e Shelby Tensor

6
Eshelby Tensor (from Chapter 2, Micromechanics of Defects in Solids, T. Mura, 1987) In class, we have shown that the strain inside inclusion is * kl ijkl ij S ε ε = where ijnm jimn ijmn S S S = = is called the Eshelby tensor. It is a function of the elastic properties of the solid and the geometry of the ellipsoid. Generally, elliptic integrals are involved to calculate the components of the Eshelby tensor. For isotropic solids, ( ) ( ) 1 11 2 1 1111 1 8 2 1 1 8 3 I I a S ν π ν ν π + = ( ) ( ) 1 12 2 2 1122 1 8 2 1 1 8 1 I I a S ν π ν ν π = ( ) ( ) 1 13 2 3 1133 1 8 2 1 1 8 1 I I a S ν π ν ν π = ( ) ( ) ( ) 2 1 12 2 2 2 1 1212 1 16 2 1 1 16 I I I a a S + + + = ν π ν ν π All other non-zero components are obtained by the cyclic permutation of . The components which cannot be obtained by the cyclic permutation are zero; for instance, ( 3 , 2 , 1 ) 0 1232 1223 1112 = = = S S S . Assume , 3 2 1 a a a > > ( )( ) ( ) ( ) { } k k a a a a a a a I , E , F 4 2 1 2 3 2 1 2 2 2 1 3 2 1 1 θ θ π = ( )( ) ( ) ( ) = k a a a a a a a a a a a a I , E 4 3 1 2 1 2 3 2 1 2 2 1 2 3 2 1 2 3 2 2 3 2 1 3 θ π where ( k , F ) θ and ( k , E ) θ are elliptic integrals defined as ( ) ( ) φ φ θ θ d sin 1 , F 2 1 0 2 2 = k k ( ) ( ) φ φ θ θ d sin 1 , E 2 1 0 2 2 = k k ( ) 2 1 2 1 2 3 1 1 sin a a = θ , ( ) ( ) [ ] 2 1 2 3 2 1 2 2 2 1 a a a a k = 1

Transcript of e Shelby Tensor

Page 1: e Shelby Tensor

Eshelby Tensor (from Chapter 2, Micromechanics of Defects in Solids, T. Mura, 1987)

In class, we have shown that the strain inside inclusion is

*klijklij S εε =

where ijnmjimnijmn SSS == is called the Eshelby tensor. It is a function of the elastic properties

of the solid and the geometry of the ellipsoid. Generally, elliptic integrals are involved to calculate the components of the Eshelby tensor. For isotropic solids,

( ) ( ) 111211111 18

21183 IIaS

νπν

νπ −−

+−

=

( ) ( ) 112221122 18

21181 IIaS

νπν

νπ −−

−−

=

( ) ( ) 113231133 18

21181 IIaS

νπν

νπ −−

−−

=

( ) ( ) ( )2112

22

21

1212 11621

116IIIaaS +

−−

+−

+=

νπν

νπ

All other non-zero components are obtained by the cyclic permutation of . The

components which cannot be obtained by the cyclic permutation are zero; for instance,

( 3,2,1 )

0123212231112 === SSS .

Assume , 321 aaa >>

( )( ) ( ) ( ){ }kkaaaa

aaaI ,E,F4212

321

22

21

3211 θθπ

−−−

=

( )( )( ) ( )

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−−

−−= k

aaaaa

aaaaaaaI ,E4

31

2123

212

2123

21

23

22

3213 θπ

where ( k,F )θ and ( k,E )θ are elliptic integrals defined as

( ) ( ) φφθθ

dsin1,F21

0

22−

∫ −= kk

( ) ( ) φφθθ

dsin1,E21

0

22∫ −= kk

( ) 2121

23

1 1sin aa−= −θ , ( ) ( )[ ] 2123

21

22

21 aaaak −−=

1

Page 2: e Shelby Tensor

The remaining I -functions follow from the identities:

π4321 =++ III

21131211 43 aIII π=++

1132312

2211

21 33 IIaIaIa =++

( ) ( )22

211212 aaIII −−=

The components of Eshebly tensor become elementary functions for special shapes of inclusions, as listed below.

Sphere ( ): aaaa === 321

34321 π=== III

2312312332211 54 aIIIIII π======

( )νν−

−===

11557

333322221111 SSS

( )νν−−

======115

15332222111133331122331122 SSSSSS

( )νν−

−===

11554

313123231212 SSS

or

( ) ( ) ( )jminjnimmnijijmnS δδδδννδδ

νν

+−

−+

−−

=115

54115

15 (see classnotes)

The stress inside the inclusion is

( ) ( ) ( )*33

*22

*1111 115

152115

15211516 ε

ννμε

ννμε

νμσ

−+

−−+

−−

−=

( )*1212 115

572 εννμσ−

−−=

All other stress components are obtained by the cyclic permutation of ( )3,2,1 .

Elliptic cylinder ( ): ∞→3a

2

Page 3: e Shelby Tensor

( )21

21

4aaaI+

, ( )21

12

4aaaI+

, 03 =I

( )22112

4aa

I+

, 1221

1143 Ia

I −=π

, 1222

2243 Ia

I −=π

, 0332313 === III

11323 IIa = , , 223

23 IIa = 033

23 =Ia

( ) ( )( )

⎭⎬⎫

⎩⎨⎧

+−+

++

−=

21

22

21

2122

1111 212121

aaa

aaaaaS ν

ν

( ) ( )( )

⎭⎬⎫

⎩⎨⎧

+−+

++

−=

21

12

21

2121

2222 212121

aaa

aaaaaS ν

ν

03333 =S

( ) ( )( )

⎭⎬⎫

⎩⎨⎧

+−−

+−=

21

22

21

22

1122 21121

aaa

aaaS ν

ν

( ) 21

12233

2121

aaaS+−

ν

03311 =S

( ) 21

21133

2121

aaaS+−

ν

( ) ( )( )

⎭⎬⎫

⎩⎨⎧

+−−

+−=

21

12

21

21

2211 21121

aaa

aaaS ν

ν

03322 =S

( ) ( ) ⎭⎬⎫

⎩⎨⎧ −

+++

−=

221

2121

221

22

21

1212ν

ν aaaaS

( )21

12323 2 aa

aS+

=

( )21

23131 2 aa

aS+

=

The stress inside the inclusion is

3

Page 4: e Shelby Tensor

( ) ( )*33

21

1

*22

21

22

21

22*

1121

22

21

2122

11

12

12

21

εν

μν

ενμε

νμσ

aaa

aaa

aaa

aaa

aaaaa

+−−

⎟⎟⎠

⎞⎜⎜⎝

+−

+−+⎟

⎟⎠

⎞⎜⎜⎝

++

++

+−−

=

( ) ( )*33

21

2

*11

21

12

21

21*

2221

12

21

2121

22

12

12

21

εν

μν

ενμε

νμσ

aaa

aaa

aaa

aaa

aaaaa

+−−

⎟⎟⎠

⎞⎜⎜⎝

+−

+−+⎟

⎟⎠

⎞⎜⎜⎝

++

++

+−−

=

*33

*22

21

2*11

21

133 1

212

12 ε

νμε

νμνε

νμνσ

−−

+−−

+−−=

aaa

aaa

( )*122

21

2112 1

2 ενμσ

aaaa+−

−= , *23

21

223 2 εμσ

aaa+

−=

*31

21

131 2 εμσ

aaa+

−=

Penny shape ( ): 321 aaa >>=

132

21 aaII π== , 132

3 24 aaI ππ −=

313

22112 43 aaII π==

21

1

32

32312313 343 a

aaIIII ⎟⎟⎠

⎞⎜⎜⎝

⎛−====ππ

313

22211 43 aaII π== , 2

333 34 aI π

=

( ) 1

322221111 132

813aaSS π

νν

−−

== , 1

33333 41

211aaS π

νν

−−

−=

( ) 1

322111122 132

18aaSS π

νν−−

== , ( ) 1

322331133 18

12aaSS π

νν−−

==

⎟⎟⎠

⎞⎜⎜⎝

⎛ +−

−==

1

333223311 8

1411 a

aSS πν

νν

ν

( ) 1

31212 132

87aaS π

νν−

−= , ⎟⎟

⎞⎜⎜⎝

⎛−−

+==1

323231313 41

2121

aaSS π

νν

4

Page 5: e Shelby Tensor

ννπ

νν

−+

−−

==141

21

1

32211 a

aSS kkkk , 1

333 21

211aaSkk

πνν

−−

−=

When , 03 →a

021 == II , π43 =I

012 =I , 2223 4 aI π= , 2

131 4 aI π=

02211 == II , 343323 π=Ia

21

31312323 == SS

νν−

==133223311 SS

13333 =S

All other 0=ijklS

Flat ellipsoid ( ): 321 aaa >>>

( ) ( ){ }22

21

321

EF4aa

kkaaI−

−=

π

( ) ( ) ( ){ }22

21

32

2

32

EF4E4aa

kkaaa

kaI−

−−=

ππ

( )2

33

E44a

kaI ππ −=

( ) ( ) ( )( ) ( )22

21

22

213223

12EF8E4

aaaakkaaakaI

−−−−

=ππ

( ) ( ) ( )( ) ( )22

22

213223

23EF4E84

aaakkaaakaI −−+−

=πππ

( ) ( ) ( )( ) ( )21

22

213223

31EF4E44

aaakkaaakaI −−−−

=πππ

23

33 34a

I π=

where and ( )kF ( )kE are the complete elliptic integrals of the first and the second kind,

5

Page 6: e Shelby Tensor

respectively,

( ) ( ) φφπ

dsin1E212

0

22∫ −= kk

( ) ( ) φφπ

dsin1F212

0

22−

∫ −= kk

( ) 21

22

21

2 aaak −=

Oblate spheroid ( 321 aaa >= ):

( ) ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛−−

−== −

21

21

23

1

3

1

31232

321

321

21 1cos2aa

aa

aa

aaaaII π

13 24 II −= π

122211 III ==

( )21

23

3121

1321

12 441

aaII

aI

aI

−−

−=−=ππ

21

23

312313 aa

IIII−−

== , 1323

33 243 Ia

I −=π

Prolate spheroid ( ): 321 aaa =>

( ) ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−⎟⎟⎠

⎞⎜⎜⎝

⎛−

−== −

3

1121

23

21

3

1232

321

231

32 cosh12aa

aa

aa

aaaaII π

21 24 II −= π , 22

21

1212 aa

III−−

= , 1221

11 243 Ia

I −=π

233322 III ==

22

21

12232

222

43aaIII

aI

−−

−−=π

, ( )22

21

1222

23 4 aaII

aI

−−

−=π

6