EFFECT%OFAMMONIUMADDITION%ON%THE%MICROBIAL%FOOD%WEB ... ·...

1
EFFECT OF AMMONIUM ADDITION ON THE MICROBIAL FOOD WEB STRUCTURE AND COMMUNITY COMPOSITION OF THE OSMOTROPHS IN THE COMAU FJORD IN SOUTHERN CHILE Lasse Mork Olsen 1 , Klaudia Hernández 2 , Murat Van Ardelan 3 , Jose Luis Iriarte 4 , Nicolas Sanchez 3 , Humberto Gonzalez 2 , Nils Tokle 5 , CrisHna Dorador 6 , Yngvar Olsen 5 a) Nano-autotrophs 0 2 4 6 8 1012141618 g Carbon L -1 0 20 40 60 80 100 120 140 160 180 b) Micro-autotrophs 0 2 4 6 8 1012141618 g Carbon L -1 0 100 200 300 400 500 e) Micro-heterotrophs Time (days) 0 2 4 6 8 1012141618 g Carbon L -1 0 100 200 300 400 500 600 c) Nano-flagellates 0 2 4 6 8 10 12 14 16 g Carbon L -1 50 100 150 200 250 300 350 T1 T2 T3 T4 T5 T6 T7 T8 d) Pico-heterotrophs Time (days) 0 2 4 6 8 10 12 14 16 g Carbon L -1 0 50 100 150 200 250 a) Nano-autotrophs 0 1 2 3 4 g Carbon L -1 20 30 40 50 60 70 80 90 100 b) Micro-autotrophs 0 1 2 3 4 0 50 100 150 200 250 300 350 c) Nano-flagellates 0 1 2 3 4 g Carbon L -1 120 140 160 180 200 220 240 d) Micro-heterotrophs 0 1 2 3 4 0 50 100 150 200 250 300 350 e) Pico-heterotrophs L N ( mol NH 4 l -1 d -1 ) 0 1 2 3 4 g Carbon L -1 40 60 80 100 120 140 f) Copepods L N ( mol NH 4 l -1 d -1 ) 0 1 2 3 4 0 10 20 30 40 50 60 70 CONCLUSIONS Ammonium, nitrate and silicon were depleted in all microcosms throughout the experiment, whereas phosphate was sustained at a concentra6on of 0.40.5 micro molar, indica6ng nitrogenlimita6on in general and possibly colimita6on by silicon of the diatoms. The average biomass of phytoplankton, ciliates and copepods showed a significant linear response to the nitrogen loading rate. The biomass of heterotrophic bacteria and heterotrophic and autotrophic flagellates did not respond to the nitrogen loading gradient, indica6ng that the biomass of these were grazer controlled. Canonical correspondence analysis (CCA) indicated that the community composi6on of both autotrophs and heterotrophic bacteria was significantly constrained by the gradient of ammonium loading rates (p<0.05). METHODS Ammonium and phosphate was added according to the molar ra6o released from salmon, and silicon according to the Redfield ra6o (N:Si:P = 28:16:1). Nutrients were added daily in a gradient of 8 loading rates (Table 1). Treatment 1 had no nutrient addi6on, whereas treatment 2 was meant to mimic natural loading (N:Si:P = 16:16:1). Treatment L N (µmol NH 4 l 1 d 1 ) L P (µmol PO 4 l 1 d 1 ) L Si (µmol Si l 1 d 1 ) 1 0.00 0.00 0.00 2 0.30 0.019 0.30 3 0.50 0.018 0.50 4 0.70 0.025 0.70 5 1.00 0.036 1.00 6 1.40 0.050 1.40 7 2.00 0.071 2.00 8 3.00 0.107 3.00 FuncHonal group DominaHng organisms QuanHficaHon Nanoautotrophs Diatoms 220 µm Microscopy counts 1 , volume calcula6ons 2 , carbon:volume 3 Microautotrophs Diatoms > 20 µm Same as above Microheterotrophs Ciliates > 10 µm Same as above Nanoflagellates Heterotrophic and autotrophic flagellates < 20 µm Fluorescence microscopy counts 4 average volume = 35 µm 3 Picohetrotrophs Heterotrophic bacteria < 2 µm Fluorescence microscopy counts 5 Carbon per cell = 25 fg Mesoplankton Copepods Microscopy and length weight 6 1 Utermöhl H (1958) Zur Vervollkommning der qua6ta6ven PhytoplanktonMethodik. Miaeilungen Interna6onal Ver einingung fur Theor und Angewandle Limnologie 9: 1–38. 2 Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calcula6on for pelagic and benthic microalgea. Journal of Phycology 35: 403 424. 3 MendenDeuer S, Lessard EJ (2000) Carbon to volume rela6onships for dinoflagellates, diatoms, and other pro6st plankton. Limnol. Oceanogr. 45: 569–579. 4 Hass L, 1982. Improved epifluorescence microscopy for observing planktonic microorganisms. Ann. Inst. Oceanogr. 58: 261–266. 5 Porter K, Feig Y (1980) The use of DAPI for iden6fying and coun6ng aqua6c microflora. Limnol. Oceanogr. 25: 943–948. 6 Jensen I (2012) Master thesis. NTNU, Dept. of biology. 7 Grasshoff K, Ehrhardt M and Kremling F (1983) Methods of Seawater Analysis. Verlag Chemie, Weinheim, 2nd ed. OBJECTIVES To test the impact of inorganic nutrients as they are released from aquaculture on the pelagic microbial food web in a Patagonian nord in Chile, a eutrophica6on microcosm experiment with 35 liter containers was performed with natural water in the Comau Fjord during austral summer 2010. Phosphate, nitrate and silicate was measured in an autoanalyzer, ammonium was measured by the indophenolblue method. Biomass es6mates during the experiment was based on organism counts (Table 2). The community composi6on of phytoplankton was followed by microscopy iden6fica6on, whereas that of heterotrophic bacteria by PCR DGGE 16S rDNA fingerprin6ng. From the species data matrices dissimilarity matrices were calculated, and based on these nonmetric mul6dimensional scaling (NMDS) ordina6on and canonical correspondence analysis (CCA) was performed. Figure 1: Development of carbon biomass in the microcosms during the experiment Figure 2: Average carbon biomass as a func6on of nitrogen loading rate for each func6onal plankton group Figure 3: NMDS ordina6on based on Bray Cur6s dissimilarity showing succession of the bacterial community from day 0 for treatment 4 and 6, and 6me final for the others Figure 4: BrayCur6s based NMDS showing the succession of the phytoplankton community composi6on RESULTS Table 2: Domina6ng organisms in 6 func6onal plankton groups and methods used for quan6fica6on Table 1: Gradients of nutrient loading per day in the microcosms Acknowledgements: This experiment was a part of the NTNU, Dept. of Biology project WAFOW financed by the Norwegian Research Council (project 193661). Thanks to all the hard working students and volunteers involved, and all our friends at Huinay field sta6on. Stress = 0.13 Stress = 0.08 1 Norwegian University of Science and Technology, Dept. of Sociology and Poli6cal Science, Trondheim, Norway, 2 Universidad Austral de Chile, Ins6tuto de Ciencias Marinas y Limnológicas, Valdivia, Chile, 3 Norwegian University of Science and Technology, Dept. of Chemistry, Trondheim, Norway, 4 Universidad Austral de Chile, Ins6tuto de Acuicultura, Puerto Mona, Chile, 5 Norwegian University of Science and Technology, Dept. of Biology, Trondheim, Norway, 6 Universisad de Antofagasta, Departamento de Biotecnología Email: [email protected]

Transcript of EFFECT%OFAMMONIUMADDITION%ON%THE%MICROBIAL%FOOD%WEB ... ·...

Page 1: EFFECT%OFAMMONIUMADDITION%ON%THE%MICROBIAL%FOOD%WEB ... · effect%ofammoniumaddition%on%the%microbial%food%web% structure%and%community%composition%ofthe%osmotrophs% …

EFFECT  OF  AMMONIUM  ADDITION  ON  THE  MICROBIAL  FOOD  WEB  STRUCTURE  AND  COMMUNITY  COMPOSITION  OF  THE  OSMOTROPHS  

 IN  THE  COMAU  FJORD  IN  SOUTHERN  CHILE  

Lasse  Mork  Olsen1,  Klaudia    Hernández2,  Murat  Van  Ardelan3,  Jose  Luis  Iriarte4,  Nicolas  Sanchez3,  Humberto  Gonzalez2,    

Nils  Tokle5,  CrisHna  Dorador6,  Yngvar  Olsen5  

a) Nano-autotrophs

0 2 4 6 8 1012141618

mg

Car

bon

L-1

020406080

100120140160180

b) Micro-autotrophs

0 2 4 6 8 1012141618

mg

Car

bon

L-1

0

100

200

300

400

500

e) Micro-heterotrophs

Time (days)

0 2 4 6 8 1012141618

mg

Car

bon

L-1

0

100

200

300

400

500

600

c) Nano-flagellates

0 2 4 6 8 10 12 14 16

mg

Car

bon

L-1

50

100

150

200

250

300

350

T1 T2 T3 T4 T5 T6 T7 T8

d) Pico-heterotrophs

Time (days)

0 2 4 6 8 10 12 14 16

mg

Car

bon

L-1

0

50

100

150

200

250

a) Nano-autotrophs

0 1 2 3 4

mg

Car

bon

L-1

2030405060708090

100

b) Micro-autotrophs

0 1 2 3 40

50

100

150

200

250

300

350

c) Nano-flagellates

0 1 2 3 4

mg

Car

bon

L-1

120

140

160

180

200

220

240

d) Micro-heterotrophs

0 1 2 3 40

50

100

150

200

250

300

350

e) Pico-heterotrophs

LN (mmol NH4 l-1 d-1)

0 1 2 3 4

mg

Car

bon

L-1

40

60

80

100

120

140

f) Copepods

LN (mmol NH4 l-1 d-1)

0 1 2 3 40

10

20

30

40

50

60

70

CONCLUSIONS  •  Ammonium,  nitrate  and  silicon  were  depleted  in  all  microcosms  throughout  the  

experiment,  whereas  phosphate  was  sustained  at  a  concentra6on  of  0.4-­‐0.5  micro-­‐molar,  indica6ng  nitrogen-­‐limita6on  in  general  and  possibly  co-­‐limita6on  by  silicon  of  the  diatoms.    

•  The  average  biomass  of  phytoplankton,  ciliates  and  copepods  showed  a  significant  linear  response  to  the  nitrogen  loading  rate.  The  biomass  of  heterotrophic  bacteria  and  heterotrophic  and  autotrophic  flagellates  did  not  respond  to  the  nitrogen  loading  gradient,  indica6ng  that  the  biomass  of  these  were  grazer  controlled.    

•  Canonical  correspondence  analysis  (CCA)  indicated  that  the  community  composi6on  of  both  autotrophs  and  heterotrophic  bacteria  was  significantly  constrained  by  the  gradient  of  ammonium  loading  rates  (p<0.05).    

METHODS  Ammonium  and  phosphate  was  added  according  to  the  molar  ra6o  released  from  salmon,  and  silicon  according  to  the  Redfield  ra6o  (N:Si:P  =  28:16:1).  Nutrients  were  added  daily  in  a  gradient  of  8  loading  rates  (Table  1).  Treatment  1  had  no  nutrient  addi6on,  whereas  treatment  2  was  meant  to  mimic  natural  loading  (N:Si:P  =  16:16:1).    

Treatment   LN  (µmol  NH4  l-­‐1  d-­‐1)   LP  (µmol  PO4  l-­‐1  d-­‐1)   LSi  (µmol  Si  l-­‐1  d-­‐1)  1   0.00   0.00   0.00  2   0.30   0.019   0.30  3   0.50   0.018   0.50  4   0.70   0.025   0.70  5   1.00   0.036   1.00  6   1.40   0.050   1.40  7   2.00   0.071   2.00  8   3.00   0.107   3.00  

FuncHonal  group   DominaHng  organisms   QuanHficaHon    Nano-­‐autotrophs   Diatoms  2-­‐20  µm   Microscopy  counts1,  volume  

calcula6ons2,  carbon:volume3  Micro-­‐autotrophs   Diatoms  >  20  µm   Same  as  above  Micro-­‐heterotrophs   Ciliates  >  10  µm   Same  as  above  

Nano-­‐flagellates   Heterotrophic  and  autotrophic  flagellates  <  20  µm  

Fluorescence  microscopy  counts4  average  volume  =  35  µm3  

Pico-­‐hetrotrophs   Heterotrophic  bacteria  <  2  µm   Fluorescence  microscopy  counts5  Carbon  per  cell  =  25  fg  

Meso-­‐plankton   Copepods     Microscopy  and  length-­‐weight6  

1Utermöhl  H  (1958)  Zur  Vervollkommning  der  qua6ta6ven  Phytoplankton-­‐Methodik.  Miaeilungen  Interna6onal  Ver-­‐  einingung  fur  Theor  und  Angewandle  Limnologie  9:  1–38.  

2Hillebrand  H,  Durselen  CD,  Kirschtel  D,  Pollingher  U,  Zohary  T  (1999)  Biovolume  calcula6on  for  pelagic  and  benthic  microalgea.  Journal  of  Phycology  35:  403  -­‐  424.  

3Menden-­‐Deuer  S,  Lessard  EJ  (2000)  Carbon  to  volume  rela6onships  for  dinoflagellates,  diatoms,  and  other  pro6st  plankton.  Limnol.  Oceanogr.  45:  569–579.  

4Hass  L,  1982.  Improved  epifluorescence  microscopy  for  observing  planktonic  micro-­‐organisms.  Ann.  Inst.  Oceanogr.  58:  261–266.  

5Porter  K,  Feig  Y  (1980)  The  use  of  DAPI  for  iden6fying  and  coun6ng  aqua6c  microflora.  Limnol.  Oceanogr.  25:  943–948.  

6Jensen  I  (2012)  Master  thesis.  NTNU,  Dept.  of  biology.      7Grasshoff  K,  Ehrhardt  M  and  Kremling  F  (1983)  Methods  of  Seawater  Analysis.  Verlag  Chemie,  Weinheim,  2nd  ed.        

OBJECTIVES  To  test  the  impact  of  inorganic  nutrients  as  they  are  released  from  aquaculture  on  the  pelagic  microbial  food  web  in  a  Patagonian  nord  in  Chile,  a  eutrophica6on  microcosm  experiment  with  35  liter  containers  was  performed  with  natural  water  in  the  Comau  Fjord  during  austral  summer  2010.    

Phosphate,  nitrate  and  silicate  was  measured  in  an  autoanalyzer,  ammonium  was  measured  by  the  indophenol-­‐blue  method.  Biomass  es6mates  during  the  experiment  was  based  on  organism  counts  (Table  2).  The  community  composi6on  of  phytoplankton  was  followed  by  microscopy  iden6fica6on,  whereas  that  of  heterotrophic  bacteria  by  PCR-­‐DGGE  16S  rDNA  fingerprin6ng.  From  the  species  data  matrices  dissimilarity  matrices  were  calculated,  and  based  on  these  non-­‐metric  mul6dimensional  scaling  (NMDS)  ordina6on  and  canonical  correspondence  analysis  (CCA)  was  performed.    

Figure  1:  Development  of  carbon  biomass  in  the  microcosms  during  the  experiment    

Figure  2:  Average  carbon  biomass  as  a  func6on  of  nitrogen  loading  rate  for  each  func6onal  plankton  group    

Figure  3:  NMDS  ordina6on  based  on  Bray-­‐Cur6s  dissimilarity  showing  succession  of  the  bacterial  community  from  day  0  for  treatment  4  and  6,  and  6me  final  for  the  others      

Figure  4:  Bray-­‐Cur6s  based  NMDS  showing  the  succession  of  the  phytoplankton  community  composi6on      

RESULTS    

Table  2:  Domina6ng  organisms  in  6  func6onal  plankton  groups  and  methods  used  for  quan6fica6on        

Table  1:  Gradients  of  nutrient  loading  per  day  in  the  microcosms      

Acknowledgements:  This  experiment  was  a  part  of  the  NTNU,  Dept.  of  Biology  project  WAFOW  financed  by  the  Norwegian  Research  Council  (project  193661).  Thanks  to  all  the  hard  working  students  and  volunteers  involved,  and  all  our  friends  at  Huinay  field  sta6on.              

Stress  =  0.13   Stress  =  0.08    

1Norwegian  University  of  Science  and  Technology,  Dept.  of  Sociology  and  Poli6cal  Science,  Trondheim,  Norway,  2Universidad  Austral  de  Chile,  Ins6tuto  de  Ciencias  Marinas  y  Limnológicas,  Valdivia,  Chile,  3Norwegian  University  of  Science  and  Technology,  Dept.   of   Chemistry,   Trondheim,  Norway,   4Universidad  Austral   de   Chile,   Ins6tuto   de  Acuicultura,   Puerto  Mona,   Chile,   5Norwegian  University   of   Science   and   Technology,  Dept.   of   Biology,   Trondheim,  Norway,   6Universisad  de  Antofagasta,  Departamento  de  Biotecnología  

Email:  [email protected]