EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 -...

7
EE120 - Fall’15 - Lecture 2 Notes 1 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Murat Arcak 31 August 2015 LTI Systems Described by Differential and Difference Equations Linear Constant Coefficient Differential Equations: x(t)N k=0 a k d k y(t) dt k = M k=0 b k d k x(t) dt k y(t) (1) If the initial conditions are zero: y(0)= dy dt (0)= ... = dy N-1 dt N-1 (0)= 0, then this is an LTI system. Nonzero initial conditions destroy linear- ity: if y(0) 6 = 0, then x(t) 0 does not imply y(t) 0. Example: + - R C x(t) y(t) - + C dy dt = -y + x R (2) With x(t) 0, solution is y(t)= y(0)e -t/RC (0 only if y(0)= 0). Linear Constant Coefficient Difference Equations: x[n]N k=0 a k y[n - k]= M k=0 b k x[n - k] y[n] (3) LTI if y[-1]= y[-2]= ... = y[-N]= 0. Example: Accumulator y[n]= n k=-x[k] y[n] - y[n - 1]= x[n] (4) With x[n] 0, the solution is y[n]= y[-1] for n 0. Rewrite the difference equation (3) as: a 0 y[n]+ a 1 y[n - 1]+ ... + a N y[n - N]= b 0 x[n]+ ...b M x[n - M] (5) and note that it defines a causal system if a 0 6 = 0. Henceforth assume a 0 = 1 (if a 0 6 = 1, we can divide the other coeffi- cients by a 0 ).

Transcript of EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 -...

Page 1: EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 - lecture 2 notes 3 Block Diagram Representation of DT LTI Systems: y[n] = N å k=1 a ky[n

EE120 - Fall’15 - Lecture 2 Notes11 Licensed under a Creative CommonsAttribution-NonCommercial-ShareAlike4.0 International License.Murat Arcak

31 August 2015

LTI Systems Described by Differential and Difference Equations

Linear Constant Coefficient Differential Equations:

x(t)→N

∑k=0

akdky(t)

dtk =M

∑k=0

bkdkx(t)

dtk → y(t) (1)

If the initial conditions are zero: y(0) = dydt (0) = ... = dyN−1

dtN−1 (0) = 0,then this is an LTI system. Nonzero initial conditions destroy linear-ity: if y(0) 6= 0, then x(t) ≡ 0 does not imply y(t) ≡ 0.

Example:

+−

R

Cx(t) y(t)

+

Cdydt

=−y + x

R(2)

With x(t) ≡ 0, solution is y(t) = y(0)e−t/RC (≡ 0 only if y(0) = 0).

Linear Constant Coefficient Difference Equations:

x[n]→N

∑k=0

aky[n− k] =M

∑k=0

bkx[n− k] → y[n] (3)

LTI if y[−1] = y[−2] = ... = y[−N] = 0.

Example: Accumulator

y[n] =n

∑k=−∞

x[k] → y[n]− y[n− 1] = x[n] (4)

With x[n] ≡ 0, the solution is y[n] = y[−1] for n ≥ 0. �

Rewrite the difference equation (3) as:

a0y[n] + a1y[n− 1] + ... + aNy[n− N] = b0x[n] + ...bMx[n−M] (5)

and note that it defines a causal system if a0 6= 0.

Henceforth assume a0 = 1 (if a0 6= 1, we can divide the other coeffi-cients by a0).

Page 2: EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 - lecture 2 notes 3 Block Diagram Representation of DT LTI Systems: y[n] = N å k=1 a ky[n

ee120 - fall’15 - lecture 2 notes 2

FIR vs. IIR Systems

The special case N = 0 above defines a finite impulse response (FIR)system:

y[n] = b0x[n] + ... + bMx[n−M] (6)

Impulse response:

h[n] = b0δ[n] + b1δ[n− 1] + ... + bMδ[n−M] (7)

b0

b1b2

. . .bM

1 2 M n

finite duration

Note that a FIR system is always stable, because the sum ∑n |h[n]| isover a finite duration and, thus, finite.

An infinite impulse response (IIR) example:

y[n]− y[n− 1] = x[n], y[−1] = 0 (accumulator)

Impulse response:h[n]− h[n− 1] = δ[n]

h[0] = h[−1] + δ[0] = 0 + 1 = 1h[1] = h[0] = 1h[2] = h[1] = 1

...

1h[n]

. . .

ninfinite duration

Page 3: EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 - lecture 2 notes 3 Block Diagram Representation of DT LTI Systems: y[n] = N å k=1 a ky[n

ee120 - fall’15 - lecture 2 notes 3

Block Diagram Representation of DT LTI Systems:

y[n] = −N

∑k=1

aky[n− k] +M

∑k=0

bkx[n− k] (8)

+

+

+ +

+

+x[n] y[n]

D

D

D

D

b0

b1

b2

−a1

−a2

This requires N + M delay elements (memory registers). For animplementation with fewer memory registers, recall that changingthe order of two LTI systems in series does not change the result:

h1[n] h2[n] ≡ h2[n] h1[n]

+

+

++

+

+ +

+

++

+

+x[n] y[n]

D

D

D

D

b0

b1

b2

−a1

−a2

D

D

b0

b1

b2

−a1

−a2

x[n] y[n]

=⇒

Note that a FIR system can be implemented with the blue block only;no feedback loops are required.

Page 4: EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 - lecture 2 notes 3 Block Diagram Representation of DT LTI Systems: y[n] = N å k=1 a ky[n

ee120 - fall’15 - lecture 2 notes 4

Response of LTI Systems to Complex ExponentialsSection 3.2 in Oppenheim & Willsky

Complex Exponentials

Continuous-time:

x(t) = est, s ∈ Cs=σ+jω−−−−−→ x(t) = eσt︸︷︷︸

envelope

ejωt︸︷︷︸periodic

(9)

Discrete-time:

x[n] = zn, z ∈ Cz=rejω−−−−→ x[n] = rnejωn (10)

Figures 1 and 2 on page 7 plot est and zn for various values of s and zin the complex plane.

The response of a LTI system to a complex exponential is thesame complex exponential scaled by a constant.

x(t) → h(t) → y(t) =∫ ∞

−∞h(τ)es(t−τ)dτ =

(∫ ∞

−∞h(τ)e−sτdτ

)︸ ︷︷ ︸

,H(s)

est

(11)

x[n] → h[n] → y[n] =∞

∑k=−∞

h[k]zn−k =

(∞

∑−∞

h[k]z−k

)︸ ︷︷ ︸

,H(z)

zn (12)

H(s) and H(z) are called ”transfer functions” or ”system functions.”

Example: Find the transfer function H(s) for y(t) = x(t− 3).If x(t) = est then

y(t) = x(t− 3) = es(t−3) = e−3s︸︷︷︸=H(s)

est. (13)

Alternatively, use the impulse response h(t) = δ(t− 3):

H(s) =∫ ∞

−∞δ(τ − 3)e−sτdτ = e−3s. (14)

Frequency Response of a LTI System

x(t) = ejωt(s = jω) → y(t) = H(jω)ejωt

x[n] = ejωn(z = ejω) → y[n] = H(ejω)ejωn (15)

H(jω) =∫ ∞−∞ h(τ)e−jωτdτ

H(ejω) = ∑ h[k]e−jωk(16)

Page 5: EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 - lecture 2 notes 3 Block Diagram Representation of DT LTI Systems: y[n] = N å k=1 a ky[n

ee120 - fall’15 - lecture 2 notes 5

FilteringSection 3.9 in Oppenheim & Willsky

LTI system designed such that H(jω) (H(ejω) in DT) is zero or closeto zero for frequencies to be eliminated.

Example: Why is the moving average system a low-pass filter?

y[n] =1

2M + 1

M

∑k=−M

x[n− k] (17)

−M M

12M+1

h[n]

H(ejω) =M

∑k=−M

12M + 1

e−jωk =ejωM

2M + 1

(1 + e−jω + ... + e−jω2M

)︸ ︷︷ ︸

1−e−jω(2M+1)

1−e−jω if w 6=02

. 2 since this is a geometric series

=1

2M + 1ejωM e−jω(M+ 1

2 )

e−jω/2︸ ︷︷ ︸=1

ejω(M+ 12 ) − e−jω(M+ 1

2 )

ejω/2 − e−jω/2︸ ︷︷ ︸sin(ω(M+1/2))

sin(ω/2)

H(ejω) =

{1 if ω = 0

12M+1

sin(ω(M+1/2))sin(ω/2) ω 6= 0

(18)

1

π 2π2π2M+1

Low frequencies pass through:

. . . . . . . . . . . .1 1

n n

x[n] y[n]ω = 0

High frequencies are attenuated:

. . . . . . . . . . . .

n n

x[n] = ejπn = (−1)n y[n] = (−1)n+M 12M+1ω = π

Page 6: EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 - lecture 2 notes 3 Block Diagram Representation of DT LTI Systems: y[n] = N å k=1 a ky[n

ee120 - fall’15 - lecture 2 notes 6

Example: Is y[n] = 12 (x[n]− x[n− 1]) low-pass or high-pass?

. . . . . . . . . . . .

n n

x[n] = (−1)n y[n] = (−1)nω = π

. . . . . . . . . . . .1 1

n n

x[n] ≡ 1 y[n] ≡ 0ω = 0

To find H(ejω), note that the impulse response is:

1/2

−1/2n

h[n]

H(ejω) =∞

∑n=−∞

h[n]e−jωn =12− 1

2e−jω =

12(1− e−jω) =

12

e−jω/22jsin(ω/2)

(19)

1

π 2πω

|H(ejω)| = sin(ω/2)

Example: CT low-pass filter

+−

R

Cx(t) y(t)

+

RCdydt

+ y = x y(0) = 0

x = ejωt → y = H(jω)ejωt

RCddt

{H(jω)ejωt

}+ H(jω)ejωt = ejωt

jωRCH(jω) + H(jω) = 1

Therefore,

H(jω) =1

1 + jωRC(20)

1

ω

|H(jω)| = 1√1+(RCω)2

Page 7: EE120 - Fall'15 - Lecture 2 Notesee120/fa15/LectureNotes/Lecture2.pdf · ee120 - fall’15 - lecture 2 notes 3 Block Diagram Representation of DT LTI Systems: y[n] = N å k=1 a ky[n

ee120 - fall’15 - lecture 2 notes 7

0 1 2 3 4 5 6 7 8 9 101

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 1 2 3 4 5 6 7 8 9 10-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 100.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 100.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Re{s}

Im{s} Figure 1: The real part of est for variousvalues of s in the complex plane.Note that est is oscillatory when s hasan imaginary component. It growsunbounded when Re{s} > 0, decays tozero when Re{s} < 0, and has constantamplitude when Re{s} = 0.

0 5 10 15 20 250

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25-0.5

0

0.5

1

1.5

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25-4

-3

-2

-1

0

1

2

3

4

Re{z}

Im{z}

Figure 2: The real part of zn for variousvalues of z in the complex plane. Itgrows unbounded when |z| > 1, decaysto zero when |z| < 1, and has constantamplitude when z is on the unit circle(|z| = 1).