EEE223 Signals and Systems Lecture 17

17
EEE223 Signals and Systems Lecture 22 DTFT Dr. Shadan Khattak

Transcript of EEE223 Signals and Systems Lecture 17

EEE223 Signals and Systems

Lecture 22 DTFT

Dr. Shadan Khattak

DTFT

𝑋(π‘’π‘—πœ”) = π‘₯,𝑛-π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=βˆ’βˆž (DTFT) (Analysis equation)

π‘₯ 𝑛 =1

2πœ‹ 𝑋(π‘’π‘—πœ”)π‘’π‘—π‘›πœ”πœ‹

πœ”=βˆ’πœ‹π‘‘πœ” (IDTFT) (Synthesis equation)

β€’ 𝑋 π‘’π‘—πœ” is called the spectrum of π‘₯ 𝑛 .

β€’ 𝑋 π‘’π‘—πœ” =

𝑋(π‘’π‘—πœ”) . π‘’π‘—βˆ π‘‹(π‘’π‘—πœ”)

𝑋(π‘’π‘—πœ”) : π΄π‘šπ‘π‘™π‘–π‘‘π‘’π‘‘π‘’ π‘ π‘π‘’π‘π‘‘π‘Ÿπ‘’π‘š

βˆ π‘‹ π‘’π‘—πœ” : π‘ƒβ„Žπ‘Žπ‘ π‘’ π‘ π‘π‘’π‘π‘‘π‘Ÿπ‘’π‘š

Dr. Shadan Khattak

DTFT

β€’ Two major differences between CTFT and DTFT:

1. Periodicity of the DTFT 𝑋 π‘’π‘—πœ”

2. Finite interval of integration in the synthesis equation of DTFT.

β€’ As 𝑋 π‘’π‘—πœ” = 𝑋 𝑒𝑗(πœ”+2π‘›πœ‹) , πœ” ∈ *βˆ’πœ‹, πœ‹+ is sufficient to describe the

spectrum.

β€’ Many texts refer to 𝑋 π‘’π‘—πœ” as 𝑋 Ξ© or 𝑋 𝑒𝑗Ω . They all mean the

same thing.

Dr. Shadan Khattak

DTFT

β€’ Signals at frequencies near even multiple of πœ‹ are slowly varying and, therefore, are thought of as low-frequency signals.

β€’ Signals at frequencies near odd multiples of πœ‹ are rapidly varying and, therefore, are thought of as high-frequency signals.

Dr. Shadan Khattak

DTFT

1. DTFT of a unit impulse signal

π‘₯ 𝑛 = 𝛿,𝑛-

𝑋(π‘’π‘—πœ”) = 𝛿,𝑛-π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=βˆ’βˆž

= 1

Similarly, 𝐷𝑇𝐹𝑇 𝛿 𝑛 βˆ’ 𝑛0 = π‘’βˆ’π‘—πœ”π‘›0

Dr. Shadan Khattak

DTFT

2. DTFT of a causal exponential signal π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 , 𝛼 < 1

𝑋(π‘’π‘—πœ”) = π›Όπ‘›π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=0

= (π›Όπ‘’βˆ’π‘—πœ”)π‘›βˆžπ‘›=0

=1

1βˆ’π›Όπ‘’βˆ’π‘—πœ”

𝑋(π‘’π‘—πœ”) =1

1 + 𝛼2 βˆ’ 2π›Όπ‘π‘œπ‘ πœ”

βˆ π‘‹ π‘’π‘—πœ” = βˆ’π‘‘π‘Žπ‘›βˆ’1π›Όπ‘ π‘–π‘›πœ”

1 βˆ’ π›Όπ‘π‘œπ‘ πœ”

Dr. Shadan Khattak

𝛼 > 0

DTFT

2. DTFT of a causal exponential signal π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 , 𝛼 < 1

𝑋(π‘’π‘—πœ”) = π›Όπ‘›π‘’βˆ’π‘—πœ”π‘›βˆžπ‘›=0

= (π›Όπ‘’βˆ’π‘—πœ”)π‘›βˆžπ‘›=0

=1

1βˆ’π›Όπ‘’βˆ’π‘—πœ”

𝑋(π‘’π‘—πœ”) =1

1 + 𝛼2 βˆ’ 2π›Όπ‘π‘œπ‘ πœ”

βˆ π‘‹ π‘’π‘—πœ” = βˆ’π‘‘π‘Žπ‘›βˆ’1π›Όπ‘ π‘–π‘›πœ”

1 βˆ’ π›Όπ‘π‘œπ‘ πœ”

Dr. Shadan Khattak

𝛼 < 0

DTFT

3. DTFT of a non-causal exponential signal

π‘₯ 𝑛 = 𝛼 𝑛 , 𝛼 < 1

𝑋(π‘’π‘—πœ”) =1 βˆ’ 𝛼2

1 + 𝛼2 βˆ’ 2π›Όπ‘π‘œπ‘ πœ”

Dr. Shadan Khattak

0 < 𝛼 < 1

DTFT

4. DTFT of a rectangular pulse signal

π‘₯ 𝑛 = 1, 𝑛 ≀ 20, 𝑛 > 2

𝑋(π‘’π‘—πœ”) =𝑠𝑖𝑛

5πœ”2

𝑠𝑖𝑛 πœ”2

Generally, for a rectangular pulse signal π‘₯ 𝑛 = 1, 𝑛 ≀ 𝑁1

0, 𝑛 > 𝑁1,

the DTFT is 𝑋(π‘’π‘—πœ”) =

π‘ π‘–π‘›πœ”(𝑁1+1/2)

𝑠𝑖𝑛 πœ”

2

Dr. Shadan Khattak

DTFT

DTFT Analysis of DT LTI Systems

β€’ Frequency response is the DTFT of impulse response β„Ž,𝑛-.

𝐻 Ξ© = β„Ž,𝑛-π‘’βˆ’π‘—Ξ©π‘›βˆž

𝑛=βˆ’βˆž

β€’ The impulse response h[n] can be recovered from the frequency response by taking its IDTFT.

β„Ž 𝑛 =1

2πœ‹ 𝐻 Ξ© 𝑒𝑗Ω𝑛

πœ‹

βˆ’πœ‹

𝑑Ω

Dr. Shadan Khattak

DTFT

DTFT of Periodic Signals

Follows the same principle as that of CTFT of periodic signals except that DTFT of periodic signals is periodic in πœ” with period 2πœ‹. If

π‘₯ 𝑛 = π‘’π‘—πœ”0𝑛

Then

𝑋 π‘’π‘—πœ” = 2πœ‹π›Ώ(πœ” βˆ’ πœ”0 βˆ’ 2πœ‹π‘™)

∞

𝑙=βˆ’βˆž

Dr. Shadan Khattak

DTFT

DTFT of Periodic Signals

DTFT from DTFS

𝑋 π‘’π‘—πœ” = 2πœ‹π·π‘Ÿπ›Ώ(πœ” βˆ’ π‘Ÿπœ”0)

∞

π‘Ÿ=βˆ’βˆž

Dr. Shadan Khattak

DTFT

DTFT of Periodic Signals

Example: Find the DTFT of cos (πœ”0𝑛) with πœ”0 =2πœ‹

5

𝑋 π‘’π‘—πœ” = πœ‹π›Ώ πœ” βˆ’2πœ‹

5βˆ’ 2πœ‹π‘™ + πœ‹π›Ώ(πœ” +

2πœ‹

5βˆ’ 2πœ‹π‘™)

∞

𝑙=βˆ’βˆž

∞

𝑙=βˆ’βˆž

= πœ‹π›Ώ πœ” βˆ’2πœ‹

5+ πœ‹π›Ώ πœ” +

2πœ‹

5, βˆ’πœ‹ ≀ πœ” < πœ‹

(Example 5.5 (Oppenheim)

Dr. Shadan Khattak

Dr. Shadan Khattak

Dr. Shadan Khattak

Useful Readings

β€’ Sections 5.1 – 5.2 (Oppenheim)

Dr. Shadan Khattak

Practice Problems

β€’ Problem 5.1 – 5.9, 5.13 – 5.14, 5.21 – 5.24 (Oppenheim)

β€’ All Examples of Chapter 5 (Oppenheim)

Dr. Shadan Khattak