ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower...

48
2/22/2012 1 Chapter 3 FET Amplifiers Spring 2012 4 th Semester Mechatronics SZABIST, Karachi CH 3 22 12 FET Amplifiers Course Support [email protected] Office: 100 Campus (404) Official: ZABdesk https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd ebooks: https://sites.google.com/site/zabistmechatronics/home/ebooks 22 12 2 CH 3 FET Amplifiers

Transcript of ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower...

Page 1: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

1

Chapter 3

FET Amplifiers

Spring 2012

4th Semester Mechatronics

SZABIST, Karachi

CH 322 12

FET

Amplifiers

Course Support

[email protected]

Office: 100 Campus (404)

Official: ZABdesk

https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd

ebooks: https://sites.google.com/site/zabistmechatronics/home/ebooks

22 12

2

CH 3

FET

Amplifiers

Page 2: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

2

Chapter Contents

22 12

• JFET Small Signal Model

• Fixed Bias Configuration

• Self Bias Configuration

• Voltage Divider Configuration

• Common Gate Configuration

• Source Follower Configuration

• D and E type MOSFET Configurations

• FET Amplifier Network Design

• Cacade Configuration

• Applications

3

CH 3

FET

Amplifiers

22 12

4

FET

Small Signal Model

CH 3

FET

Amplifiers

Page 3: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

3

22 12

FETs Advantages:

• Excellent voltage gain

• High input impedance

• Low-power consumption

• Good frequency range

FET Small Signal Model 5

CH 3

FET

Amplifiers

22 12

Transconductance:The relationship of a change in ID to the corresponding change inVGS:

FET Small Signal Model 6

CH 3

FET

Amplifiers

GS

Dm

V

Ig

∆====

Page 4: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

4

22 12

Mathematical Definition of gm:

Where VGS =0V

Where

FET Small Signal Model 7

CH 3

FET

Amplifiers

Dm

G S

D SS G Sm

P P

D S Sm 0

P

G Sm m 0

P

G Sm m 0

P

Ig

V

2I Vg 1

V V

2Ig

V

Vg g 1

V

Vg g 1

V

∆=

= −

=

= −

= −

22 12

Example 8-1:

Determine the magnitude of gm for a JFET with IDSS = 8 mA and VP = −4 V

at the following dc bias points:

a. VGS = − 0.5 V

b. VGS = − 1.5 V

c. VGS = − 2.5 V

FET Small Signal Model 8

CH 3

FET

Amplifiers

Page 5: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

5

22 12

Example 8-1:

Determine the magnitude of gm for a JFET with IDSS = 8 mA and VP = −4 V

at the following dc bias points:

a. VGS = − 0.5 V

b. VGS = − 1.5 V

c. VGS = − 2.5 V

FET Small Signal Model 9

CH 3

FET

Amplifiers

22 12

Example 8-2:

For the JFET of Ex 8-1, find:

a. gm (max)

b. gm at each point of Ex 8-1

FET Small Signal Model 10

CH 3

FET

Amplifiers

Page 6: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

6

22 12

gm vs VGS:

FET Small Signal Model

CH 3

FET

Amplifiers

When VGS = 0V,

gm is maximum

When VGS = VP, gm is zero

11

22 12

Example 8-3:

Using JFET of Ex 8-1, plot gm vs VGS.

FET Small Signal Model 12

CH 3

FET

Amplifiers

Page 7: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

7

22 12

Example 8-3:

Using JFET of Ex 8-1, plot gm vs VGS.

FET Small Signal Model 13

CH 3

FET

Amplifiers

−=

P

GS

P

DSSm

V

V

V

Ig 1

||

2

||

20

P

DSSm

V

Ig =

22 12

Effect of ID on gm:

Shockley’s equation:

FET Small Signal Model 14

CH 3

FET

Amplifiers

DSS

D

P

GS

I

I

V

V=−1

GSm m0

P

Dm m0

DSS

Vg g 1

V

Ig g

I

= −

=

Page 8: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

8

22 12

Plot of of ID vs gm:

FET Small Signal Model 15

CH 3

FET

Amplifiers

Dm m0

DSS

Ig g

I=

||

20

P

DSSm

V

Ig =

gm ID

gmo IDSS

0.707 gmo IDSS/2

0.5 gmo IDSS/4

0 0 mA

22 12

Example 8-4:

Plot gm vs ID of Ex 8-1:

FET Small Signal Model 16

CH 3

FET

Amplifiers

Page 9: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

9

22 12

Example 8-4:

Plot gm vs ID of Ex 8-1:

FET Small Signal Model 17

CH 3

FET

Amplifiers

Gm ID

gmo IDSS

0.707 gmo IDSS/2

0.5 gmo IDSS/4

0 0 mA

22 12

JFET Zi:

FET input impedance, Zi is sufficiently large. Usually in the range of

109 Ω (1000MΩ)

JFET Zo:

FET output impedance, Zo is similar in magnitude to conventional BJTs.

Output impedance appears as yos with units of µs

where

FET Small Signal Model 18

CH 3

FET

Amplifiers

( )iZ FET = ∞Ω

constant VD

DSd GSI

Vr ========

∆∆∆∆

∆∆∆∆

osdo

y

1rZ ========

Page 10: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

10

22 12

Defining rd using JFET characteristics:

FET Small Signal Model 19

CH 3

FET

Amplifiers

22 12

Example 8.5:

Determine the output impedance for the given JFET for VGS = 0 V and − 2V

at VDS = 8V.

FET Small Signal Model 20

CH 3

FET

Amplifiers

Page 11: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

11

22 12

JFET AC Equivalent:

FET Small Signal Model 21

CH 3

FET

Amplifiers

22 12

Example 8-6:

Given yfs = 3.8 mS and yos = 20 µS. Sketch the FET ac equivalent model:

FET Small Signal Model 22

CH 3

FET

Amplifiers

Ω

Page 12: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

12

22 12

JFET Configurations

CH 3

FET

Amplifiers

23

22 12

JFET Configurations:

1. Fixed bias (Common Source)

2. Self bias

3. Voltage-Divider bias

4. Common Gate

5. Source-Follower (Common Drain)

Important Parameters of AC Analysis:

1. Input impedance

2. Output impedance

3. Voltage Gain

JFET Configurations 24

CH 3

FET

Amplifiers

Page 13: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

13

22 12

Fixed Bias

Configuration

CH 3

FET

Amplifiers

25

22 12

1. Fixed Bias Configuration (Common Source):

JFET Fixed Bias 26

CH 3

FET

Amplifiers

Page 14: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

14

22 12

Determining Zi:

Substituting the JFET ac equivalent circuit unit into the fixed bias network

JFET Fixed Bias 27

CH 3

FET

Amplifiers

22 12

Determining Zi:

Redrawn network

JFET Fixed Bias 28

CH 3

FET

Amplifiers

( )i GZ FET R=

Page 15: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

15

22 12

Determining Zo:

JFET Fixed Bias 29

CH 3

FET

Amplifiers

( )o d DZ FET = r || R

iSet V 0=

( )o D

d D

Z FET = R

if r 10R≥

22 12

Determining AV:

JFET Fixed Bias 30

CH 3

FET

Amplifiers

( )

( )

( )

( )

v o i

m d D

v o i

m D d D

A = V V

= -g r || R

A = V V

= -g R when r 10R

( )

( )

o m gs d D

gs i

o m i d D

V = -g V r || R

V = V

V = -g V r || R

Phase reversal

Page 16: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

16

22 12

Example 8-7:AC analysis of the fixed-bias configuration of Ex 7-1: If yos = 40 µS, than,

determine:

a. gm

b. rd

c. Zi

d. Zo

e. Av

f. Av (ignoring the effects of rd)

JFET Fixed Bias 31

CH 3

FET

Amplifiers

IDQ=5.625mA; VGSQ = −−−−2V

yOS=40µµµµS

22 12

Self Bias

Configuration

CH 3

FET

Amplifiers

32

Page 17: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

17

22 12

JFET Self Bias:Bypassed RS

JFET Self Bias 33

CH 3

FET

Amplifiers

22 12

JFET Self Bias:

Fixed bias network following the substitution of the JFET ac equivalent

JFET Self Bias 34

CH 3

FET

Amplifiers

Page 18: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

18

22 12

JFET Self Bias:

Redrawn network

JFET Self Bias 35

CH 3

FET

Amplifiers

22 12

JFET Self Bias:Unbypassed RS

JFET Self Bias 36

CH 3

FET

Amplifiers

i GZ R=

oo D

o

VZ R

I= =

Page 19: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

19

22 12

JFET Self Bias:Unbypassed RS

Including the effects of rd in the self bias JFET configuration

JFET Self Bias 37

CH 3

FET

Amplifiers

22 12

JFET Self Bias:Unbypassed RS

JFET Self Bias 38

CH 3

FET

Amplifiers

1

1

Sm S

d

O D

S Dm S

d d

Rg R

rZ R

R Rg R

r r

+ +

=

+ + +

O DZ R≅

11

O m D m Dv

S Di m Sm S

d

V g R g RA

R RV g Rg R

r

= = − ≅ −+ +

+ +

Page 20: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

20

22 12

Example 8-8:AC Analysis the self-bias configuration of Ex 7-2:

If yos = 20 µS, then, determine:

a. gm

b. rd

c. Zi

d. Zo (with and without the effects of rd ).

Compare the results.

e. Av (with and without the effects of rd ).

Compare the results.

JFET Self Bias 39

CH 3

FET

Amplifiers

22 12

Computer Analysis:

JFET Self Bias 40

CH 3

FET

Amplifiers

Page 21: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

21

22 12

Voltage Divider

Configuration

CH 3

FET

Amplifiers

41

22 12

Voltage Divider Bias:

JFET Voltage Divider Bias 42

CH 3

FET

Amplifiers

Page 22: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

22

22 12

Voltage Divider Bias:

JFET Voltage Divider Bias 43

CH 3

FET

Amplifiers

22 12

Voltage Divider Bias:

JFET Voltage Divider Bias 44

CH 3

FET

Amplifiers

ov m D

i

VA g R

V= ≅ −

o DZ R≅

1 2||iZ R R=

Page 23: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

23

22 12

Common-Gate

Configuration

CH 3

FET

Amplifiers

45

22 12

Common Gate Configuration:

JFET Common-Gate 46

CH 3

FET

Amplifiers

Page 24: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

24

22 12

Common Gate Configuration:

JFET Common-Gate 47

CH 3

FET

Amplifiers

22 12

Common Gate Configuration:

JFET Common-Gate 48

CH 3

FET

Amplifiers

1||

i S

m

Z Rg

o DZ R≅

'

1

1

D

d

i

m

d

R

rZ

gr

+

+

v D mA R g≅

Page 25: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

25

22 12

Example 8-9:Determine:

a. gm

b. rd

c. Zi

d. Zo (with and without the effects of rd ).

Compare the results.

a. Vo (with and without the effects of rd ).

Compare the results.

JFET Common-Gate 49

CH 3

FET

Amplifiers

22 12

Source-Follower

(Common-Drain)

Configuration

CH 3

FET

Amplifiers

50

Page 26: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

26

22 12

Source-Follower (CD):

JFET Source-Follower (CD) 51

CH 3

FET

Amplifiers

22 12

Source-Follower (CD):

JFET Source-Follower (CD) 52

CH 3

FET

Amplifiers

Page 27: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

27

22 12

Common-Follower (CD):

JFET Source-Follower (CD) 53

CH 3

FET

Amplifiers

22 12

Common-Follower (CD):

JFET Source-Follower (CD) 54

CH 3

FET

Amplifiers

Determining Zo

Page 28: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

28

22 12

Common-Follower (CD):

JFET Source-Follower (CD) 55

CH 3

FET

Amplifiers

1||

1

i G

o Sm

m S

m S

Z R

Z Rg

g RAv

g R

=

≅+

22 12

Example 8-10:AC analysis: VGSQ= 2.86 V and IDQ = 4.56 mA. Determine:

a. gm

b. Rd

c. Zi

d. Zo with and without rd. Compare results.

e. Av with and without rd. Compare results.

JFET Source-Follower (CD) 56

CH 3

FET

Amplifiers

Page 29: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

29

22 12

Depletion-Type

MOSFETs

CH 3

FET

Amplifiers

57

22 12

MOSFET Configurations:

D-MOSFET:

1. Voltage Divider

E-MOSFET:

1. Drain Feedback

2. Voltage Divider

MOSFET Configurations 58

CH 3

FET

Amplifiers

Page 30: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

30

22 12

D-MOSFET

CH 3

FET

Amplifiers

59

22 12

D-MOSFET Equivalent Model:

D-MOSFET Configurations 60

CH 3

FET

Amplifiers

Page 31: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

31

22 12

Example 8-11:AC analysis (Ex 7-8): VGSQ = 0.36 V and IDQ = 7.6 mA. Determine:

a. gm and compare to gmo.

b. rd

c. Zi

d. Zo

e. Av

f. Sketch the ac equivalent

D-MOSFET Configurations 61

CH 3

FET

Amplifiers

22 12

Example 8-11:

D-MOSFET Configurations 62

CH 3

FET

Amplifiers

Page 32: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

32

22 12

E-MOSFET

CH 3

FET

Amplifiers

63

22 12

Equivalent Circuit:

E-MOSFET Configurations 64

CH 3

FET

Amplifiers

Page 33: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

33

22 12

E-MOSFET

Drain-Feedback

CH 3

FET

Amplifiers

65

22 12

Drain Feedback:

E-MOSFET Configurations 66

CH 3

FET

Amplifiers

Page 34: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

34

22 12

Drain Feedback:

E-MOSFET Configurations 67

CH 3

FET

Amplifiers

22 12

Drain Feedback:

E-MOSFET Configurations 68

CH 3

FET

Amplifiers

Determining Zo

Page 35: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

35

22 12

Drain Feedback:

E-MOSFET Configurations 69

CH 3

FET

Amplifiers

Av=− gm(RF||rd||RD) Av=− gmRD

22 12

Example 8-12:The E-MOSFET of Fig. 8-41 was analyzed in Example 7.11, with the result that

k = 0.24 x 10−3 A/V2, VGSQ = 6.4 V, and IDQ = 2.75 mA.

Determine gm.

a) Find rd.

b) Calculate Zi with and without rd. Compare results.

c) Find Zo with and without rd. Compare results.

d) Find Av with and without rd. Compare results.

E-MOSFET Configurations 70

CH 3

FET

Amplifiers

Page 36: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

36

22 12

E-MOSFET

Voltage Divider

CH 3

FET

Amplifiers

71

22 12

Voltage Divider:

E-MOSFET Configurations 72

CH 3

FET

Amplifiers

Page 37: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

37

22 12

Voltage Divider:

E-MOSFET Configurations 73

CH 3

FET

Amplifiers

22 12

Voltage Divider:

E-MOSFET Configurations 74

CH 3

FET

Amplifiers

Page 38: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

38

22 12

Designing

FET

Amplifier Network

CH 3

FET

Amplifiers

75

22 12

Example 8-13:Design the fixed-bias network of Fig. 8-44 to have an ac gain of 10.

That is determine the value of RD.

Amplifier Network Designing 76

CH 3

FET

Amplifiers

Page 39: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

39

22 12

Example 8-14:With a relatively high level of gm, select the values of RD and RS for the given

network, that will result in a gain of 8. For the device VGSQ = ¼ VP.

Amplifier Network Designing 77

CH 3

FET

Amplifiers

22 12

Example 8-15:With a relatively high level of gm, select the values of RD and RS for the given

network, that will result in a gain of 8. For the device VGSQ = ¼ VP. Now bypass

capacitor has been removed.

Amplifier Network Designing 78

CH 3

FET

Amplifiers

Page 40: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

40

22 12

Summary Table 79

CH 3

FET

Amplifiers

22 12

Summary Table 80

CH 3

FET

Amplifiers

Page 41: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

41

22 12

Summary Table 81

CH 3

FET

Amplifiers

22 12

Summary Table 82

CH 3

FET

Amplifiers

Page 42: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

42

22 12

Effect of

RL and Rsig

CH 3

FET

Amplifiers

83

22 12

Effect of RL and Rsig:.

RL and Rsig84

CH 3

FET

Amplifiers

Page 43: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

43

22 12

Effect of RL and Rsig:

RL and Rsig85

CH 3

FET

Amplifiers

22 12

Effect of RL and Rsig:.

RL and Rsig86

CH 3

FET

Amplifiers

Page 44: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

44

22 12

Cascade

Configuration

CH 3

FET

Amplifiers

87

22 12

Cascade Configuration:

Cascade Configuration 88

CH 3

FET

Amplifiers

Av1 Av2Vi1

VO2VO1=Vi2

1 2.....v v v

A A A=

Page 45: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

45

22 12

Cascade Configuration:

Cascade Configuration 89

CH 3

FET

Amplifiers

22 12

Example 8-16:Calculate the dc bias, voltage gain, input impedance, output impedance and resulting

output voltage for the cascade amplifier shown in Fig. 8.49. Calculate the load

voltage if a 10-k load is connected across the output.

Cascade Configuration 90

CH 3

FET

Amplifiers

Page 46: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

46

22 12

Example 8-17:For the cascade amplifier of Fig. 8-50, use the dc bias calculated in Example 8-15

and 8-16 to calculate the input impedance, output impedance, voltage gain, and

resulting output voltage.

Cascade Configuration 91

CH 3

FET

Amplifiers

22 12

Practical

Applications

CH 3

FET

Amplifiers

92

Page 47: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

47

22 12

1. Three channel audio mixer

Practical Applications 93

CH 3

FET

Amplifiers

22 12

2. Phase Shift network

Practical Applications 94

CH 3

FET

Amplifiers

Page 48: ECD 3-FET Amplifiers · 2012. 2. 27. · Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance

2/22/2012

48

22 12

Reading:

1. Summary

2. Equations

3. Computer analysis

Problems:

1. Sec 8.2: (odd)

2. Sec 8.3: 17,18

3. Sec 8.4: 19,21

4. Sec 8.5:23,25

5. Sec 8.6: 27,29

6. Sec 8.7: 31

7. Sec 8.8: 33,35,37

8. Sec 8.10: 39,41

9. Sec 8.11: 43

10. Sec 8.12: 45

11. Sec 8.14: 47

12. Sec 8.15: 49

Home Task 95

CH 3

FET

Amplifiers

CH 122 12

Refernces 96FET

1. Bolestad

2. Paynter

CH 3

FET

Amplifiers