Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater...

18
1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center of Environmental Health, D-85764 Neuherberg/Munich, Germany e-mail: [email protected] Healthy aquifers deliver important ecosystem services, e.g. the purification of infiltrating water and the storage of high quality water over decades in significant quantities (Danielopol et al., 2003). Also the functioning of terrestrial and surface aquatic ecosystems directly depends on groundwater and vice versa. Nowadays, legislation in many parts of the world has started to consider groundwater not only as a resource but as a living ecosystem. To our opinion, the assess- ment of ecosystems requires consideration of ecological criteria (Danielopol et al., 2004). So far, such criteria are not available for groundwater systems. In the framework of a project supported by the German Federal Environment Agency (UBA), a first concept for the ecological assessment of groundwater ecosystems is developed, with a focus on microbes and invertebrates as potential bioindicators. There are various steps in concept development, including (i) the typology of ground- water ecosystems from an ecological point of view, (ii) the derivation of natural background and threshold values, (iii) the identification of potential bioindicators, and finally, (iv) the merging of this information into an assessment model (Steube et al., 2008). Successes and difficulties associ- ated with these challenges, e.g. the lack of simple correlations between abiotic and biotic variables in groundwater ecosystems, are discussed on the basis of data sets from two different ground- water landscapes in Germany, i.e. the sands and gravels of the Lower Rhine (Rur- and Erftmassif in the Kölner Bucht) and karstic limestone of the alpine region (Swaebian Alb), each distinguished into a local and a regional aquifer. The need for collaboration between ecologists, microbiologists, hydrogeologists and geochemists, for the successful derivation of integrative, ecological criteria, as well as the application of multivariate statistics, is emphasized. References Danielopol, D.L., Griebler, C., Gunatilaka, A. & Notenboom, J. (2003) Present state and future prospects for groundwater ecosystems. Environmental Conservation 30: 104-130. Danielopol, D.L., Gibert, J., Griebler, C., Gunatilaka, A., Hahn, H.J., Messana, G., Notenboom, J. & Sket, B. (2004) Incorporating ecolo- gical perspectives in European groundwater management policy. Environmental Conservation 31: 1-5. Steube, C., Richter, S. & Griebler, C. (2008) First attempts towards an integrative concept for the ecological assessment of groundwa- ter ecosystems. Hydrogeology Journal, early online: DOI 10.1007/s10040-008-0346-6. Key words Bioindication, ecological assessment, groundwater fauna, microbial communities, monitoring schemes

Transcript of Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater...

Page 1: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

1

Ecological assessment of groundwater ecosystems

Christian GrieblerInstitute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center of

Environmental Health, D-85764 Neuherberg/Munich, Germany

e-mail: [email protected]

Healthy aquifers deliver important ecosystem services, e.g. the purification of infiltrating water and the storage of high quality water over decades in significant quantities (Danielopol et al., 2003). Also the functioning of terrestrial and surface aquatic ecosystems directly depends on groundwater and vice versa. Nowadays, legislation in many parts of the world has started to consider groundwater not only as a resource but as a living ecosystem. To our opinion, the assess-ment of ecosystems requires consideration of ecological criteria (Danielopol et al., 2004). So far, such criteria are not available for groundwater systems. In the framework of a project supported by the German Federal Environment Agency (UBA), a first concept for the ecological assessment of groundwater ecosystems is developed, with a focus on microbes and invertebrates as potential bioindicators. There are various steps in concept development, including (i) the typology of ground-water ecosystems from an ecological point of view, (ii) the derivation of natural background and threshold values, (iii) the identification of potential bioindicators, and finally, (iv) the merging of this information into an assessment model (Steube et al., 2008). Successes and difficulties associ-ated with these challenges, e.g. the lack of simple correlations between abiotic and biotic variables in groundwater ecosystems, are discussed on the basis of data sets from two different ground-water landscapes in Germany, i.e. the sands and gravels of the Lower Rhine (Rur- and Erftmassif in the Kölner Bucht) and karstic limestone of the alpine region (Swaebian Alb), each distinguished into a local and a regional aquifer. The need for collaboration between ecologists, microbiologists, hydrogeologists and geochemists, for the successful derivation of integrative, ecological criteria, as well as the application of multivariate statistics, is emphasized.

References

Danielopol, D.L., Griebler, C., Gunatilaka, A. & Notenboom, J. (2003) Present state and future prospects for groundwater ecosystems. Environmental Conservation 30: 104-130.

Danielopol, D.L., Gibert, J., Griebler, C., Gunatilaka, A., Hahn, H.J., Messana, G., Notenboom, J. & Sket, B. (2004) Incorporating ecolo-gical perspectives in European groundwater management policy. Environmental Conservation 31: 1-5.

Steube, C., Richter, S. & Griebler, C. (2008) First attempts towards an integrative concept for the ecological assessment of groundwa-ter ecosystems. Hydrogeology Journal, early online: DOI 10.1007/s10040-008-0346-6.

Key words

Bioindication, ecological assessment, groundwater fauna, microbial communities, monitoring schemes

Page 2: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

2

PowerPoint

SEITE 1

„Protect GW Quality by protectingEcosystem Functions“ (Job & Simons, 1994; US-EPA)

Groundwaterresources

Society & Health

Organisms in groundwater

systems

Ecological assessment of groundwaterecosystems

Christian GrieblerInstitute of Groundwater Ecology, Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg

SEITE 2

1998 Swiss Water Protection Ordinance mentions the ecological status: “the biocenosis in groundwater should be in a natural state adapted to the habitat and characteristic of water that is not or only slightly polluted”

2003 Western Australian Guidance for the assessment of environmental factors – “Consideration of subterranean fauna in groundwater and caves during environmental impact assessment”

2006 EU-GWD - “Research should be conducted in order to provide better criteria for ensuring groundwater ecosystem quality “

Groundwater ecological aspects in national and international regulations, directives and guidelines

Page 3: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

3

SEITE 3

Physical-chemical analysis generally describe the conditions at a certain time point and can only cover a selected number of parameters.

Biological and ecological parameters have the potential to provide a time-integrated picture of the system’s status. Indirect detection of ‘unknown’ threats is possible.

Impacts present may be categorized according to their influence on ecosystem functions and services.

Biological and ecological parameters are extremely especially useful subsequent to an impact – help to document the return to natural conditions.

Do we need an ecological assessment scheme?

Advantages

SEITE 4

Physical-chemical parameters are standardized (from sampling to analysis) while biological and ecological parameters in most cases lack routine protocols.

We know comparable little about the distribution of individual groundwater organisms, their sensitivity towards certain impacts, and their autecology.

Additional ‘new’ parameters cause ‘new’ additional costs. Can this be argued by the improved information?

It requires ecological criteria to assess an ecosystem!

Do we need an ecological assessment scheme?

Disadvantages

Page 4: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

4

SEITE 5

Groups of organisms considered

… not really useful in groundwater assessment

?

Ecological criteria are routine in theassessment of surface watersImplementation into the EU-Waterframework Directive

SEITE 6

Bacteria and Archaea Protozoa Invertebrates

Biocenoses in groundwater ecosystems

Microbial communities contain promising indicators for …

… Eutrophication (Pearl et al. 2003)

… the impact by organic compounds and heavy metals (Solé et al. 2008)

… the impact by pathogenic microbes and viruses (Lucena et al. 2006)

… the ecological assessment of the hyphorheic zone (US-EPA 1998)

… active degradation pathways (natural attenuation)(Winderl et al. 2007)

Page 5: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

5

SEITE 7

Bacteria and Archaea Protozoa Invertebrates

Biocenoses in groundwater ecosystems

Within the fauna we have indicators for …

… Influence from surface waters (Husmann 1971; Sket 1973; Malard et al. 2004; Hahn 2006)

… Eutrophication (Holsinger 1966; Sket 1973; Culver et al. 1992; u.a.)

… Sediment structure and porosity (Mösslacher 1998, Paran et al. 2004; u.a.)

… Redox conditions (Mösslacher 1998, Dole-Olivier et al. 2004; u.a.)

… Biogeographic aspects (Dole-Olivier et al. 2004; u.a.)

SEITE 8

4 Steps to an ecological assessment scheme

1. Typology of aquifers (groundwaterecosystems)

2. Definition of a reference status (NaturalBackground Values)

3. Identification of bioindicators and definitionof NBTs (Natural Background Thresholds)

4. Evaluation model

The UBA Project„Ecological assessment of groundwater ecosystems“

(2007 – 2008)

Page 6: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

6

SEITE 9

4 Steps to an ecological assessment scheme

1. Typology of aquifers (groundwaterecosystems)

2. Definition of a reference status (NaturalBackground Values)

3. Identification of bioindicators and definitionof NBTs (Natural Background Thresholds)

4. Evaluation model

SEITE 10

Typology of groundwater systems in the EU

Wendtland et al. 2007 Environmental Geology – compile part of the outcome of the EU-Projekt BRIDGE

Page 7: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

7

SEITE 11

Sande und Kiese des Norddeutschen FlachlandesSchotter und Kiese des NiederrheinsSchotter und Kiese des OberrheinsSchotter und Moränen des AlpenvorlandsTertiäre SedimenteKalksteine der Oberen JuraKalksteine des MuschelkalksKalksteine des alpinen RaumsPaläozoische KalksteineKarbonatische WechselfolgenSandsteine und silikatische WechselfolgenSandsteinfolgen des BuntsandsteinsPaläozoische SedimentgesteineVulkaniteSaure Magmatite und MetamorphiteÜbergangsbereich Fest- Lockergestein

Typology of groundwatersystems in Germany

SEITE 12

Cologne

Munich

Stuttgart

We selected 3 groundwater landscapes and sampled 20 wells each two times a year (spring and autumn).

20 wells were located in the Erft-Region near Cologne• Groundwater landscape: ‘Sands & gravels of the Lower Rhine’

40 wells were located at the Swabean Alb• Groundwater landscape: Karst of the alpine region’• Groundwater landscape: ‘Alluvial sediments of the Danube River’

The UBA Project„Ecological assessment of groundwater ecosystems“

(2007 – 2008)

Page 8: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

8

SEITE 13

RheintalscholleRheintalscholle

RurscholleRurscholle

EifelscholleEifelscholle

ErftscholleErftscholle

MessstellenMessstellen

RheintalscholleRheintalscholle

RurscholleRurscholle

EifelscholleEifelscholle

ErftscholleErftscholle

MessstellenMessstellen

RheintalscholleRheintalscholle

RurscholleRurscholle

EifelscholleEifelscholle

ErftscholleErftscholle

MessstellenMessstellen

20 wells

2 geohydrol. Units (massifs)

Quatenary aquifersLumped wells

ErfmassifRurmassif

Rur- and Erftmassif(Kölner Bucht)‘Sands & gravels of the Lower Rhine’

SEITE 14

4 Steps to an ecological assessment scheme

1. Typology of aquifers (groundwaterecosystems)

2. Definition of a reference status (NaturalBackground Values)

3. Identification of bioindicators and definitionof NBTs (Natural Background Thresholds)

4. Evaluation model

Page 9: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

9

SEITE 15

The ecological reference status has to be defined for everytype of groundwater ecosystem (or even for sub-units)

How to do that:

1. Investigation of natural (pristine) zones of aquifers

If not available

2. Use of data from comparable aquifers

If not available

3. Use of historical data

If 1-3 not available

4. Experience of experts

Definition of a reference status(Natural Background Values)

SEITE 16

The ecological reference status of a local or a regional aquifer may be defined based on natural background

values (NBVs) for individual abiotic and biotic parameters.

Combining of individual NBVs to a holistic picture.

Definition of a good ecological status.

Definition of a reference status(Natural Background Values)

Page 10: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

10

SEITE 17

Modified from Kunkel et al. 2004

Derivation of natural background valuesNatural Background Ranges (NBR) und Threshholds (NBT)

Concentration

Freq

uenc

y

Impacted component

Natural component

Actually measureddistribution

NBT

NBR

SEITE 18

0

2

4

6

8

10

12

W99739

1 (30.0

4m)

W997

581 (

12.97

m)

W9975

91 (1

0.71m

)

W99764

1 (8.1

6m)

W9977

01 (1

2.02m

)

W10505

1 (5.0

1m)

W390

051 (

4.07m

)

W60035

3 (9.1

2m)

W69007

2 (26.0

2m)

W34

0482

(30.0

0m)

W30

650 (

7.99m)

W3065

1 (8.99

m)

W34020

2 (22

.97m)

W34

0212

(24.1

4m)

W34024

2 (24

.13m)

W34

0251 (

24.37

m)

W34026

1 (21

.07m)

W84

2151

(17.0

3m)

W84221

1 (14.0

7m)

W947

551 (

11.12

m)

W948221

(13.8

2m)

W94862

1 (7.4

5m)

Sau

erst

off [

mg/

l]

FrühjahrHerbst

Rurscholle Erftscholle

0

20

40

60

80

100

120

140

160

W9973

91 (30

.04m)

W99

7581

(12.9

7m)

W9975

91 (10

.71m)

W99764

1 (8.1

6m)

W997701

(12.0

2m)

W105051

(5.01

m)

W39

0051

(4.07

m)

W60035

3 (9.1

2m)

W690072

(26.0

2m)

W34

0482

(30.0

0m)

W30650

(7.99

m)

W3065

1 (8.9

9m)

W340202

(22.9

7m)

W34

0212 (

24.14

m)

W34024

2 (24

.13m)

W34

0251

(24.3

7m)

W34026

1 (21

.07m)

W84

2151

(17.0

3m)

W8422

11 (14

.07m)

W94

7551

(11.1

2m)

W94822

1 (13

.82m)

W94862

1 (7.4

5m)

Nitr

at [m

g/l]

0

20

40

60

80

100

120

140

160

W99739

1 (30.0

4m)

W997

581 (

12.97

m)

W997591

(10.7

1m)

W99

7641 (

8 .16m)

W99

7701

(12.0

2m)

W10

5051

( 5.01

m)

W3900

51 (4.07

m)

W600

353 (

9.12m

)

W69

0072

(26.0

2m)

W3404

82 (3

0.00m

)

W30650

(7.99m

)

W30

651 (

8.99m)

W34

0202 (

22.97m

)

W34

0212 (

24.14

m)

W34

0242

(24.13

m)

W34

0251

(24.3

7m)

W3402

61 (21

.07m)

W84

2151

(17.0

3m)

W8422

11 (14

.07m)

W94

7551

(11.1

2m)

W9482

21 (13

.82m)

W94862

1 (7.4

5m)

Am

mon

ium

[mg/

l]

0

5

10

15

20

25

30

35

W9973

91 (3

0.04m

)

W997

581 (

12.97

m)

W99

7591

(10.7

1m)

W99764

1 (8.16

m)

W9977

01(12

.02m)

W1050

51 (5.0

1m)

W390

051 (

4.07m

)

W6003

53 (9

.12m)

W6900

72 (26.0

2m)

W34

0482

(30.0

0m)

W3065

0 (7.99

m)

W306

51 (8

.99m)

W3402

02 (22

.97m)

W34

0212

(24.1

4m)

W3402

42 (24

.13m)

W34

0251 (

24.37

m)

W34026

1 (21

.07m)

W84

2151

( 17.0

3m)

W8422

11 (1

4.07m

)

W947

551 (

11.12

m)

W9482

21 (13

.82m)

W94862

1 (7.45

m)

DO

C [m

g/l]

n.b.

n.b.

u.N

.u.

N.

u.N

.u.

N.

u.N

.u.

N.

u.N

.u.

N.

n.b.

n.b.

DO

[mg

l-1]

Nitr

ate

[mg

l-1]

Am

mon

ia[m

g l-1

]D

OC

[mg

l-1]

SpringAutumn

Impacts ? Rurmassif Erfmassif

Page 11: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

11

SEITE 19

0

2

4

6

8

10

12

W99739

1 (30.0

4m)

W997

581 (

12.97

m)

W9975

91 (1

0.71m

)

W99764

1 (8.1

6m)

W9977

01 (1

2.02m

)

W10505

1 (5.0

1m)

W390

051 (

4.07m

)

W60035

3 (9.1

2m)

W69007

2 (26.0

2m)

W34

0482

(30.0

0m)

W30

650 (

7.99m)

W3065

1 (8.99

m)

W34020

2 (22

.97m)

W34

0212

(24.1

4m)

W34024

2 (24

.13m)

W34

0251 (

24.37

m)

W34026

1 (21

.07m)

W84

2151

(17.0

3m)

W84221

1 (14.0

7m)

W947

551 (

11.12

m)

W948221

(13.8

2m)

W94862

1 (7.4

5m)

Sau

erst

off [

mg/

l]

FrühjahrHerbst

Rurscholle Erftscholle

0

20

40

60

80

100

120

140

160

W9973

91 (30

.04m)

W99

7581

(12.9

7m)

W9975

91 (10

.71m)

W99764

1 (8.1

6m)

W997701

(12.0

2m)

W105051

(5.01

m)

W39

0051

(4.07

m)

W60035

3 (9.1

2m)

W690072

(26.0

2m)

W34

0482

(30.0

0m)

W30650

(7.99

m)

W3065

1 (8.9

9m)

W340202

(22.9

7m)

W34

0212 (

24.14

m)

W34024

2 (24

.13m)

W34

0251

(24.3

7m)

W34026

1 (21

.07m)

W84

2151

(17.0

3m)

W8422

11 (14

.07m)

W94

7551

(11.1

2m)

W94822

1 (13

.82m)

W94862

1 (7.4

5m)

Nitr

at [m

g/l]

0

20

40

60

80

100

120

140

160

W99739

1 (30.0

4m)

W997

581 (

12.97

m)

W997591

(10.7

1m)

W99

7641 (

8 .16m)

W99

7701

(12.0

2m)

W10

5051

( 5.01

m)

W3900

51 (4.07

m)

W600

353 (

9.12m

)

W69

0072

(26.0

2m)

W3404

82 (3

0.00m

)

W30650

(7.99m

)

W30

651 (

8.99m)

W34

0202 (

22.97m

)

W34

0212 (

24.14

m)

W34

0242

(24.13

m)

W34

0251

(24.3

7m)

W3402

61 (21

.07m)

W84

2151

(17.0

3m)

W8422

11 (14

.07m)

W94

7551

(11.1

2m)

W9482

21 (13

.82m)

W94862

1 (7.4

5m)

Am

mon

ium

[mg/

l]

0

5

10

15

20

25

30

35

W9973

91 (3

0.04m

)

W997

581 (

12.97

m)

W99

7591

(10.7

1m)

W99764

1 (8.16

m)

W9977

01(12

.02m)

W1050

51 (5.0

1m)

W390

051 (

4.07m

)

W6003

53 (9

.12m)

W6900

72 (26.0

2m)

W34

0482

(30.0

0m)

W3065

0 (7.99

m)

W306

51 (8

.99m)

W3402

02 (22

.97m)

W34

0212

(24.1

4m)

W3402

42 (24

.13m)

W34

0251 (

24.37

m)

W34026

1 (21

.07m)

W84

2151

( 17.0

3m)

W8422

11 (1

4.07m

)

W947

551 (

11.12

m)

W9482

21 (13

.82m)

W94862

1 (7.45

m)

DO

C [m

g/l]

n.b.

n.b.

u.N

.u.

N.

u.N

.u.

N.

u.N

.u.

N.

u.N

.u.

N.

n.b.

n.b.

SpringAutumn

Impacts ?NBV 0.1 to 9.1

NBV 13

NBV 2.5

Rurmassif Erfmassif

NBVs fromKunkel et al. 2004

DO

[mg

l-1]

Nitr

ate

[mg

l-1]

Am

mon

ia[m

g l-1

]D

OC

[mg

l-1]

SEITE 20

0

10

20

30

40

50

W99

7391 (30

.04m)

W9975

81 (12

.97m)

W997591

(10.71

m)

W997

641 (8

.16m)

W997

701 (1

2.02m

)

W10

5051 (5

.01m)

W39

0051 (

4.07m

)

W600353 (

9.12m

)

W6900

72 (2

6.02m)

W340

482(30.00m)

W306

50 (7.99

m)

W306

51 (8.99m)

W34

0202 (22

.97m)

W34

0212 (

24.14m

)

W340242

(24.13

m)

W340251

(24.37m)

W340

261(21.0

7m)

W842

151 (1

7.03m

)

W84

2211 (14

.07m)

W94

7551 (

11.12m

)

W948221 (

13.82

m)

W948621

(7.45

m)

Bakt

erie

lle A

bund

anz

[Zel

len

x 10

4 ml-1

]

FrühjahrHerbst

Rurscholle Erftscholle

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.b.

n.b.

303 208

Rur- and Erftmassif

No NBV so far

Rurmassif Erfmassif SpringAutumn

?

Tota

l bac

teria

lcou

nts

[cel

lsx

104

ml-1

]

Microbial biomass ‚sometimes‘ agree with chemistry!

Page 12: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

12

SEITE 21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W99739

1 (30.04

m)

W99758

1 (12.97

m)

W99759

1 (10.71

m)

W99764

1 (8.1

6m)

W99770

1 (12.02

m)

W10505

1 (5.0

1m)

W39005

1 (4.07

m)

W60035

3 (9.1

2m)

W69007

2 (26.02

m)

W34048

2 (30

.00m)

W30650

(7.99

m)

W30651

(8.99

m)

W34020

2 (22.97

m)

W34021

2 (24

.14m)

W34024

2 (24.13

m)

W34025

1 (24

.37m)

W34026

1 (21.07

m)

W84215

1 (17

.03m)

W84221

1 (14.07

m)

W94755

1 (11.12

m)

W94822

1 (13.82

m)

W94862

1 (7.4

5m)

Bak

. Pro

dukt

ion

[ngC

/l/h]

Frühjahr

Herbst

Rurscholle Erftscholle

No NBV so far

Rur- and Erftmassif

Bac

teria

lcar

bon

prod

uctio

n[n

gCl-1

h-1 ]

Rurmassif Erfmassif

?

Microbial activity does not perform like chemistry!

SEITE 22

0

W99

7391 (3

0.04m)

W99

7581 (1

2.97m)

W99

7591 (1

0.71m)

W99

7641 (8.

16m)

W99

7701 (1

2.02m)

W10

5051 (

5.01m

)

W390051 (4.

07m)

W600353 (

9.12m

)

W690072 (

26.02

m)

W340482 (30

.00m)

W30650 (7

.99m)

W30651 (8

.99m)

Wells

0

W99

7391

(30.04

m)

W99758

1 (12.9

7m)

W99759

1 (10.7

1m)

W997

641 (8.16

m)

W99770

1 (12.02m

)

W10

5051

(5.01m

)

W39

0051

(4.07m

)

W600

353 (

9.12m)

W69007

2 (26.0

2m)

W34048

2 (30.00m

)

W30650

(7.99m)

W30

651 (

8.99m)

Wells

Rurmassif

0

50

100

150

200

250

300

350

Sulfa

te [m

g L-1

]

171

n.d.

n.d.

0

50

100

150

200

250

300

350

400

Chlo

ride

[mg

L-1]

106

n.

d.

n.

d.

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

pH

6.4-7.2

n.d.

n.d.

0

2

4

6

8

10

12

DO [m

g L-1

] 0.1-9.1

n.d.

n.d.

n.d.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

EC [m

S cm

-1]

1161

n.

d.

n

.d.

0

20

40

60

80

100

120

140

160

Nitr

ate

[mg

L-1]

b.d

.b.

d.

b.

d.b.

d.

b.

d.n.

d.

b.

d.n.

d.13

S vs. A p=0.238L vs. R p=0.404

S vs. A p=0.952L vs. R p=0.003*

S vs. A p=0.892L vs. R p=0.473

S vs. A p=0.545L vs. R p=0.496

S vs. A p=1.000L vs. R p=0.791

S vs. A p=0.911L vs. R p=0.015*

Steube et al. (2008) H

ydrogeol. J. (earlyonline)

Spring vs. Autumn samplesLocal vs. Regional wells

Page 13: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

13

SEITE 23

Summarizing first results from the UBA project

Significant correlation ocurred so far only between individual physical-chemical variables

Hardly any direct correlation between biological variables and abioticones

Bacterial abundance sucessfully indicated organic impact, CFUs and BCP did not.

Almost no variables show a significant difference between spring and autumn values, neither in trends (Spearman Rank Correlation analysis) nor in mean values (Student‘s t-Test bzw. Mann-Whitney-U Test).

No significant differences for most parameters between locallylumped wells and those distributed regionally (Student‘s t-Test bzw. Mann-Whitney-U Test).

Rur- and Erftmassif

SEITE 24

Häufigkeitsverteilung

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5BCP [ngC l-1h-1]

Häu

figke

it

Ostalb und Donauried

? More data are needed

NBT

NBR

Freq

uenc

y

Derivation of natural background valuesNatural Background Ranges (NBR) und Threshholds (NBT)

Swaebian Alb

Page 14: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

14

SEITE 25

4 Steps to an ecological assessment scheme

1. Typology of aquifers (groundwaterecosystems)

2. Definition of a reference status (NaturalBackground Values)

3. Identification of bioindicators and definitionof NBTs (Natural Background Thresholds)

4. Evaluation model

SEITE 26

0

10

20

30

40

50

W99739

1 (30.

04m)

W99758

1 (12.

97m)

W99759

1 (10.

71m)

W9976

41 (8.

16m)

W99770

1 (12.

02m)

W1050

51 (5.

01m)

W3900

51 (4.

07m)

W6003

53 (9.

12m)

W69007

2 (26.

02m)

W34048

2 (30.

00m)

W30650

(7.99

m)

W30651

(8.99

m)

W34020

2 (22.

97m)

W34021

2 (24.

14m)

W34024

2 (24.13

m)

W34025

1 (24.

37m)

W34026

1 (21.

07m)

W84215

1 (17.

03m)

W84221

1 (14.

07m)

W94755

1 (11.

12m)

W94822

1 (13.

82m)

W9486

21 (7.

45m)

Bak

terie

ndic

hte

x 10

^4 [Z

elle

n/m

l]

FrühjahrHerbst

Rurscholle Erftscholle

Microbial indicatorsFrom single analysis to routine

Genetic fingerprint of a bacterial community

Sample Fingerprint

Phylogenetic treeDNA – Chip (Phylochip)

Indicator sequences

Rurmassif Erfmassif

Page 15: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

15

SEITE 27

Identification of indicator fragments (T-RFs) by means of Canonical Correspondence analysis (CCA)

Example from a recent geothermy project(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)

SEITE 28

Identification of indicator fragments (T-RFs)

Example from a recent geothermy project(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)

Page 16: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

16

SEITE 29

Identification of indicator groups within the fauna bymeans of Canonical Correspondence analysis (CCA)

Example from a recent geothermy project(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)

SEITE 30

Turb Nem Ostra Cyclo Amphi Iso Harp

Temperature gradient11°C 18°C

Identification of indicator groups within the fauna bymeans of Canonical Correspondence analysis (CCA)

Example from a recent geothermy project(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)

Page 17: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

17

SEITE 31

4 Steps to an ecological assessment scheme

1. Typology of aquifers (groundwaterecosystems)

2. Definition of a reference status (NaturalBackground Values)

3. Identification of bioindicators and definitionof NBTs (Natural Background Thresholds)

4. Evaluation model

SEITE 32

“4 p i l l a r s”Physical-chemical

parametersGeneral microbiol.

parametersMicrobial community

structureGroundwater

fauna

Aquifer typologyand classification

DOCNO3

- SO42-

metals

Microbialindicators

Regional scaleLocal scale

DNA array

Index 1 Index 2 Index 3 Index 4

Bathynella sp.

Natural Background Ranges, Reference Status

Concept for an evaluation scheme

Page 18: Ecological assessment of groundwater ecosystems - BfN · 1 Ecological assessment of groundwater ecosystems Christian Griebler Institute of Groundwater Ecology, Helmholtz Zentrum München,

18

SEITE 33

The future will show !

“4 p i l l a r s”Physical-chemical

parametersGeneral microbiol.

parametersMicrobial community

structureGroundwater

fauna

Aquifer typologyand classification

DOCNO3

- SO42-

metals

Microbialindicators

DNA array

Index 1 Index 2 Index 3 Index 4

Bathynella sp.

Natural Background Ranges, Reference status

?

SEITE 34

Thanks goes to …

UBA – Federal Environmental Agency

Life Science Foundationfor financial support

Christian Steube (Helmholtz Zentrum München)Heide Stein, Andreas Fuchs, Hans-Jürgen Hahn (University of

Koblenz-Landau, Germany)Simone Richter (UBA) and the scientific committee of the UBA

projectfor collaboration