks on ...cnpgb.apambiente.pt/IcoldClub/documents...Effects of future strong earthquakes and other aftershocks on large rockfilldams

Saint-Malo, France, 1er Septembre 2016

Merci

Thank you

Acknowledgements renewed to JCOLD Committee for this unique cooperative work