EE2420 – Digital Logic Summer II 2013

23
EE2420 – Digital Logic Summer II 2013 Hassan Salamy Ingram School of Engineering Texas State University Set 5: Karnaugh Maps

description

EE2420 – Digital Logic Summer II 2013. Set 5: Karnaugh Maps. Hassan Salamy Ingram School of Engineering Texas State University. Test 1. Thursday July 18, 2013. Karnaugh map. The key to finding a minimum cost SOP or POS form is applying the combining property (14a for SOP or 14b for POS) - PowerPoint PPT Presentation

Transcript of EE2420 – Digital Logic Summer II 2013

Page 1: EE2420 – Digital Logic Summer II 2013

EE2420 – Digital LogicSummer II 2013

Hassan Salamy

Ingram School of Engineering

Texas State University

Set 5: Karnaugh Maps

Page 2: EE2420 – Digital Logic Summer II 2013

Test 1

Thursday July 18, 2013

2

Page 3: EE2420 – Digital Logic Summer II 2013

Karnaugh map

The key to finding a minimum cost SOP or POS form is applying the combining property (14a for SOP or 14b for POS)

The Karnaugh map (K-map) provides a systematic (and graphical) way of performing this operation

Minterms can be combined by 14a when they differ in only one variable f(x,y,z) = xyz+xyz’ = xy(z+z’) = xy(1) = xy

The K-map illustrates this combination graphically

3

Page 4: EE2420 – Digital Logic Summer II 2013

Karnaugh map

The K-map is an alternative to a truth table for representing an expression K-map consists of cells that correspond to rows of the truth table Each cell corresponds to a minterm

A two variable truth table and the corresponding K-map

x1 x2 f

0 0 m0

0 1 m1

1 0 m2

1 1 m3

m3m1

m2m0

0

0

1

1x1

x2

4

Page 5: EE2420 – Digital Logic Summer II 2013

Karnaugh map

m3m1

m2m0

0

0

1

1x1

x2

Values for the first variableare listed across the top

Values for the second variableare listed down the left side

5

Page 6: EE2420 – Digital Logic Summer II 2013

Karnaugh map groupings

Minterms in adjacent squares on the map can be combined since they differ in only one variable

Indicated by looping the corresponding ‘1’s on the map (the ‘1’s must be adjacent)

Looping two ‘1’s together corresponds to eliminating a term and a variable from the output expression => xy+xy’ = x

x y f

0 0 0

0 1 0

1 0 1

1 1 1

10

10

0

0

1

1x

y

f=xy’+xy=x

6

Page 7: EE2420 – Digital Logic Summer II 2013

K-map groupings example

Note that the bottom two cells differ in only one variable (x) and the right two cells differ in only one variable (y)

x y f

0 0 0

0 1 1

1 0 1

1 1 1

11

10

0

0

1

1x

y

x

yf=x+y

7

Page 8: EE2420 – Digital Logic Summer II 2013

K-map groupings example

x

0 1

y0 1 1

1 1 0

Draw the K-map and give the minimized logic expression for the following truth table.

Show the groupings made in the K-map

x y f

0 0 1

0 1 1

1 0 1

1 1 0

8

Page 9: EE2420 – Digital Logic Summer II 2013

Three variable K-map

A three-variable K-map is constructed by laying 2 two-variable maps side by side

K-maps are always laid out such that adjacent squares only differ by one variable (i.e. by 1 bit in the binary expression of the minterm values)

x y z Minterm0 0 0 m0=x’y’z’

0 0 1 m1=x’y’z

0 1 0 m2=x’yz’

0 1 1 m3=x’yz

1 0 0 m4=xy’z’

1 0 1 m5=xy’z

1 1 0 m6=xyz’

1 1 1 m7=xyz

m3m1

m2m0

00

0

1

01xy

z

m5m7

m4m6

11 10

End cells are ‘adjacent’

9

Page 10: EE2420 – Digital Logic Summer II 2013

Example three-variable K-maps

f(x,y,z)=m(0,1,2,4)01

11

00

0

1

01xy

z

00

10

11 10

=x’y’+x’z’+y’z’

11

11

00

0

1

01xy

z

00

10

11 10

f(x,y,z)=m(0,1,2,3,4)=x’+y’z’

A grouping of four eliminates 2 variables

10

Page 11: EE2420 – Digital Logic Summer II 2013

Guidelines for combining terms Can combine only adjacent ‘1’s Can group only in powers of 2 (1,2,4,8,

etc.) Try to form as large a grouping as

possible Do not generate more groups than are

necessary to “cover” all the ‘1’s

11

Page 12: EE2420 – Digital Logic Summer II 2013

Example groupings

00

11

00

0

1

01xyz

00

11

11 10

01

11

00

0

1

01xyz

10

11

11 10

00

10

00

0

1

01xyz

11

11

11 10

10

11

00

0

1

01xyz

01

01

11 10

f=z’ f=yz’+x

f=z’+y’ f=y+x’z’

12

Page 13: EE2420 – Digital Logic Summer II 2013

K-map groupings example

ab

00 01 11 10

c0 0 1 1 1

1 1 1 0 1

Draw the K-map and give the minimized logic expression for the following. f(a,b,c)=m(1,2,3,4,5,6)

Show the groupings made in the K-map

13

Page 14: EE2420 – Digital Logic Summer II 2013

Four variable K-map

A four-variable K-map is constructing by laying 2 three-variable maps together to create four rows f(a,b,c,d)

m5m1

m4m0

00 01ab

cd

m9m13

m8m12

11 10

m6m2

m7m3

m10m14

m11m15

00

01

11

10

14

Page 15: EE2420 – Digital Logic Summer II 2013

Four variable K-map

Adjacencies wrap around in the K-map

m5m1

m4m0

00 01abcd

m9m13

m8m12

11 10

m6m2

m7m3

m10m14

m11m15

00

01

11

10

15

Page 16: EE2420 – Digital Logic Summer II 2013

Example four-variable K-maps

00

00

00 01ab

cd

11

00

11 10

01

01

10

10

00

01

11

10

f(a,b,c,d)=m(2,3,9-11,13)

=ac’d+b’c

10

10

00 01ab

cd

11

01

11 10

10

11

01

11

00

01

11

10

f(a,b,c,d)=m(3-7,9,11,12-15)

=b+cd+ad

16

Page 17: EE2420 – Digital Logic Summer II 2013

Example groupings

01

11

00 01ab

cd

10

11

11 10

11

01

11

10

00

01

11

10

f(a,b,c,d)=b’+d’

01

10

00 01ab

cd

10

01

11 10

10

01

01

10

00

01

11

10

f(a,b,c,d)=b’d+bd’

17

Page 18: EE2420 – Digital Logic Summer II 2013

Example groupings

10

01

00 01ab

cd

01

10

11 10

01

10

10

01

00

01

11

10

f(a,b,c,d)=b’d’+bd

01

11

00 01ab

cd

10

01

11 10

11

01

01

10

00

01

11

10

f(a,b,c,d)=b’d+bd’+a’b’

18

Page 19: EE2420 – Digital Logic Summer II 2013

Examples

We will revisit some of the examples we studied in the last lecture.

We will simplify the equations using K-Maps this time instead of algebraic manipulations.

19

Page 20: EE2420 – Digital Logic Summer II 2013

Multiplexer circuit

s x y f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

f(s,x,y)=m2+m3+m5+m7

f(s,x,y)=s’xy’+s’xy+sx’y+sxyf(s,x,y)=s’x(y’+y)+sy(x’+x)f(s,x,y)=s’x+sy

20

Page 21: EE2420 – Digital Logic Summer II 2013

Car safety alarm

D K S B A0 0 0 0 00 0 0 1 00 0 1 0 00 0 1 1 00 1 0 0 10 1 0 1 10 1 1 0 10 1 1 1 11 0 0 0 01 0 0 1 01 0 1 0 01 0 1 1 01 1 0 0 01 1 0 1 01 1 1 0 11 1 1 1 0

A(D,K,S,B)=m(4,5,6,7,14)A(D,K,S,B)=D’KS’B’+D’KS’B+D’KSB’+D’KSB+DKSB’

=D’KS’+D’KS+KSB’

=D’K+KSB’

21

Page 22: EE2420 – Digital Logic Summer II 2013

Three-way light control

x y z f

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

f(x,y,z)=m1+m2+m4+m7

f(x,y,z)=x’y’z+x’yz’+xy’z’+xyzThis is the simplest sum-of-products form.

22

Page 23: EE2420 – Digital Logic Summer II 2013

Majority Function23

X Y Z Majority

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• The output of the majority function is equal to the value for the three inputs which occurs on more inputs.

• Majority(X,Y,Z) = m(3,5,6,7)

• Majority(X,Y,Z) = X’YZ + XY’Z + XYZ’ + XYZ

• Simplified Majority(X,Y,Z) = XY + XZ + YZ