EEE353 Lec9 Handouts Dcs

download EEE353 Lec9 Handouts Dcs

of 14

Transcript of EEE353 Lec9 Handouts Dcs

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    1/14

    Digital CommunicationSystemsDr. Shurjeel Wyne

    Lecture 9CH 4 -Bandpass Modulation& Demodulation

    Last time we talked about: Another source of error due to filtering effectof the system: Inter-symbol interference (lSI)

    The techniques to reduce lSI Pulse shaping to have zero lSI at the samplingtime Equalization to combat the filtering effect of thechannel

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    2/14

    Today, we are going to talkabout: Some bandpass modulation schemes usedin DeS for transmitting information overchannel M-PAM, M-PSK, M-FSK, M-QAM

    How to detect the transmitted information atthe receiver Coherent detection Non-coherent detection

    Block diagram of a DeS

    ~ Source-~ encode-

    Digital demodulationc==1_ Source

    -~ decode- DetectDemod.Sample

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    3/14

    Bandpass modulation Bandpass modulation: The process of converting atasignal to a sinusoidal waveform whose amplitude, phase,

    frequency, or a combination of them, is varied in accordancewith the transmitted data. Bandpass signal:

    Si(t) = gr(t)~ C O S(U Jct+ ( - l )~UJt + ( A (t)) 0 ~ t ~ Twhere gr(t) is the baseband pulse shape with energyE .g We assume here (unless stated otherwise): gr (t) is a rectangular pulse shape with unit energy. Gray coding is used for mapping bits to symbols. 1 M E, denotes average symbol energy given byE, = M Ii~, 5

    Bandpass Modulation Schemes

    One dimensional waveforms Amplitude Shift Keying (ASK)

    On-Off Keying M-ary Pulse Amplitude Modulation (M-PAM)

    Two dimensional waveforms M-ary Phase Shift Keying (M-PSK) M-ary Quadrature Amplitude Modulation (M-QAM) Multidimensional waveforms M-ary Frequency Shift Keying (M-FSK)

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    4/14

    Demodulation and detection Demodulation: The receiver signal is converted tobaseband, filtered and sampled. Detection: Sampled values are used for detection using adecision rule such as ML detection rule.

    ' 1 / 1 (t )

    z Decision "-= Z f--------o circuits -- m(ML detector)

    Coherent and Non-coherentdetection Coherent detection

    requires carrier phase recovery at the receiverand hence, circuits to estimate carrier phase

    Possible sources of carrier-phase mismatch atthe receiver: Propagation delay causes carrier-phase offset inthe received signal. The oscillators at the receiver which generate thecarrier signal, are not usually phased locked to thetransmitted carrier.

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    5/14

    Coherent and non-coherentdetection ... Circuits such as Phase-Locked-Loop (PLL) areimplemented at the receiver for carrier phaseestimation (a ~ a ). t r a n C h J

    Hcos(av+&) }L...---r--.....I Used by

    1-------- 90 deg.~ correlatorsL . . . . - _ . . . . . . #Sin(OJ/+&ts- ________ Non-coherent detection L ~ b r a n c h J does not require carrier phase recovery (useseither differentially encoded modulation orenergy detectors. It has lesser complexity thancoherent detection, but at the price of a highererror rate.

    One dimensional modulation,demodulation and detection Amplitude Shift Keying (ASK) modulation:

    On-off keying (M=2):S j ( t ) = a j ' l / ) (t ) i = 1 , . .. ,M' 1 / ) (t ) =# cos(mct + )aj = . J E :

    "0 " "1"

    10

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    6/14

    One dimensional mod., ... M-ary Pulse Amplitude modulation (M-PAM)

    Si(t) = a i# cos(UJct)Si(t ) = a ilf/l (t ) i=l, ... ,Mv. (t ) = H cos(wct)a i = (2i -1- M) . J E :Ei = l l s J =Eg(2i-1-MYE = (M2 -1)E

    s 3 g

    4-PAM:"00" "01" "II"

    S1 S S3 . 2 I - 3 . . [ E ; - . . [ E ; 0 . . [ E ;E =_1 " M E.s M L..i~1 1

    "10"S4 I 'lfJ/)3 . . [ E ;

    11

    One dimensional mod., ...-cont'd Coherent detection of M-PAM

    If/l (t )r(t) J' " rT ZI ML detector "-- - - - -+ - - - - - -- - J o r - - - - - - + (Compare with M-l thresholds) ---+m

    -

    12

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    7/14

    Two dimensional modulation, I : : : : .demodulation and detection (M-PSK :::: M-ary Phase Shift Keying (M-PSK)

    Si( t )= ail!f/l(t)+a i2 !f/2(t) i= l, ... ,M!f/l(t)= H cos(m c t) !f/2(t)= HSil l (mct)

    tt: ( 2 m ) tt:.( 2 m )il ="';i'Js cos M ai2 =v=. SIll Mt:=Ei = l l s J

    Two dimensional mod, ... (MPSK)BPSK (M=2) Exceptional case: can be represented by single dimensio

    'lf2(t)"0" "1" 8PSK(M=8)~1 l2

    - . J E : . J E : 'lfJt)

    QPSK(M=4)

    13

    14

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    8/14

    Two dimensional mod, ... (MPSK) Coherent detection of MPSK

    ' 1 / 1 (t )

    ,-------, "-Choose msmallest

    15

    ~

    . . .Two dimensional mod, ... (M-QAM) :::: M-ary Quadrature Amplitude Mod. (M-QA ).:

    Si(t) = ~2:i cos(UJct + ((Ji)Si(t) =a i [ lf /[ ( t) + a i21 f /2 ( t) i=l, ...Mv,(t) =H cos (a Jct ) 1 f/2(t) =HSin(aJct)where ai l and a i2 are PAM symbols

    16

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    9/14

    Two dimensional mod, ... (M-QAM)16-QAM

    '1/, (I)"0000" "0001" "0011" "0010"~1 '.2.... ~ ~.1 ' 4

    "1000" "1001" "101~" "1010"$5 $6 ~7 $8 . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . . .. . .. . .. . .. . . 1 " " . . .. . .. . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .- 6 - ~ ~ i3

    _ _ _ , 1 " - 9 - - - - - ~ + !)-0- -+ _-l-_,..~-1.-- - - \ ! " " i 12-+'1/1(I)"1~00" "l1Q1" "11~1" -mn-L ~14 ~15 ~16 .. .. .. .. .. .. .. . .. .. .. .. 3 . . .. . .. .. .. .. .. .. .. .. ."0100" "0101" "0111" "0110"

    17

    Two dimensional mod, ... (M-QAM) Coherent detection of M-QAM

    If/j (t )

    "-mML detector

    (Compare with .J M -1 thresholds)Parallel-to-serial

    converter

    18

    ML detector(Compare with .J M -1 thresholds)

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    10/14

    Multi-dimentional modulation,demodulation & detection M-ary Frequency Shift keying (M-FSK)

    Si(t) = ~ cos(m J)= ~ 2 : sco s (mc t + (i - l )~mt )I\r = ~m = _1_ Hz (f .. d t t rth Iij requency spacing require 0 guaran ee 0 ogona2Jr 2T FSK waveforms with coherent detection at receiver)

    MsJt) =L>ijV/t) i =1,..., M

    19

    a ..= { . J E : i = j'i 0 i * ' jVi (t ) =H c o s ( c u , t )

    E, =E, = I I S i 1 1 2

    "-m

    Multi-dimensional mod, ... (M-FSK)

    ' 1 / 1 (t )ML detector:

    ChooseZ the largest elementin the observed vector

    20

    =Z

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    11/14

    Non-coherent detection Non-coherent detection: No need for a reference in-phase with the

    received carrier Less complexity as compared to coherentdetection at the price of higher error rate.

    21

    Differentially coherent detection Differential PSK (DPSK)

    The information bits and previous symbol, determinethe phase of the current symbol.

    Types of non-coherent detection

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    12/14

    Non-coherent detection Differential coherent detection

    Differential encoding of the message The symbol phase changes if the current bit isdifferent from the previous bit.Si(t) =Jcos(av+ Bi(t)), 0 5, t 5, T, i =1,...,M

    Bk(nT) =Bk((n -l)T) + ( A (nT)

    23

    0 1 2 3 4 5 6 71 1 0 1 0 1 1

    1 1 1 0 0 1 1 17r 7r 7r 0 07r 7r 7r

    Non-coherent detection ... Coherent detection for diff encoded mod.

    Symbol index: kData bits: mkDiff. encoded bitsSymbol phase: O k o

    assumes slow variation in carrier-phase mismatch duringtwo symbol intervals. correlates the received signal with basis functions uses the phase difference between the current receivedvector and previously estimated symbol

    ret) =J cos(av+ Bi(t) +a)+ net), 05, t 5, T(Bi(nT) +a )-(Bj((n -l)T) +a)= Bi(nT) - Bj((n -l)T) = (A(nT)'l/2(t)

    (a,,~/,q)24'1 /1 (t )

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    13/14

    Non-coherent detection Optimum differentially coherent detector

    ' 1 / 1 (t )r(t) ~-----,----------

    Sub-optimum differentially coherent detector

    Performance degradation about 3 dB by using sub-optimum detector

    Non-coherent detection ... E nergy d etection

    Non-coherent detection for orthogonal signals (e.g.M-FSK) Carrier-phase offset causes partial correlation between Iand Q braches for each candidate signal.

    The received energy corresponding to each candidatesignal is used for detection.

    25

    26

  • 8/7/2019 EEE353 Lec9 Handouts Dcs

    14/14

    Non-coherent detection ... Non-coherent detection of BFSK

    r ( t ) + z(T) Decision stage:!-t-l--+if z(T) > 0, m =1ifz(T)