EE 232 Lightwave Devices Lecture 6: Electron-Photon ...ee232/sp16/lectures/EE232...1 EE232 Lecture...

6
1 EE232 Lecture 6-1 Prof. Ming Wu EE 232 Lightwave Devices Lecture 6: Electron-Photon Interaction, Optical Matrix Element, Absorption Coefficient Instructor: Ming C. Wu University of California, Berkeley Electrical Engineering and Computer Sciences Dept. EE232 Lecture 6-2 Prof. Ming Wu Vector Potential Maxwell's Equations ∇× E !" = B !" t ∇× H !" ! = J !" + D !" t i D !" = ρ i B !" = 0 % & ' ' ' ' ( ' ' ' ' D !" = ε E !" and B !" = μ H !" ! Vector potential A !" B !" = ∇× A !" ⇒∇i B !" = i ∇× A !" ( ) = 0 Vector potential is not unique: A ' !" ! = A !" + ξ →∇× A ' !" ! = B !" ∇× E !" = B !" t = t ∇× A !" = ∇× − A !" t % & ' ' ( ) * * E !" = A !" t −∇φ Wave Equations: 2 A !" με 2 A !" t 2 % & ' ' ( ) * * −∇ ∇i A !" + με φ t % & ' ( ) * = μ J !" 2 φ + t i A !" ( ) = ρ ε + , - - . - - Wave Equations are invariant under "Gauge Transformation" A ' !" ! = A !" + ξ φ ' = φ ξ t + , - . - One can choose the value of i A !"

Transcript of EE 232 Lightwave Devices Lecture 6: Electron-Photon ...ee232/sp16/lectures/EE232...1 EE232 Lecture...

  • 1

    EE232 Lecture 6-1 Prof. Ming Wu

    EE 232 Lightwave Devices Lecture 6: Electron-Photon Interaction,

    Optical Matrix Element, Absorption Coefficient

    Instructor: Ming C. Wu

    University of California, Berkeley Electrical Engineering and Computer Sciences Dept.

    EE232 Lecture 6-2 Prof. Ming Wu

    Vector Potential Maxwell's Equations

    ∇× E!"= −

    ∂B!"

    ∂t

    ∇×H!"!= J!"+∂D!"

    ∂t∇iD!"= ρ

    ∇iB!"= 0

    %

    &

    ''''

    (

    ''''

    D!"= εE!"

    and B!"= µH!"!

    Vector potential A!"

    B!"=∇× A

    !"

    ⇒∇iB!"=∇i ∇× A

    !"( ) = 0

    Vector potential is not unique:

    A '!"!= A!"+∇ξ→∇× A '

    !"!= B!"

    ∇× E!"= −

    ∂B!"

    ∂t= −

    ∂∂t∇× A!"=∇× −

    ∂A!"

    ∂t

    %

    &''

    (

    )**

    E!"= −

    ∂A!"

    ∂t−∇φ

    Wave Equations:

    ∇2A!"−µε

    ∂2A!"

    ∂t2%

    &''

    (

    )**−∇ ∇iA

    !"+µε

    ∂φ∂t

    %

    &'

    (

    )*= −µJ

    !"

    ∇2φ +∂∂t

    ∇iA!"

    ( ) = − ρε

    +

    ,

    --

    .

    --

    Wave Equations are invariant under "Gauge Transformation"

    A '!"!= A!"+∇ξ

    φ ' = φ − ∂ξ∂t

    +

    ,-

    .-

    ⇒One can choose the value of ∇iA!"

  • 2

    EE232 Lecture 6-3 Prof. Ming Wu

    Lorenz and Coulomb Gauges

    Lorenz Gauge:

    Set ∇iA!"+µε

    ∂φ∂t

    = 0

    ∇2A!"−µε

    ∂2A!"

    ∂t2= −µJ!"

    ∇2φ −µε∂2φ∂t2

    = −ρε

    $

    %&&

    '&&

    Coulomb Gauge

    Set ∇iA!"= 0

    ∇2A!"−µε

    ∂2A!"

    ∂t2$

    %&&

    '

    ())−∇ µε

    ∂φ∂t

    $

    %&

    '

    ()= −µJ

    !"

    ∇2φ = −ρε

    *

    +

    ,,

    -

    ,,

    For optical field, ρ = 0, φ=0

    E!"= −

    ∂A!"

    ∂t

    EE232 Lecture 6-4 Prof. Ming Wu

    Electron-Photon Interaction Hamiltonian in the absence of light

    H0 =P2

    2m0+V (r!)

    Generalized momentum of a charged particle in an electromagnetic field

    P!"→ P!"− eA!"

    ( )Note: ∂P

    !"

    ∂t= Force→ ∂P

    !"

    ∂t− e ∂A!"

    ∂t

    $

    %&&

    '

    ())=

    ∂P!"

    ∂t− eE!"$

    %&&

    '

    ())

    (modification represents EM fields' ability to accelerate or decelerate electrons)

    H = 12m0

    P!"− eA!"

    ( )2+V (r!)

    =P2

    2m0−e

    2m0P!"⋅ A!"+ A!"⋅P!"

    ( )+ e2A2

    2m0+V (r!)

    •  For a brief review of Hamiltonian classical mechanics, see http://en.wikipedia.org/wiki/Hamiltonian_mechanics#Using_Hamilton.27s_equations

    H ' = − e2m0

    P!"⋅ A!"+ A!"⋅P!"

    ( )+ e2A2

    2m0

    H ' ≈ − e2m0

    P!"⋅ A!"+ A!"⋅P!"

    ( )P!"⋅ A!"

    ( )φ = −i!∇⋅ A!"φ

    = −i! ∇⋅ A!"

    ( )φ + A!"⋅∇φ%

    &'()*

    = −i!A!"⋅∇φ under Coulomb Gauge

    = A!"⋅P!"

    ( )φH ' = − e

    m0A!"⋅P!"

  • 3

    EE232 Lecture 6-5 Prof. Ming Wu

    Optical Matrix Element H ' = − e

    m0A!"⋅P!"

    A!"= e#A0 cos k

    !op ⋅ r!−ωt( ) = e! A02 e

    ik!op⋅r!−iωt + e!

    A02e−i k!op⋅r!+iωt ; e! is optical polarization

    H ' = −eA02m0

    eik!"!op⋅r"−iωt e! ⋅P

    "#≈ −

    eA02m0

    e−iωt e! ⋅P"#

    ; (Dipole or long-wavelength approx)

    Hba' = b −

    eA02m0

    e! ⋅P"#$

    %&&

    '

    ()) a = −

    eA02m0

    e! ⋅ b P"#a = −

    eA02m0

    e! ⋅P"#ba

    Alternative form:

    P!"=m0

    ddtr!=m0

    1i!r",H0

    *+

    ,-=m0i!r"H0 −H0 r

    !( )

    b P!"a =

    m0i!b r"H0 −H0 r

    !( ) a = m0i! Ea − Eb( ) b r

    !a =

    m0i!!ω b r

    !a

    Hba' = −

    em0A!"$

    %&&

    '

    ())⋅ −iωm0( ) b r

    !a = −eE

    "!⋅ r!ba

    EE232 Lecture 6-6 Prof. Ming Wu

    Typical Values of Optical Matrix Element

    Hba' = −

    eA02m0

    e! ⋅P"#cv = −eE

    "#⋅ r#ba = −eiω

    A02e! ⋅ r#ba ⇒ r

    #ba =

    P"#cv

    m0ωThe optical matrix element is often expressed in Ep :

    e! ⋅P"#cv

    2

    =m06Ep

    Typical values of Ep (Table K.2 on p.709 of Chuang textbook)

    GaAs: Ep = 25.7 eV The corresponding r#ba ~ 0.4 nm

    AlAs: Ep = 21.1 eV

    InAs: Ep = 22.2 eV

    InP: Ep = 20.7 eV

    GaP: Ep = 22.2 eV

  • 4

    EE232 Lecture 6-7 Prof. Ming Wu

    Fermi’s Golden Rule

    2' 2

    2'

    Two-level system, monochromatic light:

    2 1 1 1( ) Unit: [ J ]J-s J

    Final state with density of states , monochromatic light:

    2 ( ) ( )

    Unit:

    ba ba b a

    b

    ba ba b a b b b

    W H E Es

    W H E E E dE

    πδ ω

    ρ

    πδ ω ρ

    = − − =

    = − −∫

    hh

    hh

    23 3

    2'

    23 3

    1 1 1 1[ J J ]J-s J cm -J s-cm

    Two-level system, non-monochromatic light:

    2 ( ) ( ) ( )

    1 1 1 1 Unit: [ J J ]J-s J cm -J s-cm

    where ( ) : number of photons per unit volume per energy

    ba ba b aW H E E P d

    P

    πδ ω ω ω

    ω

    =

    = − − ⋅

    =

    ∫ h h hh

    h interval

    bE

    aE

    hv

    bE

    aE

    hv

    bE

    aE

    hv

    EE232 Lecture 6-8 Prof. Ming Wu

    Two-Level System in Non-Monochromatic EM Field

    2 2' '

    /

    1 2 2( ) 2 ( )

    1 Average number of photons per state (Bose-Einstein distribution)1

    To calculate density of states for photons: satisfies pe

    op

    k B

    ba ba b a ph ba ph bak

    ph h k T

    ik r

    W H E E n H n N EV

    ne

    e

    ω

    π πδ ω

    = − − ⋅ =

    =−

    r r

    hh h

    ( )2

    3

    riodic boundary condition

    dispersion relation (~ E-k relation for electrons)

    Number of states with photon energy E per unit volume, per energy interval

    2 4 8( )2

    kr

    ba

    ba b a k

    kcn

    k dkN E E EV

    L

    ω

    πδ ω

    π

    =

    = ⋅ − − =⎛ ⎞⎜ ⎟⎝ ⎠

    ∫ h ( )

    ( )

    2

    3

    3 2

    3 3

    2

    8

    r k rk

    r baba

    n n dc c

    n EN Eh c

    ωπω

    π

    π

    ⎛ ⎞⎜ ⎟⎝ ⎠

    =

  • 5

    EE232 Lecture 6-9 Prof. Ming Wu

    Joint Density of States for Semiconductor

    2 2 2 2

    * *

    2 2

    * *

    2 2

    *

    The electron states associated with optical transition

    are related by conservation of mementum:

    2 2

    1 1( )2

    2Joint densit

    b a

    b C a Ve h

    b a C Ve h

    gr

    k k kk kE E E Em m

    kE E E Em m

    kEm

    ω

    ≈ ≈

    = + = −

    ⎛ ⎞− = − + +⎜ ⎟

    ⎝ ⎠

    = +

    r r r

    h h

    h

    hh

    3/2*

    2 2

    y of states for the pair of electron states:

    21( )2

    rr g g

    mE Eρ ω ωπ

    ⎛ ⎞− = −⎜ ⎟

    ⎝ ⎠h h

    h

    CB

    VB

    Eb

    Ea

    Ec

    EV

    EE232 Lecture 6-10 Prof. Ming Wu

    Absorption Coefficient CB completely full, VB completely empty, total upward transition at !ω:

    R0 (!ω) =2V

    2π!Hba' 2δ(Eb − Ea − !ω)

    !

    "#

    $

    %&

    k∑ = 2π

    !Hba' 2 2dk

    !

    (2π )3∫ δ(Eg +!2k 2

    2mr*− !ω)

    R0 (!ω) =2π!Hba' 2 ρr (!ω − Eg ) unit: [

    1m3s

    ]

    Absorption coefficient

    α0 (!ω) =R(!ω)

    photon flux=

    R(!ω)ε0εrE0

    2

    2cnr

    1!ω

    =R(!ω)

    ε0nrω2A0

    2c2!ω

    unit: [ 1m

    ]

    Hba' = −

    eA02m0

    e! ⋅P!"cv

    α0 (!ω) =C0 e! ⋅P!"cv

    2

    ρr (!ω − Eg )

    C0 =πe2

    nrcε0m02ω

    ≈ 7×109 unit: m2

    kg

    !

    "#

    $

    %&

    Eb

    Ea

  • 6

    EE232 Lecture 6-11 Prof. Ming Wu

    Absorption Coefficient for GaAs

    α0 (!ω) =C0 e! ⋅P!"cv

    2

    ρr (!ω − Eg )

    nr 3.5:= ε0 8.854 10 12−⋅Fm

    := h_bar 1.055 10 34−×m2 kg⋅s

    = 1eV 1.6 10 19−× J=

    Eg 1.42eV:= ωEgh_bar

    := ω 2.154 1015×1s

    =

    C0π q2⋅

    m02 ω⋅ ε0⋅ c⋅ nr⋅:= C0 4.842 109×

    m2

    kg=

    Ep 25.7eV:= m06Ep⋅ 6.243 10 49−× kg J⋅=

    m_r0.067 0.5⋅0.067 0.5+

    m0⋅:=

    ρr hv( )1

    2π 22 m_r⋅

    h_bar2⎛

    3

    2⋅ hv Eg−⋅:= ρr 1.43eV( ) 6.102 1043×

    1

    m3 J⋅=

    α0 hv( ) C0m06

    ⋅ Ep⋅ ρr hv( )⋅:= α0 1.43eV( ) 1.845 105×1m

    = α0 1.43eV( ) 1.845 103×1cm

    =