EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch...

17
http://www.ee.unlv.edu/~b1morris/ee292/ EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 15 121016

Transcript of EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch...

Page 1: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

http://www.ee.unlv.edu/~b1morris/ee292/

EE292: Fundamentals of ECE

Fall 2012

TTh 10:00-11:15 SEB 1242

Lecture 15

121016

Page 2: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

Outline

â€Ē Review General RC Circuit

â€Ē RL Circuits

2

Page 3: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

General 1st-Order RC Solution

â€Ē Notice both the current and voltage in an RC circuit has an exponential form

â€Ē The general solution for current/voltage is: â–Ŧ ð‘Ĩ – represents current or voltage â–Ŧ ð‘Ą0 − represents time when source switches â–Ŧ ð‘Ĩ𝑓 - final (asymptotic) value of current/voltage

â–Ŧ 𝜏 – time constant (𝑅ðķ)

â€Ē Find values and plug into general solution

3

Page 4: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

Example

â€Ē Solve for ð‘Ģ𝑐(ð‘Ą)

â–Ŧ ð‘Ģ𝑓 = 𝑉𝑠 steady-state analysis

â–Ŧ ð‘Ģ𝑐 0+ = 0 no voltage when switch open

â–Ŧ 𝜏 = 𝑅ðķ equivalent resistance/capacitance

â€Ē ð‘Ģ𝑐 ð‘Ą = 𝑉𝑠 + 0 − 𝑉𝑠 ð‘’âˆ’ð‘Ą/(𝑅ðķ) = 𝑉𝑠 − ð‘‰ð‘ ð‘’âˆ’ð‘Ą/(𝑅ðķ)

â€Ē Solve for 𝑖𝑐(ð‘Ą)

â–Ŧ 𝑖𝑓 = 0 fully charged cap no current

â–Ŧ 𝑖𝑐 0+ =𝑉𝑠−ð‘Ģ𝑐(0+)

𝑅=

𝑉𝑠−0

𝑅=

𝑉𝑠

𝑅

â€Ē 𝑖𝑐 ð‘Ą = 0 +𝑉𝑠

𝑅− 0 ð‘’âˆ’ð‘Ą/(𝑅ðķ) =

𝑉𝑠

ð‘…ð‘’âˆ’ð‘Ą/(𝑅ðķ)

4

𝑖𝑐

Page 5: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

RC Current â€Ē Voltage

â–Ŧ ð‘Ģ𝑐 ð‘Ą = 𝑉𝑠 − ð‘‰ð‘ ð‘’âˆ’ð‘Ą/(𝑅ðķ)

â€Ē Current

â–Ŧ 𝑖𝑐 =𝑉𝑠−ð‘Ģ𝑐(ð‘Ą)

𝑅= ðķ

𝑑ð‘Ģ𝑐(ð‘Ą)

ð‘‘ð‘Ą

â–Ŧ 𝑖𝑐 = ðķ𝑉𝑠

𝑅ðķð‘’âˆ’ð‘Ą/(𝑅ðķ)

â–Ŧ 𝑖𝑐 =𝑉𝑠

ð‘…ð‘’âˆ’ð‘Ą/(𝑅ðķ)

5

𝑖𝑐

http://www.electronics-tutorials.ws/rc/rc_1.html

Page 6: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

First-Order RL Circuits â€Ē Contains DC sources, resistors, and a single inductance

â€Ē Same technique to analyze as for RC circuits 1. Apply KCL and KVL to write circuit equations 2. If the equations contain integrals, differentiate each

term in the equation to produce a pure differential equation

â–Ŧ Use differential forms for I/V relationships for inductors and capacitors

3. Assume solution of the form ðū1 + ðū2ð‘’ð‘ ð‘Ą 4. Substitute the solution into the differential equation to

determine the values of ðū1and 𝑠 5. Use initial conditions to determine the value of ðū2 6. Write the final solution

6

Page 7: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

RL Example â€Ē Current before switch

â–Ŧ 𝑖 0− = 0

â€Ē KVL around loop

â–Ŧ 𝑉𝑠 − 𝑅𝑖 ð‘Ą − ðŋ𝑑𝑖 ð‘Ą

ð‘‘ð‘Ą= 0

â–Ŧ 𝑖 ð‘Ą +ðŋ

𝑅

𝑑𝑖 ð‘Ą

ð‘‘ð‘Ą=

𝑉𝑠

𝑅

Notice this is the same equation form as the charging capacitor example

â€Ē Solution of the form

â–Ŧ 𝑖 ð‘Ą = ðū1 + ðū2ð‘’ð‘ ð‘Ą

â€Ē Solving for ðū1, 𝑠

â–Ŧ ðū1 + ðū2ð‘’ð‘ ð‘Ą +ðŋ

𝑅ðū2ð‘ ð‘’ð‘ ð‘Ą =

𝑉𝑠

𝑅

ðū1 =𝑉𝑠

𝑅

1 +ðŋ

𝑅𝑠 = 0 → 𝑆 = −

𝑅

ðŋ

â€Ē Solving for ðū2

â–Ŧ 𝑖 0+ = 0 = 𝑉𝑠

𝑅+ ðū2ð‘’âˆ’ð‘Ąð‘…/ðŋ

â–Ŧ 0 =𝑉𝑠

𝑅+ ðū2𝑒0

â–Ŧ ðū2 = −𝑉𝑠

𝑅

â€Ē Final Solution

â–Ŧ 𝑖 ð‘Ą =𝑉𝑠

𝑅−

𝑉𝑠

ð‘…ð‘’âˆ’ð‘Ąð‘…/ðŋ

â–Ŧ 𝑖 ð‘Ą = 2 − 2𝑒−500ð‘Ą

7

Page 8: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

RL Example â€Ē 𝑖 ð‘Ą = 2 − 2𝑒−500ð‘Ą

â€Ē Notice this is in the general form we used for RC circuits

â–Ŧ 𝜏 =ðŋ

𝑅

â€Ē Find voltage ð‘Ģ(ð‘Ą)

â–Ŧ ð‘Ģ𝑓 = 0, steady-state short

â–Ŧ ð‘Ģ 0+ = 100

No current immediately

through 𝑅, ð‘Ģ = ðŋ𝑑𝑖(ð‘Ą)

ð‘‘ð‘Ą

â€Ē ð‘Ģ ð‘Ą = 100ð‘’âˆ’ð‘Ą/𝜏

8

Page 9: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

Exercise 4.5

â€Ē Initial conditions

â€Ē For ð‘Ą < 0 â–Ŧ All source current goes

through switched wire

â–Ŧ 𝑖𝑅 ð‘Ą = 𝑖ðŋ ð‘Ą = 0 ðī

â–Ŧ ð‘Ģ ð‘Ą = 𝑖𝑅 ð‘Ą R = 0 V

â€Ē For ð‘Ą = 0+ (right after switch)

â–Ŧ 𝑖ðŋ ð‘Ą = 0 Current can’t change

immediately through an inductor

â–Ŧ 𝑖𝑅 ð‘Ą = 2 A, by KCL

â–Ŧ ð‘Ģ ð‘Ą = 𝑖𝑅 ð‘Ą R = 20 V

â€Ē Steady-state â–Ŧ Short inductor

â€Ē ð‘Ģ ð‘Ą = 0 â–Ŧ Short circuit across inductor

â€Ē 𝑖𝑅 = 0 â–Ŧ All current through short

â€Ē 𝑖ðŋ = 2 ðī â–Ŧ By KCL

9

Page 10: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

Exercise 4.5

â€Ē Can use network analysis to come up with a differential equation, but you would need to solve it

â€Ē Instead, use the general 1st-order solution

â€Ē Time constant 𝜏

â–Ŧ 𝜏 =ðŋ

𝑅=

2

10= 0.2

â€Ē Voltage ð‘Ģ(ð‘Ą) â–Ŧ ð‘Ģ ð‘Ą = 0 + 20 − 0 ð‘’âˆ’ð‘Ą/0.2 = 20ð‘’âˆ’ð‘Ą/0.2 V

â€Ē Current 𝑖ðŋ(ð‘Ą), 𝑖𝑅(ð‘Ą) â–Ŧ 𝑖ðŋ ð‘Ą = 2 + 0 − 2 ð‘’âˆ’ð‘Ą/0.2 = 2 − 2ð‘’âˆ’ð‘Ą/0.2 A â–Ŧ 𝑖𝑅 ð‘Ą = 0 + 2 − 0 ð‘’âˆ’ð‘Ą/0.2 = 2ð‘’âˆ’ð‘Ą/0.2 A

10

Page 11: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

RC/RL Circuits with General Sources

â€Ē Previously,

â–Ŧ 𝑅ðķ𝑑ð‘Ģ𝑐(ð‘Ą)

ð‘‘ð‘Ą+ ð‘Ģ𝑐(ð‘Ą) = 𝑉𝑠

â€Ē What if 𝑉𝑠 is not constant

â–Ŧ 𝑅ðķ𝑑ð‘Ģ𝑐(ð‘Ą)

ð‘‘ð‘Ą+ ð‘Ģ𝑐(ð‘Ą) = ð‘Ģ𝑠(ð‘Ą)

â–Ŧ Now have a general source that is a function of time

â€Ē The solution is a differential equation of the form

â–Ŧ 𝜏𝑑ð‘Ĩ(ð‘Ą)

ð‘‘ð‘Ą+ ð‘Ĩ(ð‘Ą) = 𝑓(ð‘Ą)

â–Ŧ Where 𝑓(ð‘Ą) is known as the forcing function (the circuit source)

11

ð‘Ģ𝑠(ð‘Ą)

Page 12: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

General Differential Equations

â€Ē General differential equation

â€Ē 𝜏𝑑ð‘Ĩ(ð‘Ą)

ð‘‘ð‘Ą+ ð‘Ĩ(ð‘Ą) = 𝑓(ð‘Ą)

â€Ē The solution to the diff equation is

â€Ē ð‘Ĩ ð‘Ą = ð‘Ĩ𝑝 ð‘Ą + ð‘Ĩℎ(ð‘Ą)

â€Ē ð‘Ĩ𝑝 ð‘Ą is the particular solution

â€Ē ð‘Ĩℎ(ð‘Ą) is the homogeneous solution

12

Page 13: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

Particular Solution

â€Ē 𝜏𝑑ð‘Ĩ𝑝 ð‘Ą

ð‘‘ð‘Ą+ ð‘Ĩ𝑝 ð‘Ą = 𝑓(ð‘Ą)

â€Ē The solution ð‘Ĩ𝑝 ð‘Ą is called the forced response

because it is the response of the circuit to a particular forcing input 𝑓 ð‘Ą

â€Ē The solution ð‘Ĩ𝑝 ð‘Ą will be of the same functional

form as the forcing function

â–Ŧ E.g.

â–Ŧ 𝑓 ð‘Ą = ð‘’ð‘ ð‘Ą → ð‘Ĩ𝑝 ð‘Ą = ðīð‘’ð‘ ð‘Ą

â–Ŧ 𝑓 ð‘Ą = cos ðœ”ð‘Ą → ð‘Ĩ𝑝 ð‘Ą = ðīcos ðœ”ð‘Ą + ðĩsin(ðœ”ð‘Ą)

13

Page 14: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

Homogeneous Solution

â€Ē 𝜏𝑑ð‘Ĩℎ ð‘Ą

ð‘‘ð‘Ą+ ð‘Ĩℎ ð‘Ą = 0

â€Ē ð‘Ĩℎ ð‘Ą is the solution to the differential equation when there is no forcing function

â€Ē Does not depend on the sources

â€Ē Dependent on initial conditions (capacitor voltage, current through inductor)

â€Ē ð‘Ĩℎ ð‘Ą is also known as the natural response

â€Ē Solution is of the form

â€Ē ð‘Ĩℎ ð‘Ą = ðūð‘’âˆ’ð‘Ą/𝜏

14

Page 15: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

General Differential Solution

â€Ē Notice the final solution is the sum of the particular and homogeneous solutions

â–Ŧ ð‘Ĩ ð‘Ą = ð‘Ĩ𝑝 ð‘Ą + ð‘Ĩℎ(ð‘Ą)

â€Ē It has an exponential term due to ð‘Ĩℎ(ð‘Ą) and a term ð‘Ĩ𝑝 ð‘Ą that matches the input source

15

Page 16: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

Second-Order Circuits

â€Ē RLC circuits contain two energy storage elements

â–Ŧ This results in a differential equation of second order (has a second derivative term)

â€Ē This is like a mass spring system from physics

16

Page 17: EE292: Fundamentals of ECEb1morris/ee292/docs/slides15.pdf · RL Example â€ĒCurrent before switch 𝑖0− =0 â€ĒKVL around loop 𝑉 − 𝑖 − 𝑖 =0 𝑖 +ðŋ 𝑅 𝑖 =𝑉𝑠

RLC Series Circuit

â€Ē KVL around loop

â–Ŧ ð‘Ģ𝑠 ð‘Ą − ðŋ𝑑𝑖 ð‘Ą

ð‘‘ð‘Ąâˆ’ 𝑖 ð‘Ą 𝑅 − ð‘Ģ𝑐 ð‘Ą = 0

â€Ē Solve for ð‘Ģ𝑐 ð‘Ą

â–Ŧ ð‘Ģ𝑐 ð‘Ą = ð‘Ģ𝑠 ð‘Ą − ðŋ𝑑𝑖 ð‘Ą

ð‘‘ð‘Ąâˆ’ 𝑖 ð‘Ą 𝑅

â€Ē Take derivative

â–Ŧ𝑑ð‘Ģ𝑐 ð‘Ą

ð‘‘ð‘Ą=

𝑑ð‘Ģ𝑠 ð‘Ą

ð‘‘ð‘Ąâˆ’ ðŋ

𝑑2𝑖 ð‘Ą

ð‘‘ð‘Ą2 − 𝑅𝑑𝑖 ð‘Ą

ð‘‘ð‘Ą

â€Ē Solve for current through capacitor

â€Ē 𝑖 ð‘Ą = ðķ𝑑ð‘Ģ𝑐 ð‘Ą

ð‘‘ð‘Ą

â€Ē 𝑖 ð‘Ą = ðķ𝑑ð‘Ģ𝑠 ð‘Ą

ð‘‘ð‘Ąâˆ’ ðŋ

𝑑2𝑖 ð‘Ą

ð‘‘ð‘Ą2 − 𝑅𝑑𝑖 ð‘Ą

ð‘‘ð‘Ą

â€Ē𝑑2𝑖 ð‘Ą

ð‘‘ð‘Ą2 −𝑅

ðŋ

𝑑𝑖 ð‘Ą

ð‘‘ð‘Ą+

1

ðŋðķ𝑖 ð‘Ą =

1

ðŋ

𝑑ð‘Ģ𝑠 ð‘Ą

ð‘‘ð‘Ą

â€Ē The general 2nd-order constant coefficient equation

17