Effect of heat input and filler metals on weld strength of ...

9
Effect of heat input and filler metals on weld strength of gas tungsten arc welding of AISI 316 weldments Essam Ahmed 1 , Ramy Ahmed 2 , A EL-Nikhaily 2 , A R S Essa 2,3 1. Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University,43721 Egypt; 2. Mechanical Department, Faculty of Industrial Education, Suez University,43721 Egypt; 3. Mechanical Engineering Department, Egyptian Academy for Engineering & Advanced Technology, Affiliated to Ministry of Military Production, Cairo 3056, Egypt Received 7 January 2020; accepted 14 February 2020 Abstract The present work investigates the effect of filler metals and heat input on weld bead geometry and mechanical properties of alloy 316 welded by using GTAW. ER309L, ER316L and ERNiCrMo-3 filler metals, are applied to study their effect on the weldment. Weld de- fects are examined using radiographic testing. The mechanical properties of welds are evaluated through uniaxial testing, hardness measur- ing, and bending test. The mechanical properties and cooling rate decrease with increasing heat input. Tensile strength, yield stress and per- centage elongation of weldments using three fillers are determined. Best results are obtained using ERNiCrMo-3. Besides, weld nugget area, cooling time and solidification time increases with increasing heat input. Finally, applying bending test on weld samples, cracks, tearing and surface defects are not observed. Key words TIG welding, filler metals, nugget area, stainless steel, cooling rate 0 Introduction Stainless steels are widely used in different industries such as, medical, nuclear, petroleum and chemical indus- tries, due to their good mechanical properties and high cor- rosion resistance. Among the AISI 300 series alloying ele- ments such as Ni, N, Mn, Si and Mo are added with con- trolled other elements (B, S, P, etc.), for specific require- ments in different industries [1] . Gas tungsten arc welding (GTAW) is mostly adopted for a high level of weld quality [2] . In TIG welding, due to the continuous heat inputs samples dimensions at weld pool and heat affected zone (HAZ) are changed [3] . However, the welding processes are strongly influenced by materials properties such as micro- structure, mechanical behavior and corrosion resistance [1] . Successful GTAW weldments of Monel 400 and AISI 304 were developed using ER304, ERNiCrMo-3 and ERNi- CrMo-4 as welding wires [4] . It was concluded that the tensile strength and yield strength of ERNiCrMo-3 weld- ments were comparable to those of parent metals. The tensile strength and yield strength of dissimilar ERNiCrMo- 3 welded joint was better than ER304 and ERNiCrMo-4 weldments. Meanwhile, the effect of welding wires on the characteristics of dissimilar welding SS 316L and carbon steel A516 GR 70 was studied [5] using three different filler materials ER80-Ni1, ER309L and ER NiCrMO-3 (Inconel 625). Inconel 625 filler metal was found more suitable to weld dissimilar SS 316L and carbon steel A516 GR 70 than other different fillers. Best results concerning ultimate tensile strength and hardness were obtained using the ER NiCrMO-3 (Inconel 625) as welding electrode. The effect of cooling rate on solidification and segrega- tion characteristics of super austenitic stainless steel(SASS) was studied [6] , and it was found that grain size was refined more with increasing the cooling rate. Also, the secondary dendrite arm spacing decreased sharply at welding begin, then decreased slowly with increasing cooling rate, and the transition cooling rate was 20°C/s. Furthermore, the effect of heat input on the cooling rate and pitting resistance equi- valent number(PREN) in super duplex stainless steel Corresponding author: Ramy Ahmed, Ph.D. Mainly engaged in welding metallurgy. E-mail: [email protected] doi: 10.12073/j.cw.20200107001 8 CHINA WELDING Vol. 29 No. 1 March 2020

Transcript of Effect of heat input and filler metals on weld strength of ...

Page 1: Effect of heat input and filler metals on weld strength of ...

 

Effect of heat input and filler metals on weld strength of gastungsten arc welding of AISI 316 weldments

Essam Ahmed1,  Ramy Ahmed2,  A EL-Nikhaily2,  A R S Essa2,3

1. Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University,43721 Egypt;2. Mechanical Department, Faculty of Industrial Education, Suez University,43721 Egypt;

3. Mechanical Engineering Department, Egyptian Academy for Engineering & Advanced Technology,Affiliated to Ministry of Military Production, Cairo 3056, Egypt

Received 7 January 2020; accepted 14 February 2020

Abstract The present work investigates the effect of filler metals and heat input on weld bead geometry and mechanical properties of alloy316 welded by using GTAW. ER309L, ER316L and ERNiCrMo-3 filler metals, are applied to study their effect on the weldment. Weld de-fects are examined using radiographic testing. The mechanical properties of welds are evaluated through uniaxial testing, hardness measur-ing, and bending test. The mechanical properties and cooling rate decrease with increasing heat input. Tensile strength, yield stress and per-centage elongation of weldments using three fillers are determined. Best results are obtained using ERNiCrMo-3. Besides, weld nugget area,cooling time and solidification time increases with increasing heat input. Finally, applying bending test on weld samples, cracks, tearing andsurface defects are not observed.

Key words TIG welding, filler metals, nugget area, stainless steel, cooling rate

 

0 Introduction

Stainless  steels  are  widely  used  in  different  industriessuch as,  medical,  nuclear,  petroleum  and  chemical   indus-tries, due to their good mechanical properties and high cor-rosion resistance.  Among the  AISI  300 series  alloying ele-ments such  as  Ni,  N,  Mn,  Si  and  Mo  are  added  with   con-trolled other  elements  (B,  S,  P,  etc.),  for  specific   require-ments  in  different  industries[1].  Gas  tungsten  arc  welding(GTAW)  is  mostly  adopted  for  a  high  level  of  weldquality[2]. In TIG welding, due to the continuous heat inputssamples  dimensions  at  weld  pool  and  heat  affected  zone(HAZ)  are  changed[3].  However,  the  welding  processes  arestrongly influenced  by  materials  properties  such  as  micro-structure, mechanical behavior and corrosion resistance[1].

Successful  GTAW weldments  of  Monel  400  and  AISI304 were developed using ER304, ERNiCrMo-3 and ERNi-CrMo-4  as  welding  wires[4].  It  was  concluded  that  thetensile strength  and  yield  strength  of  ERNiCrMo-3   weld-ments  were  comparable  to  those  of  parent  metals.  The

tensile strength and yield strength of dissimilar ERNiCrMo-3  welded  joint  was  better  than  ER304  and  ERNiCrMo-4weldments.  Meanwhile,  the  effect  of  welding  wires  on  thecharacteristics  of  dissimilar  welding  SS  316L  and  carbonsteel  A516 GR 70 was studied[5] using three different fillermaterials  ER80-Ni1,  ER309L  and  ER  NiCrMO-3  (Inconel625).  Inconel  625  filler  metal  was  found  more  suitable  toweld dissimilar SS 316L and carbon steel A516 GR 70 thanother  different  fillers.  Best  results  concerning  ultimatetensile  strength  and  hardness  were  obtained  using  the  ERNiCrMO-3 (Inconel 625) as welding electrode.

The effect of cooling rate on solidification and segrega-tion characteristics of super austenitic stainless steel(SASS)was studied  [6], and it was found that grain size was refinedmore  with  increasing  the  cooling  rate.  Also,  the  secondarydendrite  arm  spacing  decreased  sharply  at  welding  begin,then decreased slowly with increasing cooling rate, and thetransition  cooling  rate  was  20°C/s.  Furthermore,  the  effectof heat input on the cooling rate and pitting resistance equi-valent  number(PREN)  in  super  duplex  stainless  steel

Corresponding author: Ramy Ahmed, Ph.D. Mainly engaged in welding metallurgy. E-mail: [email protected]: 10.12073/j.cw.20200107001

  8 CHINA WELDING Vol. 29 No. 1 March 2020

Page 2: Effect of heat input and filler metals on weld strength of ...

(SDSS)  welds  was  studied[7],  and  it  was  found  that  grainsize  and  cooling  rate  increased  with  increasing  heat  input.Best  results  for  PREN are obtained at  an intermediate  heatinput value of 1.4 kJ/mm.

The  influence  of  welding  current  on  AISI  316  weldedby  gas  tungsten  arc  welding(GTAW )was  studied[8],  and  itwas  concluded  that  ultimate  tensile  strength  (UTS)  andhardness Vickers(HV) increased with increasing heat input.The best result for UTS and HV was obtained using 100A.Also, sigma phase and Cr23C6 in 316 SS welded samples in-creased with increasing heat input. The influence of variouswelding variables such as heat input, bevel angle and shield-ing gas flow rate on weld sample of similar graded materialwelded by GTAW was studied[9], and it was concluded thatUTS and HV increased with increasing bevel angle, but de-creased  with  increasing  the  heat  input  and  shielding  gasflow rate. The best result for UTS and HV was obtained atlow heat input and high bevel angle. The effect of weldingelectrode  on  the  characteristics  of  dissimilar  AISI  420  and304L  welds  was  studied[10]  using  three  different  filler  rodsER312,  ER316L  and  ER2209.  The  ER2209  rod  producedwelds  with  highest  impact  toughness  and  lowest  hardness.The effect of weld bead area on mechanical properties wasinvestigated[11], and  it  was  found  that  the  nugget  area   in-creases with increasing weld current and arc voltage, but de-creases with increasing welding speed.

The cooling rate is the temperature loss per unit time. Itis known that the cooling rate in the temperature range 800-500°C  is  important  for  phase  transformation  of  stainlesssteel. It  determines  the  final  solidification  mode  or  micro-structure of the weld metal and its properties[12].

The influence of multi-pass and welding current  on thewelding strength and hardness value in 7A52 AA welds wasstudied[13], and it was found that welding strength decreasedwith increasing welding current. The HV between the weldregion (WZ) and the heat affected region (HAZ) was char-acterized by a  gradual  transition,  but  the  HV gradually  de-creased  as  the  distance  from  the  weld  line  increased.Moreover,  optimization  of  dissimilar  ST04Z  galvanizedsteel  and  5A06  Al  alloy  welds  sample  characteristics  wasstudied[14]  using  four  different  laser  power  1  000,  1  200,1 500 and 1 700 W. The best result for tensile strength wereobtained at 1 200 W.

Hence,  the  main  objective  of  this  work is  to  obtain  thesuitable conditions that yield a reliable GTAW joint. This isachieved by changing the welding current  and filler  metalsfor welding stainless steel 316. The effects of welding vari-ables  on  welded  joints,  its  mechanical  properties  and  weldbead are studied in details.

1 Experiment

AISI 316 stainless steels with 200 mm×100 mm×4 mmas parent  materials  are  considered  for  butt  joint   configura-tion  using  employing  pulse  current  TIG  welding  process.Three  filler  metals  (a-ER309L,  b-ER316L  and  c-ERNi-CrMo-3) of 2.4 mm diameter are used. The chemical com-positions  of  the  base  metal  and  filler  metals  are  listed  inTable 1, and their mechanical properties are listed in Table 2.

Base  metal  samples  are  made  using  a  standard  2  mmroot  face  butt  joint  configuration,  as  shown  in  Fig.1a. Be-fore welding,  base metal  and filler  metals  are cleaned withacetone. Parent materials are tack welded on both ends andon sample  center  before  completing  welding  to  avoid  mis-alignment of  the  plates.  Detailed  applied  parametric   com-binations  are  presented  in  Table 3.  Radiography  testing(RT) is carried out in DELTA 800 Company. Surface hard-ness of weldments and base metal are measured by a Vick-ers  hardness  tester.  Hardness  profile  of  welded  joint  ismeasured every 1 mm over a single indentations line using1 kg load and 20 s loading time.

The mechanical properties, such as YS and UTS are de-termined by  uniaxial  tensile  testing  using  a  universal   test-ing machine (Instron Model) at a strain rate of 10−3s−1. Thegeometry  and  dimensions  of  the  applied  standard  tensilesample  are  shown  in  Fig.1.  The  deformability  of  weldedsteel  is  determined  using  a  bending  test  according  to(ASTM E190-92), and the specimen is put on two support-ing  rollers  and  is  pressed  through  between  the  rollers.  Thedistance  between  the  supporting  rollers   “ Lf”  is  equal  toformer diameter  “d” plus 3 times specimen thickness “a”.The backside of the specimen (tension side) is observed, tostop  the  test  if  a  surface  crack  develops,  and  the  angle  towhich the specimen could be bent is measured. The heat in-put   and  nugget  area   during  welding  can  be  estimated  byEq.1[2] and Eq.2[11], respectively.

Table 1 Chemical compositions of base metal and filler metals (wt.%)Material C Cr S Mn Mo Ni P Si Fe

316 SS 0.08 16−18 0.03 2.0 2−3 10−14 0.045 1.0 Balance

ER309L 0.04 22−25 0.03 0.5−2.5 0.75 12−14 0.040 1.0 Balance

ER316L 0.04 17−20 0.03 0.5−2.5 2−3 11−14 0.040 1.0 Balance

ERNiCrMo−3 0.03 20−23 0.015 0.2−0.5 8−10 60−65 0.020 0.4 Balance

9   

Page 3: Effect of heat input and filler metals on weld strength of ...

HI(kJ/mm) = η× (V × I×60)/ (S ×1 000) (1)

Na(mm2) = 33.312×10−6×[A1.55/v0.903

](2)

Where, HI is the heat input (in kJ/mm), η is the welding ef-ficiency  (ηTIG  =  70%),  V  is  the  arc  voltage  (V),  I  is  thewelding  current  (A)  and  v  is  the  welding  speed  (mm/min)and Na is nugget area (mm2).

The  cooling  rate[15]  and  cooling  time[16]  can be   calcu-lated using Eq.(3) and Eq.(4), respectively.

(∂T∂t

)x=

(∂T∂x

)t

(∂x∂t

)T= −2πK

((T −To)2

Hnet

)(3)

t8/5 =HI2πλ

(1

500−To− 1

800−To

)(4)

where,  (∂T/∂t)x  is  the  cooling  rate  (℃/sec), K  or  λ  is  thethermal  conductivity  (W/mm·K),  and T  is  the  temperaturenear the  pearlite  nose  on  TTT  diagram  (550  ℃)  and To  isthe initial temperature of the plate to be welded (20 ℃).

The  solidification  time  (ts)  of  welded  joint  depends  onthe cooling rate and heat input. Hence, ts is also of great im-portance  as  it  affects  the  microstructure  and  its  properties.The solidification time can be calculated as follows[17]:

ts (s) = L×Hnet/2πkρc(Tm−To)2 (5)

where, ts is the solidification time (s), L is the heat of fusion(J/mm3) that is 2 J/mm3 for steel, ρc is the volumetric specif-ic heat (J/mm3·℃) and Tm is the melting temperature (℃).

2 Results and discussion

2.1 Radiography examinationTIG welding butt  joints  are  processed using three filler

metals: ER309L, ER316L, ERNiCrMo-3, and different val-ues of welding current.  The samples are examined visuallyimmediately  after  welding  to  visually  inspect  the  exposedsurfaces.  The  samples  macrographs  are  shown  in  Fig. 2,Fig. 3  and  Fig. 4,  and  no  serious  surface  defects  could  beobserved.

Visual inspection  and  radiographic  testing  (RT)   indic-ate,  that  weld  specimens  made  of  GTA  welding  are  freefrom  macro/micro  defects  such  as  porosities,  inclusions  orinternal  cracks.  RT  images  of  welding  specimens  usingthree filler metals and welding currents are shown in Fig. 5,Fig. 6 and Fig. 7.

2.2 Effect of welding current on welded jointsThe cooling  rate  (∂T/∂t)x,  heat  input  (HI),  cooling  time

(t8/5)  and  solidification  time  (ts) after  welding  are  very   im-portant to determine the behavior of welds. HI, (∂T/∂t)x, t8/5and  St  are  calculated  according  to  previously  mentionedequations;  Eq.(1),  Eq.(3),  Eq.(4)  and  Eq.(5),  respectively.Heat input increases with increasing welding current and arcvoltage  but  decreases  with  increasing  welding  speed,  aspresented  in  Fig. 8a.  The  cooling  rate  (∂T/∂t)x  decreaseswith increasing HI, as shown in Fig. 8b. Moreover, the cool-ing  time  and  solidification  time  increase  with  increasingwelding  current,  as  observed  in  Fig. 9a,  Fig. 9b,  respect-ively.  However,  both  parameters  decrease  with  increasingwelding speed.

 

(a)

(b)

100 100

100 5050

20

4 R12.5

200

4

2

Fig. 1 Schematics of (a) Butt joint configuration (b) Geo-metry of tensile test specimen(mm)

Table 2 Mechanical properties of AISI 316 and weldingwires

Base metal UTS/MPa Yield strength/MPa Elongation(%)

AISI 316 515 205 40

ER309L 590 415 45

ER316L 480 170 40

ERNiCrMo-3 780 500 35

Table 3 Applied gas tungsten arc welding parametersParameter Value

Welding process GTAW (Maunal)

Welding configuration Butt joint

Welding wires ER309L, ER316L and ERNiCrMo-3

Welding wire diametar 2.4 mm

Shielding gas Pure argon

Polarity DC negative electrode

Welding current 80, 100 and 130 A

Gas flow rate 7 L/min

  10 CHINA WELDING Vol. 29 No. 1 March 2020

Page 4: Effect of heat input and filler metals on weld strength of ...

2.3 Weld bead geometryFig. 10  shows  the  weld  nugget  area  of  316  SS  square

weld  samples  under  different  heat  inputs  and  filler  metals.The  weld  nugget  area  increases  with  increasing HI  (weld-

ing  current).  Meanwhile,  and  decreases  with  increasingwelding  speed.  Increasing  the  welding  current  leads  to  awider  cross-section  of  all  weld  samples.  Hence,  increasingheat  input  increases  depth and width of  weld metal  fusion.

 

2 cm

2 cm

2 cm

2 cm

2 cm 2 cm

80 A

100 A

130 A

Top s

urf

ace

Bott

om

surf

ace

Fig. 2 Visual inspection of butt GTAW joints of 316 AISI using different welding current values and ER309L as filler metal

 

2 cm 2 cm

2 cm 2 cm

2 cm 2 cm130 A

80 A

100 A

Top s

urf

ace

Bott

om

surf

ace

Fig. 3 Visual inspection of butt GTAW joints of 316 AISI using different welding current values and ER316L as filler metal

 

2 cm 2 cm

2 cm 2 cm

2 cm 2 cm

130 A

80 A

100 A

Top s

urf

ace

Bott

om

surf

ace

Fig. 4 Visual inspection of butt GTAW joints of 316 AISI using different welding current values and ERNiCrMo-3 as fillermetal

 

80 A 100 A 130 A

Fig. 5 Radiographic films of AISI 316 TIG welding using different welding current values and ER309L as filler metal

11   

Page 5: Effect of heat input and filler metals on weld strength of ...

Accordingly, more  heat  of  the  arc  transfers  into  the   speci-men,  and  a  deeper  welding  penetration  takes  place.  Thisagrees with other publications[11, 18], where it is reported thatthe width of weldments increases with increasing HI.

2.4 Mechanical properties of weld specimensTensile  testing  is  carried  out  to  determine  the  strength

and plasticity of welded joints and to examine the influenceof weld defects on the joint performance. Tensile strength of

 

80 A 100 A

130 A

Fig. 6 Radiographic films of AISI 316 TIG welding using different welding current values and ER316L as filler metal

 

80 A 100 A

130 A

Fig. 7 Radiographic films of AISI 316 TIG welding using three different welding current values and ERNiCrMo-3 as fillermetal

 

800

600

400

80 A 100 A 130 A

Welding current

80 A 100 A 130 A

Welding current

70

60

50

40

30

ER309L

ER316L

ERNiCrMo-3

ER309L

ER316L

ERNiCrMo-3

Hea

t in

put/

(J·m

m−1

)

Cooli

ng r

ate

(°C

·s−1

)

(a) (b)

Fig. 8 Effect of welding current on (a) Heat input (b) Cooling rate of 316 SS welding.

  12 CHINA WELDING Vol. 29 No. 1 March 2020

Page 6: Effect of heat input and filler metals on weld strength of ...

TIG  welds  using  ER309L,  ER316L  and  ERNiCrMo-3  aswelding rods is evaluated according to the ASTM E8 stand-ard.  Tensile  test  results  of  TIG welded joints  are  shown inFig. 11. The base metal tensile strength is much lower thanthat of all weld metal samples. The ultimate tensile strengthand yield strength of all weld specimens decreases with in-creasing  heat  input.  This  is  attributed  to  the  slow  coolingrate  and high heat  input,  that  lead to  increase  grain  size  ofthe weld region. This is consistent with hardness results andcooling rate. Weld specimens produced using ERNiCrMo-3filler  metal  show  superior  values  of  the  ultimate  tensilestrength  and  yield  strength  than  specimens  produced  usingthe other two fillers  (ER309L and ER316L).  The UTS andYS values  decrease  with  increasing  heat  input,   solidifica-tion  time  and  cooling  time.  Maximum values  are  obtainedusing  ERNiCrMo-3  filler  and  low  welding  current  (80A).On the other hand, the base metal shows minimum UTS andYS values.  This agrees well  with previous results[4 – 5].  The

percentage  elongation  of  TIG  weld  samples  are  shown  inFig. 11c. The  elongation  percent  of  all  weld  samples   de-creases  with  increasing  welding  current,  that  is  consistentwith the UTS and YS results.

Hardness  of  welded  joints  is  measured  along  the  crosssection parallel to the base plate surface, as shown in Fig. 12(ASTM E384-09). The hardness at the center of the weldedregion  shows  a  minimum  hardness  value  for  each  sample.This is due to the heat input from the welding process, thatcauses annealing and recovery leading to hardness decrease.Moreover, the increase of the heat input decreases the cool-ing rate of weld metal. The hardness increases gradually inthe  heat  affected  zone   “HAZ”  from  the  fusion  line  to  theparent metal.  This can be attributed to the low cooling ratenear the fusion line, that subsequently causes grain growth.On  the  other  hand,  higher  cooling  rates  near  to  the  parentmetal leads to a finer grain size, and also to microstructuraland  chemical  homogeneity[1].  Highest  hardness  is  obtained

 

80 A 100 A 130 A

Welding current

0.04

0.03

0.02

ER309L

ER316L

ERNiCrMo-3

Nugget

are

a/m

m2

20 mm

(a) (b)

Fig. 10 The weld nugget area of 316 SS square weld samples under different heat inputs and filler metals (a) Macrostruc-ture of weld specimen (b) Nugget weld area of 316 SS specimens

 

80 A 100 A 130 A

Welding current

80 A 100 A 130 A

Welding current

7

6

5

4

3

2.0

1.5

1.0

ER309L

ER316L

ERNiCrMo-3

ER309L

ER316L

ERNiCrMo-3

Soli

dif

icat

ion t

ime/

s

Cooli

ng t

ime/

s(a) (b)

Fig. 9 Effect of welding current on (a) Cooling time (b) Solidification time of 316 SS welding.

13   

Page 7: Effect of heat input and filler metals on weld strength of ...

 

80 A 100 A 130 A

Welding current

350

300

250

200

580

560

540

520

48

46

44

42

40

ER309LER316LERNiCrMo-3

ER309LER316LERNiCrMo-3

ER309LER316LERNiCrMo-3

Basemetal

80 A 100 A 130 A

Welding current

Basemetal

80 A 100 A 130 A

Welding current

Basemetal

UT

S/M

Pa

YS

/MP

a

Elo

ngat

ion (

%)

(a)

(c)

(b)

Fig. 11 Mechanical test results of TIG welded joints (a) Tensile strength (b) Yield strength (c) Percentage elongation.

 

240

220

200

180

160

140−10 −8 −6 −4 −2 0 2 4 6 8 10

Distance from weld zone/mm

80 A100 A130 A

80 A100 A130 A

Har

dnes

s/H

V

(a)

80 A100 A130 A

240

220

200

180

160

140−10 −8 −6 −4 −2 0 2 4 6 8 10

Distance from weld zone/mm

Har

dnes

s/H

V

(c)

240

220

200

180

160

140−10 −8 −6 −4 −2 0 2 4 6 8 10

Distance from weld zone/mm

Har

dnes

s/H

V

(b)

Fig. 12 Vickers hardness profiles of 316 SS TIG joint cross sections for different values of welding current using (a) ER309L(b) ER316L and (c) ERNiCrMo-3 as filler rods.

  14 CHINA WELDING Vol. 29 No. 1 March 2020

Page 8: Effect of heat input and filler metals on weld strength of ...

in specimens welded using ERNiCrMo-3 filler rod and 80Awelding current.

The bend test (root bend test and face bend test) of AISI316  weld  specimens  at  different  welding  current  with

ER309L, ER316L and ERNiCrMo-3 as filler rods is carriedout.  By increasing the bending angle  up to  180°,  no visualdefects  could  be  observed,  as  shown  in  Fig. 13  as an   ex-ample.

3 Conclusions

AISI 316 weldments using three filler rod materials andat different  welding  current  values  are  successfully   pro-duced by  GTAW  process.  The  following  could  be   con-cluded:

(1)  Visual  inspection  and  radiographic  testing  indicatethat the weldments are free from macro/micro defects.

(2) The heat input, cooling time, solidification time andweld nugget  area increase with increasing welding current.The cooling rate decreases with increasing welding current.

(3) Using  ERNiCrMo-3  as  filler  rod  produced   weld-ments with higher ultimate tensile strength and yield stressthan using ER309L or ER316L.

(4) The ultimate tensile strength, yield stress and elong-ation  percent  decrease  with  increasing  heat  input.  Highestvalues are obtained using ERNiCrMo-3 filler rod at compar-atively low welding current (80 A).

(5)  The  hardness  is  lower  in  weld  zone  than  that  of  inheat  affected  zone  and  base  metal.  In  general,  it  decreaseswith increasing  heat  input  (welding  current).  Highest   val-ues are obtained using ERNiCrMo-3 filler with low heat in-put (80 A).

(6) After sample bending up to 180°, no cracks, tearingor surface defects could be observed.

Acknowledgement

The  authors  would  like  to  thank  the  Petrojet  Company

(Suez, Egypt) which is deeply acknowledged for providingwelding process and collaboration.

References

 Gopinath Shit, Kuppusamy M V and Ningshen S. Corrosionresistance  behavior  of  GTAW  welded  AISI  Type  304L.Transactions of the Indian Institute of Metals,  2019, 72:1 −15.

[1]

 Dilip  Kumar  Singh,  Gadadhar  Sahoo,  Ritwik  Basu,  et  al.Investigation  on  the  microstructure-mechanical  propertycorrelation in dissimilar steel welds of stainless steel SS304and  medium  carbon  steel  EN8.  Journal  of  ManufacturingProcesses, 2018, 36:281 − 292.

[2]

 Yelamasetti  Balram,  Vishu  Vardhan  T,  Sridhar  Babu  B,  etal.  Thermal  stress  analysis  of  AISI  316  stainless  steelsweldments  in  TIG  and  pulse  TIG  welding  processes.Materials Today: Proceedings, 2019, 19:1 − 6.

[3]

 Balram Yelamasetti,  Sravan  Kumar,  Sridhar  Babu  B,  et  al.Effect  of  filler  wires  on  weld  strength  of  dissimilar  pulseGTA monel 400 and AISI 304 weldments, Materials Today:Proceedings, 2019, 19: 1-5.

[4]

 Abdollah  Bahador,  Esah  Hamzah,  Mohd  Fauzi  Mamat.Effect  of  filler  metals  on  the  mechanical  properties  ofdissimilar  welding  of  stainless  steel  316l  and  carbon  steelA516 GR 70. Jurnal Technology (Sciences & Engineering),2015, 75:61 − 65.

[5]

 Hao  Y  S,  Li  J,  Li  X,  et  al.  Influences  of  cooling  rates  onsolidification  and  segregation  characteristics  of  Fe-Cr-Ni-

[6]

 

80 A 100 A

130 A

20 mm 20 mm

20 mm

Fig. 13 Bending test specimens of weldments using ERNiCrMo-3 welding wire and different welding current values.

15   

Page 9: Effect of heat input and filler metals on weld strength of ...

Mo-N  super  austenitic  stainless  steel.  Journal  of  MaterialsProcessing Technology, 2020, 275:1 − 9. Huei-Sen Wang. Effect of welding variables on cooling rateand  pitting  corrosion  resistance  in  super  duplex  stainlessweldments.  Materials  Transactions,  The  Japan  Institute  ofMetals, 2005, 46:593 − 601.

[7]

 Navid Moslemi, Norizah Redzuan, Norhayati Ahmad, et al.Effect  of  current  on  characteristic  for  316  stainless  steelwelded  joint  including  microstructure  and  mechanicalproperties.  12th  Global  Conference  on  SustainableManufacturing, 2015, 26:560 − 564.

[8]

 Balaji  C,  Abinesh  K,  and  Sathish  R.  Evaluation  ofmechanical  properties  of  stainless  steel  weldments  usingtungsten  inert  gas  welding.  International  Journal  ofEngineering Science and Technology, 2012, 4:2053 − 2057.

[9]

 Aziz Barıs Basyigit, Mustafa Gökhan Murat. The effects ofTIG  welding  rod  compositions  on  microstructural  andmechanical  properties  of  dissimilar  AISI  304L  and  420stainless steel welds. Metals, 2018, 8:1 − 14.

[10]

 Shultz  B  L,  Jackson  C  E.  Influence  of  weld  bead  area  onweld  metal  mechanical  properties.  Welding  ResearchSupplement, 1973, 54:26 − 37.

[11]

 Debasish  Das,  Dilip  Kumar  Pratihar  and  Gour  Gopal  Roy.[12]

Cooling  rate  predictions  and  its  correlation  with  graincharacteristics  during  electron  beam  welding  of  stainlesssteel. The International Journal of Advanced ManufacturingTechnology, 2018, 97:2241 − 2254. Shu  F  Y,   Tian  Y,   Zhao  H  Y,  et  al.  Microstructure  andmechanical  properties  of  multi-Pass  TIG  welded  joint  ofthick  Al-Zn-Mg  alloy  plate.  Material  Research  Express,2019, 6:1 − 9.

[13]

 Yu  X  Q,  Ding  F,  Huang  J  k,  et  al.  The  characteristic  ofinterface microstructure for aluminum-steel butt joint by arcassisted  laser  welding-brazing.  Material  Research  Express,2019, 6:1 − 12.

[14]

 Merchant  Samir  Y.  Investigation on effect  of  heat  input  oncooling  rate  and  mechanical  property  (hardness)  of  mildsteel weld joint by MMAW process. International Journal ofModern Engineering Research (IJMER), 2015, 5:34 − 41.

[15]

 Oystein  Grong,  Metallurgical  modelling  of  welding,  TheInstitute of Materials, London: 1994.

[16]

 Charlotte  Weisman,  Welding  Handbook,  Fundamentals  ofWelding, American Welding Society, Miami, Florida, 1976.

[17]

 Aziz Barıs Basyigit , Adem Kurt. The effects of nitrogen gason microstructural and mechanical properties of TIG weldedS32205 duplex stainless steel, Metals, 2018, 8: 1-13.

[18]

  16 CHINA WELDING Vol. 29 No. 1 March 2020