Earthquake Reconnaissance and Experiment Documentation through Spherical Panoramic Photography...

1
Earthquake Reconnaissance and Experiment Documentation Earthquake Reconnaissance and Experiment Documentation through Spherical Panoramic Photography through Spherical Panoramic Photography Fernando Garcia – University of California, Los Angeles – [email protected] Project PI/Mentor: Dr. Robert Nigbor, Ph.D., P.E. Introduction Introduction Spherical panoramic photography is the assembly of images to create a 360°x180° inside view of a scene. It gives viewers the ability to: •see a scene from miles away as if present, •see details in all directions, •make virtual tours of sites and experiments, •and obtain visual data/metadata quickly. This last ability is a critical challenge in earthquake reconnaissance because industries often become reluctant to allow visitors into their sites soon after an earthquake (Global Risk Miyamoto, 2007). Spherical panoramic photography is an efficient tool to meet this challenge. Spherical panoramas also provide effective metadata for earthquake engineering experiments. Materials Materials Take 360° of overlapping horizontal images using the panorama head. Capture zenith (top image) and nadir (bottom image). Stitch images together, remove unwanted objects, and export a flat equirectangular panorama. Turn flat panoramas into spherical panoramas and link them to create a virtual tour. The flat panoramas below are exports from PTGui. The photographs were taken from underneath the NEES@UCSD shake table to document the table’s infrastructure. Acknowledgements Acknowledgements The project was partially funded by EEC-1005054 and CMMI-0927178. The author would like to thank Team Pano at UCLA: Dr. Robert Nigbor, Carlos Mora, and Sophia Poulos, as well as Mr. Carel Struycken for his help in using these programs. Methodology Methodology Literature Cited: Global Risk Miyamoto (2007) 2007 Niigata Chuetsu-Oki Japan Earthquake Reconnaissance Report, New York. Conclusion Conclusion Spherical panoramas can be used for fast, efficient earthquake reconnaissance as well as documentation of labs and test procedures. Multiple panoramas linked into a virtual tour, as was done at NEES@UCSD, can give complete views of anything from entire buildings to city blocks as if actually present. Spherical panoramic photography as a new tool can assist in both earthquake reconnaissance and documentation of NEES and other earthquake engineering experiments. Figure 3: PTGui loading screen Figure 5: Stitching together images Figure 4: Remove unwanted objects Figure 6: The Accumulator Bank Figure 7: A Hallway Figure 8: Underneath the Shake Table Resulting Product Resulting Product A prototypical virtual tour of the NEES@UCSD LHPOST Shake Table was created with the following features: •Full 360°x180° view. •Ability to look straight up and down without visual obstruction from the tripod. •Ability to transition smoothly from the actuator bank to the adjacent hallway and to the bottom of the shake table in either direction. •Zooming capability. Figure 1: The accumulator bank (top left) is connected to the shake table (top right) through a hallway (bottom) in a virtual tour of the NEES@UCSD shake table infrastructure. •DSLR camera with fish-eye lens (Sony A65 w/15mm Sigma lens) •Panoramic Tripod Head Figure 2: Nodal Ninja 3 MKII Tripod Head •Photoshop – to edit images and fix final product. •PTGui – to stitch images into equirectangular panorama. •Pano2VR – to output panorama into Flash or Quicktime format. Further Information Further Information For further information, contact Dr. Robert Nigbor at [email protected]. Figure 9: View of nadir without tripod Figure 10: View of zenith Step 1: Capturing the Images Step 2: PTGui Step 3: Pano2VR Hardware Software

Transcript of Earthquake Reconnaissance and Experiment Documentation through Spherical Panoramic Photography...

Page 1: Earthquake Reconnaissance and Experiment Documentation through Spherical Panoramic Photography Earthquake Reconnaissance and Experiment Documentation through.

Earthquake Reconnaissance and Experiment Documentation Earthquake Reconnaissance and Experiment Documentation through Spherical Panoramic Photographythrough Spherical Panoramic Photography

Fernando Garcia – University of California, Los Angeles – [email protected] PI/Mentor: Dr. Robert Nigbor, Ph.D., P.E.

IntroductionIntroduction

Spherical panoramic photography is the assembly of images to create a 360°x180° inside view of a scene. It gives viewers the ability to:

•see a scene from miles away as if present,•see details in all directions,•make virtual tours of sites and experiments,•and obtain visual data/metadata quickly. This last ability is a critical challenge in

earthquake reconnaissance because industries often become reluctant to allow visitors into their sites soon after an earthquake (Global Risk Miyamoto, 2007). Spherical panoramic photography is an efficient tool to meet this challenge.

Spherical panoramas also provide effective metadata for earthquake engineering experiments.

MaterialsMaterials

• Take 360° of overlapping horizontal images using the panorama head.• Capture zenith (top image) and nadir (bottom image).

• Stitch images together, remove unwanted objects, and export a flat equirectangular panorama.

• Turn flat panoramas into spherical panoramas and link them to create a virtual tour.

The flat panoramas below are exports from PTGui. The photographs were taken from underneath the NEES@UCSD shake table to document the table’s infrastructure.

AcknowledgementsAcknowledgementsThe project was partially funded by EEC-1005054 and CMMI-0927178. The author would like to thank Team Pano at UCLA: Dr. Robert Nigbor, Carlos Mora, and Sophia Poulos, as well as Mr. Carel Struycken for his help in using these programs.

MethodologyMethodology

Literature Cited: Global Risk Miyamoto (2007) 2007 Niigata Chuetsu-Oki Japan Earthquake Reconnaissance Report, New York.

ConclusionConclusion Spherical panoramas can be used for fast, efficient earthquake reconnaissance as well as documentation of labs and test procedures. Multiple panoramas linked into a virtual tour, as was done at NEES@UCSD, can give complete views of anything from entire buildings to city blocks as if actually present. Spherical panoramic photography as a new tool can assist in both earthquake reconnaissance and documentation of NEES and other earthquake engineering experiments.

Figure 3: PTGui loading screen Figure 5: Stitching together images

Figure 4: Remove unwanted objects

Figure 6: The Accumulator Bank

Figure 7: A Hallway

Figure 8: Underneath the Shake Table

Resulting ProductResulting Product A prototypical virtual tour of the NEES@UCSD LHPOST Shake Table was created with the following features:•Full 360°x180° view.•Ability to look straight up and down without visual obstruction from the tripod.•Ability to transition smoothly from the actuator bank to the adjacent hallway and to the bottom of the shake table in either direction.•Zooming capability.

Figure 1: The accumulator bank (top left) is connected to the shake table (top right) through a hallway (bottom) in a virtual tour of the

NEES@UCSD shake table infrastructure.

•DSLR camera with fish-eye lens (Sony A65 w/15mm Sigma lens)•Panoramic Tripod Head

Figure 2: Nodal Ninja 3 MKII Tripod Head

•Photoshop – to edit images and fix final product.•PTGui – to stitch images into equirectangular panorama.•Pano2VR – to output panorama into Flash or Quicktime format.

Further InformationFurther InformationFor further information, contact Dr. Robert Nigbor at [email protected].

Figure 9: View of nadir without tripod

Figure 10: View of zenith

Step 1: Capturing the Images

Step 2: PTGui

Step 3: Pano2VR

Hardware Software