EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies...

23
1 1 EE143 – Fall 2016 Microfabrication Technologies Lecture 5: Thermal Oxidation Reading: Jaeger Chapter 3 Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) 2 Properties of SiO 2 Thermal SiO 2 is amorphous. Weight Density = 2.20 gm/cm 3 Molecular Density = 2.3E22 molecules/cm 3 Crystalline SiO 2 (Quartz) = 2.65 gm/cm 3 SiO2 <Si> (1) Excellent Electrical Insulator Resistivity > 1E20 ohmcm Energy Gap ~ 9 eV (2) High Breakdown Electric Field > 10MV/cm (3) Stable and Reproducible Si/SiO 2 Interface

Transcript of EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies...

Page 1: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

1

1

EE143  – Fall  2016Microfabrication  Technologies

Lecture  5:  Thermal  OxidationReading:  Jaeger  Chapter  3

Prof.  Ming  C.  Wu  

[email protected]

511  Sutardja Dai  Hall  (SDH)

2

Properties  of  SiO2Thermal  SiO2 is  amorphous.Weight  Density            =  2.20  gm/cm3

Molecular  Density  =  2.3E22  molecules/cm3

Crystalline  SiO2 (Quartz)  =  2.65  gm/cm3

SiO2

<Si>

(1)  Excellent  Electrical  InsulatorResistivity  >  1E20  ohm-­cm        Energy  Gap  ~  9  eV

(2)  High  Breakdown  Electric  Field  >  10MV/cm

(3)  Stable  and  Reproducible  Si/SiO2 Interface

Page 2: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

2

3

Properties  of  SiO2 (cont’d)

(4)  Conformal  oxide  growth  on  exposed  Si  surface

Si Si

SiO2

ThermalOxidation

SiSi Si

SiO2

ThermalOxidation

(5)  SiO2 is  a  good  diffusion  mask  for  common  dopants

D Dsio si2<<

e.g.  B,  P,  As,  Sb.  

SiO2

Si

*exceptions  are  Ga  (a  p-­type  dopant)  and  some  metals,  e.g.  Cu,  Au

4

SiO2

Si

HF  dip

Si

(6)  Very  good  etching  selectivity  between  Si  and  SiO2.

Properties  of  SiO2 (cont’d)

Page 3: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

3

5

Thermal  Oxidation  of  Silicon

consumed issilicon as surface original below 46%

and above 54% OccursGrowth

22

OxidationWet

OxidationDry

222

22

HSiOOHSi

SiOOSi

+®+

®+

6

Thermal  Oxidation  Equipment

Horizontal  Furnace

Vertical  Furnace

Page 4: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

4

7

Gas  Diffusion

Solid-­stateDiffusion

SiO2Formation

Si-­Substrate

SiO2

Oxidant  Flow(O2 or  H2O)

Gas  FlowStagnant  Layer

Kinetics  of  SiO2 growth

8

1µm  Si  oxidized 2.17  µm  SiO2

Si SiSiO21µm 2.17  µm

Silicon  consumption  during  oxidation

si

oxoxsi NNXX •=

oxox XcmatomscmmoleculesX 46.0

/105/103.2322

322

=´´

= •

molecular  density  of  SiO2

atomic  density  of  Si

Page 5: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

5

9

The  Deal-­Grove  Model  of  Oxidation

CGCs

CoCi

X0x

stagnantlayer

SiO2 Si

F1 F2 F3

gastransportflux

diffusionflux

through  SiO2

reactionflux

at  interface

NoteCs ¹ Co

• F: oxygen flux –the number of oxygen molecules that crosses a plane per unit area per second

10

The  Deal-­Grove  Model  of  Oxidation  (cont’d)CG

Cs

CoCi

X0x

stagnantlayer

SiO2 Si

F1 F2 F3

NoteCs ¹ Co

NoteCs ¹ Co

( )F h C CG G S1 = -

xCDF¶¶

-=2

÷÷ø

öççè

æ -×@

ox

io

XCCD

is CkF ×=3Diffusivity  [cm2/sec]

Mass  transfer  coefficient  [cm/sec].

“Fick’s  Law  of  Solid-­state  Diffusion”

Oxidation  reaction  rate  constant  

Page 6: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

6

11

re temperatuabsolute=TJ/K x101.38=constant sBoltzmann'=k

energy activationE

exp

23-A =

÷øö

çèæ-=kTEDD A

O

Diffusivity:  the  diffusion  coefficient

Arrhenius equation

12

The  Deal-­Grove  Model  of  Oxidation  (cont’d)CG

Cs

CoCi

X0x

stagnantlayer

SiO2 Si

F1 F2 F3

NoteCs ¹ Co

NoteCs ¹ Co

• CS and  Co are  related  by  Henry’s  Law

• CG  is  a  controlled  process  variable  (proportional    to  the  input  oxidant  gas  pressure)  

Only  Co  and  Ci  are  the  2  unknown  variables  which  can  be  solved  from  the  steady-­state  condition:    F1  =  F2  =  F3  (  2  equations)  

Page 7: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

7

13

The  Deal-­Grove  Model  of  Oxidation  (cont’d)CG

Cs

CoCi

X0x

stagnantlayer

SiO2 Si

F1 F2 F3

NoteCs ¹ Co

NoteCs ¹ Co

so PHC ×=

( )sCkTH ××=

partial  pressure  of  oxidantat  surface  [in  gaseous  form].

Henry’sconstant

from  ideal  gas  law  PV=  NkT

HkTCC o

s =\

Henry’s  Law

14

The  Deal-­Grove  Model  of  Oxidation  (cont’d)CG

Cs

CoCi

X0x

stagnantlayer

SiO2 Si

F1 F2 F3

NoteCs ¹ Co

NoteCs ¹ Co

)( GA CHkTC ׺

F hHkT

C CGA o1 = -( )

321 FFF ==

Define

Similarly,  we  can  set  up  equations  for  F2 and  F3Using  the  steady-­state  condition:

We  therefore  can  solve  for  Co and  Ci

1 2

Page 8: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

8

15

The  Deal-­Grove  Model  of  Oxidation  (cont’d)

We  have:

At  equilibrium:  F1  =  F2  =  F3Solving,  we  get:

÷÷ø

öççè

æ -×@

ox

io

XCCDF2 is CkF ×=3

C Ckh

k XD

iA

s s ox=

+ +1÷øö

çèæ +×=

DXkCC oxs

io 1

( )DXk

hk1

CkCkFFFFoxss

Asis321

++=×====

where h=hg/HkT

16

The  Deal-­Grove  Model  of  Oxidation  (cont’d)

We  can  convert  flux  into  growth  thickness  from:

÷øö

çèæ=dtdX

NF ox

1

Oxidant  molecules/unit  volume  required  to  form  a  unit  volume  of  SiO2.

SiO2 Si

F

DXox

Page 9: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

9

17

The  Deal-­Grove  Model  of  Oxidation  (cont’d)

1

2

)11(2

NDCB

hkDA

A

gs

º

BAXX ii +=

2

t

Initial  Condition:    At        t  =  0  ,  Xox =  Xi

)(2 t+=+ tBAXX oxoxSolution

Note:  hg >>ks for  typical  oxidation  condition

SiO2

Si

SiO2

Si

xox

18

Dry  /  Wet  Oxidation

N cm122 32 3 10= ´. / for  O2 as  oxidant

Si O SiO+ ®2 2

Si H O SiO H+ ® + ­2 22 2 2

N cm122 34 6 10= ´. / for  H2O  as  oxidant

Note : “dry” and “wet” oxidation have different N1 factors

Page 10: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

10

19

BdtdxA

dtdxX

tBAXX

oxoxox

xox

=+

+=+

2

)(02 t

µ t

µ t

Xox

t

ox

ox

XAB

dtdx

2+=\

Summary:  Deal-­Grove  Model

Oxide Growth Rate slowsdown with increase of oxide thickness

20

(Case  1)  Large  t [  large  Xox  ]

BtXox ®

(Case  2)  Small  t [  Small  Xox  ]

tABXox ®

Solution:  Oxide  Thickness  Regimes

ïþ

ïý

ü

ïî

ïí

ì-

÷÷÷

ø

ö

ççç

è

æ ++= 1

41

2 2

BAtAXoxt

Page 11: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

11

21

Thermal  Oxidation  on  <100>  Silicon

22

Thermal  Oxidation  on  <111>  Silicon

Page 12: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

12

23

Thermal  Oxidation  Example

A  <100>  silicon  wafer  has  a  2000-­Å  oxide  on  its  surface

(a)  How  long  did  it  take  to  grow  this  oxide  at  1100o  C  in  dry  oxygen?

(b)The  wafer  is  put  back  in  the  furnace  in  wet  oxygen  at  1000o  C.    How  long  will  it  take  to  grow  an  additional  3000  Å of  oxide?

24

Thermal  Oxidation  ExampleGraphical  Solution

(a)  According  to  Fig.  3.6,  it  would  take  2.8  hr to  grow  0.2  µm oxide  in  dry  oxygen  at  1100o C.

Page 13: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

13

25

Thermal  Oxidation  ExampleGraphical  Solution

(b)  The  total  oxide  thickness  at  the  end  of  the  oxidation  would  be  0.5  µm  which  would  require  1.5  hr  to  grow  if  there  was  no  oxide  on  the  surface  to  begin  with.    However,  the  wafer  “thinks”  it  has  already  been  in  the  furnace  0.4  hr.    Thus  the  additional  time  needed  to  grow  the  0.3  µm  oxide  is  1.5-­0.4  =  1.1  hr.

26

Thermal  Oxidation  ExampleMathematical  Solution

( )

( ) hrhr

hrmm

hrm

mt

hr

hrmm

hrmm

hrm

AB

hrm

nmXhrm

kTx

AB

hrm

kTxB i

70.2174.0169.0

2.0

0236.0

2.0=

174.0169.0

025.0

0236.0

025.0

169.0 and 0.0236=B K, 1373=TFor

25 00.2exp1071.3 23.1exp1072.7=

3.1, Table From (a)

2

2

2

2

2

62

2

=-+

=+=

=

=÷øö

çèæ -=÷

øö

çèæ -

µµ

µµ

µµ

µµt

µµ

µµ

Page 14: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

14

27

Thermal  Oxidation  ExampleMathematical  Solution

( )

( ) hrhr

hrmm

hrmmt

hr

hrmm

hrmm

hrm

AB

hrm

Xhrm

kTx

AB

hrm

kTxB i

07.1398.0742.0

5.0

314.0

5.0=

398.0742.0

2.0

314.0

2.0

742.0 and 0.314=B K, 1273=TFor

0 05.2exp1070.9 78.0exp1086.3=

3.1, Table From (b)

2

2

2

2

2

72

2

=-+

=+=

=

=÷øö

çèæ -=÷

øö

çèæ -

µµ

µµ

µµ

µµt

µµ

µµ

28

Effect  of  Xi  on  Wafer  Topography

SiO2 SiO2 Xi

1 32

Si

Page 15: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

15

29

Effect  of  Xi on  Wafer  Topography

less  oxide  grownless  Si  consumed

more  oxide  grownmore  Si  consumed

32

1

SiO2 SiO2 Xi

1 32

Si

30

Factors  Influencing  Thermal  Oxidation

• Temperature

• Ambient  Type  (Dry  O2,  Steam,  HCl)

• Ambient  Pressure

• Substrate  Crystallographic  Orientation

• Substrate  Doping

Page 16: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

16

31

High  Doping  Concentration  Effect

n+n

n+n

Coefficients  for  dry  oxidation  at  900oC  as  function  of  surface  Phosphorus  concentration

SiO2

Dry  oxidation,  900oC

32

AmorphousSiO2

CrystallineSi

Transmission  Electron  Micrograph  of  Si/SiO2 Interface

Page 17: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

17

33

potassium

sodium

Thermal  Oxide  Charges

34

Oxide  Quality  Improvement

• To  minimize  Interface  Charges  Qf and  Qit

• Use  inert  gas  ambient  (Ar or  N2)  when  cooling  down  at  end  of  oxidation  step

• A  final  annealing  step  at  400-­450oC  is  performed    with  10%H2+90%N2 ambient  (“forming  gas”)  after  the  IC  metallization  step.

Page 18: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

18

35

• Introduction  of  halogen  species  during  oxidatione.g. add  ~1-­ 5% HCl  or  TCE  (trichloroethylene)  to  O2

® reduction  in  metallic  contamination® improved  SiO2/Si  interface  properties

MClClM ®+

Na+ or  K+ in  SiO2 are  mobile!  

SiO2

Cl2

SiNa+ K+

Oxidation  with  Chlorine-­containing  Gas

36

222 ClOHOHCl +®+

Effect  of  HCl  on  Oxidation  Rate

Page 19: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

19

37

Local  Oxidation  of  Si  (LOCOS)

~100A  SiO2 (thermal)  -­ pad  oxideto  release  mechanical  stress  between  nitride  and  Si.Oxidation

Nitride Etch

38

Local  Oxidation  of  Silicon  (LOCOS)Fully  recessed  process  attempts  

to  minimize  bird’s  beakStandard  process  suffers  for  significant  bird’s  beak

Page 20: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

20

39

SiO2 Si

C2CB

C1CB  (uniform)

x

conc.Si e.  g.  B,  P,  As,  Sb.

Segregation  Coefficient

m º equilibrium  dopant  conc.  in  Siequilibrium  dopant  conc.  in  SiO2

=CC1

2

Fixed  ratio

(can  be  >  1  or   <  1  )

Dopant  Redistribution  during  Thermal  Oxidation

40

Four  Cases  of  Interest

(A)  m  <  1  and  dopant  diffuses  slowly in  SiO2SiO2 Si

C2CB

C1D e.  g.  B    (m  =  0.3)

flux  loss  through  SiO2 surface  not  considered  here.  

B  will  be  depleted  near  Si  interface.  

Þ

Page 21: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

21

41

Four  Cases  of  Interest

(B)  m  >  1,  slow  diffusion  in  SiO2.

SiO2 Si

C2CB

C1

e.g.  P,  As,  Sb

Þ dopant  piling  up  near  Si  interfacefor  P,  As  &  Sb

42

Four  Cases  of  Interest

C1

(C)  m  <  1,  fast  diffusion  in  SiO2

SiO2 Si

C2 CB

e.  g.  B,  oxidize  with  presence  of  H2

Page 22: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

22

43

Four  Cases  of  Interest(D)  m  >  1,  fast  diffusion  in  SiO2

SiO2 Si

C2

CBC1

e.  g.  Ga  (m=20)

44

Polycrystalline  Si  Oxidation

poly-­Si

grain  boundaries  (have  lots  of  defects).

SiO2

roughnesswith  Xox

fast slower

a

b

Overall  growth  rateis  higher  than  single-­crystal  Si

SiO2

Page 23: EE143%– Fall%2016 …ee143/fa16/lectures/...1 1 EE143%– Fall%2016 Microfabrication%Technologies Lecture5:%Thermal%Oxidation Reading:%Jaeger%Chapter%3 Prof.%MingC.%Wu wu@eecs.berkeley.edu

23

45

(110)

(100)

(100)

Thinner  oxideThickeroxide(100)

(110)

Mechanical  stress  created  by  SiO2 volume  expansion also  affects  oxide  growth  rate

Si  cylinder

Topview

2-­Dimensional    oxidation  effects