Dynamics Solns Ch09

download Dynamics Solns Ch09

of 109

Transcript of Dynamics Solns Ch09

  • 8/17/2019 Dynamics Solns Ch09

    1/109

    Solutions Manual 

    Engineering Mechanics: Dynamics1st Edition

    Gary L. GrayThe Pennsylvania State University

    Francesco CostanzoThe Pennsylvania State University

    Michael E. PleshaUniversity of Wisconsin–Madison

    With the assistance of:

    Chris Punshon

    Andrew J. Miller

    Justin High

    Chris O’Brien

    Chandan Kumar

    Joseph Wyne

    Version: August 10, 2009

    The McGraw-Hill Companies, Inc.

  • 8/17/2019 Dynamics Solns Ch09

    2/109

    Copyright © 2002–2010

    Gary L. Gray, Francesco Costanzo, and Michael E. Plesha

    This solutions manual, in any print or electronic form, remains the property of McGraw-Hill, Inc. It

    may be used and/or possessed only by permission of McGraw-Hill, and must be surrendered upon

    request of McGraw-Hill. Any duplication or distribution, either in print or electronic form, without

    the permission of McGraw-Hill, is prohibited.

  • 8/17/2019 Dynamics Solns Ch09

    3/109

     Dynamics 1e   3

    Important Information about

    this Solutions Manual

    Even though this solutions manual is nearly complete, we encourage you to visit

    http://www.mhhe.com/pgc

    often to obtain the most up-to-date version. In particular, as of July 30, 2009, please note the following:

      The solutions for Chapters 1 and 2 have been accuracy checked and have been edited by us. They are

    in their final form.

      The solutions for Chapters 4 and 7 have been accuracy checked and should be error free. We will be

    adding some additional detail to these solutions in the coming weeks.

      The solutions for Chapters 3, 6, 8, and 9 are being accuracy checked and the accuracy checked versionsshould be available by the end of August 2009. We will be adding some additional detail to these

    solutions in the coming weeks.

      The solutions for Chapter 10 should be available in their entirety by the end of August 2009.

    All of the figures in Chapters 6–10 are in color. Color will be added to the figures in Chapters 1–5 over the

    coming weeks.

    Contact the Authors

    If you find any errors and/or have questions concerning a solution, please do not hesitate to contact the

    authors and editors via email at:

    [email protected]

    We welcome your input.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    4/109

    4   Solutions Manual 

    Accuracy of Numbers in Calculations

    Throughout this solutions manual, we will generally assume that the data given for problems is accurate to

    3 significant digits. When calculations are performed, all intermediate numerical results are reported to 4significant digits. Final answers are usually reported with  3  significant digits. If you verify the calculations in

    this solutions manual using the rounded intermediate numerical results that are reported, you should obtain

    the final answers that are reported to 3  significant digits.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    5/109

     Dynamics 1e   1221

    Chapter 9 Solutions

    Problem 9.1

    Show that Eq. (9.15) is equivalent to Eq. (9.3) if  C  D p A2 C B2 and tan  D A=B .

    Solution 

    Start with Eq. (9.15), which is given by

    x.t/ D xi cos !nt C   vi!n

    sin !nt D A cos !nt C B sin !nt;

    where we have let xi

     DA and  vi=!n

     DB . Factoring out B , we obtain

    x.t/ D B

    A

    B  cos !nt C sin !nt

    :

    Letting A=B D tan , this becomes

    x.t/ D B.tan  cos !nt C sin !nt / D   Bcos

    .sin  cos !nt C cos  sin !nt /:

    Since sin  cos !nt C cos  sin !nt D sin.!nt C /, this equation becomes

    x.t/ D   Bcos

     sin.!nt C /:

    This is Eq. (9.3) as long as we can show that  B= cos  D p A2 C B2. To show this, we writeB

    cos  D   B

    Bp A2CB2

    Dp 

    A2 C B2 D C;

    where we have use the identity that if  tan  D A=B , then cos  D B=p A2 C B2. We have thus shown thatEq. (9.15) is equivalent to Eq. (9.3) for the proper definition of  C   and  .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    6/109

    1222   Solutions Manual 

    Problem 9.2

    Derive the formula for the mass moment of inertia of an arbitrarily shaped rigid body

    about its mass center based on the body’s period of oscillation   when suspended as a

    pendulum. Assume that the mass of the body  m  is known and that the location of the

    mass center G  is known relative to the pivot point  O .

    Solution 

    Using the FBD  shown at the right, we can sum moments about the pivot  O  to

    obtain

    XM O W mgL sin   D I OR :

    Rearranging this equation and assuming small oscillations, we obtain

    R  C mgLI O

    sin   D 0   )   R  C mgLI O

      D 0:

    This is the standard form of the harmonic oscillator, so the natural frequency can be written as

    !2n D  mgL

    I O)   I O D

      mgL

    !2n:

    Since !n D 2= , we have that

    I O D mgL 2

    42   :

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    7/109

     Dynamics 1e   1223

    Problem 9.3

    The thin ring of radius  R  and mass m  is suspended by the pin at  O . Determine its

    period of vibration if it is displaced a small amount and released.

    Solution 

    Referring to the FBD  at the right, we can sum moments about point  O  to obtainXM O W mgR sin   D I O˛G ;   (1)

    where ˛ D R  is the angular acceleration of the thin ring. Using the parallelaxis theorem, we find that  I O D mR

    2

    C mR2

    D 2mR2

    . Substituting this intoEq. (1), we find the equation of motion to be

    mgR sin   D 2mR2 R    )   R  C   g2R

     sin   D 0:

    Assuming small angles  , we can use the approximation sin       so that the equation of motion becomes

    R  C   g2R

      D 0:

    Therefore, the natural frequency and period are found to be

    !n D r   g2R

      )     D   2!n

    D 2s 2Rg

      .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    8/109

    1224   Solutions Manual 

    Problem 9.4

    The thin square hoop has mass  m  and is suspended by the pin at O . Determine its

    period of vibration if it is displaced a small amount and released.

    Solution 

    Using the  FBD  shown at the right, we can sum moments about the pivot  O   to

    obtain XM O W mg

    L

    2  sin   D I O R:

    Rearranging this equation and assuming small oscillations, we obtain

    R  C mgL2I O

    sin   D 0   )   R  C mgL2I O

      D 0:

    This is the standard form of the harmonic oscillator, so the natural frequency and period can be written as

    !2n D  mgL

    2I Oand     D   2

    !nD 2

    s  2I O

    mgL;   (1)

    respectively. Noting that each of the four segments of the thin square hoop has mass  m=4, computing I O  we

    obtain

    I O D  1

    12

    m4

    L2„ ƒ‚ …

    segment AB

    C 2

     1

    12

    m4

    L2 C  m

    4

    L2

    4 C  L

    2

    4

    „ ƒ‚ …

    segments BC   and AD

    C

     1

    12

    m4

    L2 C  m

    4 L2

    „ ƒ‚ …

    segment CD

    D   712

    mL2:

    Substituting this expression for I O  into the expression for the period given in Eq. (1), we obtain

      D 2s 

    7L

    6g:

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    9/109

     Dynamics 1e   1225

    Problem 9.5

    The swinging bar and the vibrating mass are made to vibrate on

    Earth, and their respective natural frequencies are measured. The

    two systems are then taken to the Moon and are again allowed to

    vibrate at their respective natural frequencies. How will the naturalfrequency of each system change when compared with that on the

    Earth, and which of the two systems will experience the larger

    change in natural frequency?

    Solution 

    As can be seen in Example 9.1, the natural frequency of a rigid body that swings like a pendulum under the

    action of gravity depends on the value of the acceleration due to gravity g  such that !n / p g. On the otherhand, as can be seen in the mini-example on p. 675, the natural frequency of a mass at the end of a spring that

    oscillates under the action of gravity does not  depend on g. Therefore, on the Moon, where the acceleration

    due to gravity gmoon  is less than g  on Earth, the natural frequency of the swinging bar will decrease and thenatural frequency of the vibrating mass will stay the same.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    10/109

    1226   Solutions Manual 

    Problems 9.6 and 9.7

    A rigid body of mass m, mass center at G , and mass moment of inertia  I G  is pinned at

    an arbitrary point O  and allowed to oscillate as a pendulum.

    Problem 9.6   By writing the Newton-Euler equations, determine the distance `  from

    G  to the pivot point O  so that the pendulum has the highest possible natural frequency

    of oscillation.

    Problem 9.7   Using the energy method, determine the distance `  from G  to the pivot

    point O  so that the pendulum has the highest possible natural frequency of oscillation.

    Solution to 9.6 

    We will write the equation of motion using the Newton-Euler equations, find

    !n as a function of  `, and then find .!n/max by letting d !n=d ` D 0.Referring to the   FBD  at the right and summing moments about  O, we

    obtain XM O W mg` sin   D I O R ;   (1)

    where, using the parallel axis theorem, I O D I G C m`2. Substituting I O   intoEq. (1), we obtain

    I G C m`2 R  C mg` sin   D 0   )   R  C   mg`

    I G C m`2  D 0;

    where the second equation was obtained from the first by dividing through by the coefficient of  R   andassuming small  . Therefore, the natural frequency is given by

    !n D s   mg`I G C m`2 :Differentiating !n with respect to `  and setting it equal to zero, we find that

    d!n

    d `  D   d 

    d `

      mg`

    I G C m`21=2

    D   12

      mg`

    I G C m`21=2 "mgI G C m`2 2m`.mg`/

    I G C m`22

    #D 0;

    which implies that

    mg

    I G C m`2 2m`.mg`/ D 0   )   I G  m`2 D 0   )   ` D

    r I G

    m

    where we have used the fact that `  needs to be positive and real. Since !n as a function of  `  has the shape

    shown below, we can see that this expression for `  gives a maximum value of  !n and not a minimum.

    Ωn

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    11/109

     Dynamics 1e   1227

    Solution to 9.7 

    We will write the equation of motion using the energy method, find !nas a function of  `, and then find  .!n/max by letting d!n=d ` D 0.

    Referring to the FBD  at the right we see that the only force that does

    work as the body swings is the weight force mg. Since this system is

    conservative, we can use the energy method to determine the equation

    of motion.

    The kinetic energy can be written as

    T  D   12

    I O!2G D   12

    I G C m`2

    P 2;where !G  is the angular velocity of the rigid body and we have used the parallel axis theorem to find  I O . In

    addition, the potential energy can be written as

    V  D mg` cos    mg`

    1   2

    2

    ;

    where we have assumed small     in approximating the cosine function. Applying the energy method, we

    obtaind 

    dt.T  C V / D I G C m`2 P R  C mg` P  D 0   ) I G C m`2 R  C mg`  D 0;

    which implies that

    !n Ds 

      mg`

    I G C m`2:

    Differentiating !n with respect to `  and setting it equal to zero, we

    find that

    d!n

    d `   D  d 

    d `   mg`

    I G C m`21=2 D   12   mg`I G C m`2

    1=2 "mgI G C m`2 2m`.mg`/I G C m`2

    2 # D 0;which implies that

    mg

    I G C m`2 2m`.mg`/ D 0   )   I G  m`2 D 0   )   ` D

    r I G

    m

    where we have used the fact that `  needs to be positive and real. Since !n as a function of  `  has the shape

    shown below, we can see that this expression for `  gives a maximum value of  !n and not a minimum.

    Ωn

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    12/109

    1228   Solutions Manual 

    Problem 9.8

    The uniform disk of radius R  and thickness t  is attached to the thin shaft of radius

    r , length L, and negligible mass. The end A  of the shaft is fixed. From mechanics

    of materials, it can be shown that if a torque  M ́  is applied to the free end of the

    shaft, then it can be related to the twist angle    via

      D   M ́ LGJ 

      ;

    where G  is the shear modulus of elasticity of the shaft and J  D   2

    r4 is the polar

    moment of inertia of the cross-sectional area of the shaft. Letting   be the mass

    density of the disk and using the given relationship between M ́  and   , determine

    the natural frequency of vibration of the disk in terms of the given dimensions and

    material properties when it is given a small angular displacement   in the plane of 

    the disk.

    Solution 

    If the disk is displaced through a positive angle   then the FBD  (as viewed

    down the ´ axis) is as shown on the right. The moment M ́  is the restoring

    moment due to the thin shaft of radius r  and length L. Summing moments

    about O  gives XM O W M ́  D I O R :   (1)

    From the given relationship between  M ́  and   , we can find that

    M ´ D

      GJ 

    L   

      ) GJ 

    L   

     DI O R

    :   (2)

    where we have made use of Eq. (1). Since

    I O D   12mR2; m D R2t;   and   J  D   2 r4;

    Eq. (2) becomes

    G r4=2

    L  D   1

    2R4t R    )   R  C

      Gr 4

    LR4t

      D 0:

    Therefore, the natural frequency of oscillation is

    !n Ds   Gr 4LR4t

    :

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    13/109

     Dynamics 1e   1229

    Problem 9.9

    A construction worker C   is standing at the midpoint of a 14 ft long

    pine board that is simply supported. The board is a standard  212,so its cross-sectional dimensions are as shown. Assuming the

    worker weighs 180 lb and he flexes his knees once to get the boardoscillating, determine his vibration frequency. Neglect the weight

    of the beam and use the fact that a load  P  applied to a simply

    supported beam will deflect the center of the beam PL3=.48EI cs/,

    where L  is the length of the beam,  E  is its modulus of elasticity,

    and I cs  is the area moment of inertia of the cross section of the

    beam. The elastic modulus of pine is 1:8106 psi.

    Solution 

    Referring to the FBD  of the construction worker shown at the right,

    we see that the elastic restoring force due to the board F b

     as well as

    the weight of the worker  mg both do work on the worker. Since the

    force due to the board is assumed to be linear elastic with the force

    law

    F b D  48EI cs

    L3  ı D keqı;   where   keq D   48EI cs

    L3

    and where ı  is the deflection of the center of the board due to the

    force F b  as shown on the right and keq is the equivalent linear spring

    constant of the deflected board. Since both forces doing work are

    conservative, we can apply the energy method to determine the

    equation of motion of the construction worker on the board. The

    kinetic energy of worker isT  D   1

    2mv2G D   12m Py2:

    The potential energy is given by

    V  D mg.y C ıst/ C   12keq.y C ıst/2;where y  is measured from the static equilibrium position of the worker standing on the board. Applying the

    energy method, we obtain

    dt.T  C V / D m Py Ry mg Py C keq.y C ıst/ Py D 0   )   m Ry mg C keq.y C ıst/ D 0:

    Using the fact that mg D keqıst, this equation becomes the standard harmonic oscillator equation

    Ry C  48EI csmL3

      y D 0   )   f  D   !n2

     D   2

    r 3EI csmL3

      ;

    where f  is the vibration frequency. Substituting in given values

    f  D   2

    "3

    1:8106   lbin:2

    3:164 in:4

    0:4658   lbs2in:

    168 in:

    3#1=2

    )   f  D 1:77 Hz,

    where I cs D   112bh3 in which b D  11:25 in: and  h D  1:5 in:, L D  14 ft D  168 in:, and m D  5:590 slug D0:4658 lbs2=in:

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    14/109

    1230   Solutions Manual 

    Problems 9.10 through 9.13

    The L-shaped bar lies in the vertical plane and is pinned at  O . One end of the

    bar has a linear elastic spring with constant  k  attached to it, and attached at

    the other end is a mass  m  of negligible size. The angle   is measured from the

    equilibrium position of the system and it is assumed to be small.

    Problem 9.10   Assuming that the L-shaped bar has negligible mass, determine

    the natural period of vibration of the system by writing the Newton-Euler

    equations.

    Problem 9.11   Assuming that the L-shaped bar has negligible mass, determine

    the natural period of vibration of the system via the energy method.

    Problem 9.12   Assuming that the L-shaped bar has mass per unit length ,

    determine the natural period of vibration of the system by writing the Newton-

    Euler equations.

    Problem 9.13   Assuming that the L-shaped bar has mass per unit length ,

    determine the natural period of vibration of the system via the energy method.

    Solution to 9.10 

    Ignoring the mass of the L-shaped bar, the  FBD  of the system is as shown on the

    right. Summing moments about point  O , we find thatXM O W   F sh mgd  D I O R ;   (1)

    where the minus sign on the right side is due to the fact that     is positive in

    the clockwise direction and positive ´  is in the counterclockwise direction. The

    force in the spring F s  is due to the static deflection  ıst  at equilibrium as well as

    any additional deflection during vibration. Therefore the spring force is

    F s D k.ıst C h/:

    In addition, if we neglect the mass of the bar, then I O D md 2, which means that Eq. (1) becomes

    k.ıst C h/h mgd  D md 2 R;

    Since kısth D mgd , this equation becomes md 2 R  C kh2  D 0, which means that the natural frequency andperiod of vibration are given by

    !n Ds 

     kh2

    md 2 D   h

    r k

    m  )     D   2d 

    h

    r m

    k .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    15/109

     Dynamics 1e   1231

    Solution to 9.11

    Ignoring the mass of the L-shaped bar, the  FBD of the system is as shown on

    the right. From this  FBD  we can see that the spring force F s  and the weight

    force mg both do work and thus the system is conservative. Applying the

    energy method, the kinetic energy of the system is

    T  D   12

    I O P 2 D   12md 2 P 2;where we have used the parallel axis theorem to obtain   I O  D   md 2.Changes in the potential energy of the system are due to the deflection

    of the spring as well as changes in height of the mass  m. The deflection

    of the spring is due to the static deflection  ıst  at equilibrium as well as any

    additional deflection during vibration. Therefore, the potential energy of the system can be written as

    V  D   12

    k.ıst C h/2 mgd  sin   D   12k.ıst C h/2 mgd;where we have approximated sin    as  . Applying the energy method, we obtain

    dt .T  C V / D md 2

    P R  C k.ıst C h/h P   mgd  P  D 0   )   md 2

    R  C k.ıst C h/h mgd  D 0:Since kısth D mgd , this equation becomes md 2 R  C kh2  D 0, which means that the natural frequency andperiod of vibration are given by

    !n Ds 

     kh2

    md 2 D   h

    r k

    m  )     D   2d 

    h

    r m

    k .

    Solution to 9.12 

    Including the mass of the L-shaped bar, the  FBD  of the system is as shown

    on the right. Summing moments about point O , we find thatXM O W   F sh mgd   dg d 2 D I O R;   (2)

    where the minus sign on the right side is due to the fact that    is positive in

    the clockwise direction and positive  ´  is in the counterclockwise direction.

    The force in the spring F s  is due to the static deflection  ıst  at equilibrium as

    well as any additional deflection during vibration. Therefore the spring force

    is

    F s D k.ıst C h/:In addition, if we include the mass of the bar, then

    I O D md 2 C   13.h/h2 C   13 .d/d 2;which means that Eq. (2) becomes

    k.ıst C h/h mgd   dg d 2 D

    md 2 C   13

    .h/h2 C   13

    .d/d 2 R;

    Since kısth D mgd  C   12gd 2, this equation becomes13

    .h3 C d 3/ C md 2 R  C kh2  D 0, which meansthat the natural frequency and period of vibration are given by

    !n Ds 

      kh2

    13

    .h3 C d 3/ C md 2   )     D 2s 

    13

    .h3 C d 3/ C md 2kh2

      .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    16/109

    1232   Solutions Manual 

    Solution to 9.13 

    Including the mass of the L-shaped bar, the  FBD  of the system is as

    shown on the right. From this FBD  we can see that the spring force

    F s  and the weight forces mg and  gd  do work and thus the system is

    conservative. Applying the energy method, the kinetic energy of the

    system is

    T  D   12

    I O P 2 D   1213

    h3 C d 3C md 2 P 2;where we have used the parallel axis theorem to find  I O D   md 2 C13

    .h/h2 C 13

    .d/d 2 D   13

    h3 Cd 3Cmd 2. Changes in the potentialenergy of the system are due to the deflection of the spring as well as changes in height of the mass m  and

    the centers of mass of each of the two segments of the L-shaped bar. The deflection of the spring is due to

    the static deflection ıst  at equilibrium as well as any additional deflection during vibration. Therefore, the

    potential energy of the system can be written as

    V  D  1

    2k.ıst C h/2

    mgd  sin    dgd 

    2  sin   C hgh

    2 cos  D   1

    2k.ıst C h/2 mgd   dg d 2   C hg h2

    1   2

    2

    ;

    where we have approximated sin    as   and cos   as 1  2=2. Applying the energy method, we obtain

    dt.T  C V / D 1

    3

    h3 C d 3C md 2 P R  C k.ıst C h/h P   mgd  P     12d 2g P     12h2g  P  D 0) 1

    3

    h3 C d 3C md 2 R  C k.ıst C h/h mgd     12gd 2 h2  D 0:Since kısth D mgd C 12g

    d 2Ch2 , this equation becomes 1

    3.h3 C d 3/ C md 2 R Ckh2  D 0, which

    means that the natural frequency and period of vibration are given by

    !n Ds 

      kh2

    13

    .h3 C d 3/ C md 2   )     D 2s 

    13

    .h3 C d 3/ C md 2kh2

      .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    17/109

     Dynamics 1e   1233

    Problem 9.14

    An off-highway truck drives onto a concrete deck scale to be

    weighed, thus causing the truck and scale to vibrate vertically

    at the natural frequency of the system. The empty truck weighs

    74;000 lb, the scale platform weighs  51;000 lb, and the platformis supported by eight identical springs (four of which are shown),

    each with constant k D   3:6105 lb=ft. Modeling the truck, itscontents, and the concrete deck as a single particle, if a vibration

    frequency of  3:3 Hz is measured, what is the weight of the payload

    being carried by the truck?

    Solution 

    Since the frequency of vibration f   is 3:3 Hz, the natural frequency  !n is given by

    !n D 2f    ) s  keqmtot D 2f;   (1)where keq is the equivalent spring constant of the eight springs supporting the platform and  mtot is the total

    mass that is vibrating (i.e., the mass of the truck, the scale platform, and the payload of the truck). The

    equivalent spring constant is equal to the sum of the eight individual spring constants so that

    keq D 8k D 2:88106 lb=ft;

    and the total vibrating mass is given by

    mtot

     D

      W tot

    g  D

      W scale C W truck C W payloadg

      D

      51;000 lb C 74;000 lb C W payload32:2 ft=s2

      ;

    where W tot is the total vibrating weight. Substituting f  D 3:3 Hz, keq, and mtot into Eq. (1), we obtain

    W payload D 90;700 lb:

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    18/109

    1234   Solutions Manual 

    Problem 9.15

    A mass m  of  3 kg is in equilibrium when a hammer hits it, imparting a

    velocity v0 of  2 m=s to it. If  k  is  120 N=m, determine the amplitude of 

    the ensuing vibration and find the maximum acceleration experienced

    by the mass.

    Solution 

    Using the FBD  at the right and summing forces in the x  direction, we obtainXF x W F s D max D m Rx   )   m Rx C kx D 0;   (1)

    where F s D kx  is the force in the spring and x  is measured from the undeformedposition of the spring. Since the initial velocity of the mass is Px.0/ D v0 D 2 m=sand its initial position is x.0/ D x0 D 0 and since !2n D k= m, the amplitude of vibration is

    C  Ds 

    v20!2n

    C x20 Ds 

      v20k= m

     Ds 

    mv20k

      )   C  D 0:316 m.

    To find the maximum acceleration of the mass, we write the position as a function of time in the form

    x.t/ D C  sin.!nt C /;

    and then differentiate it twice to obtain

    Rx.t/ D C !2n sin.!nt C /;   ) Rxmax D C !2n   ) Rxmax D 12:6 m=s2.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    19/109

     Dynamics 1e   1235

    Problem 9.16

    The buoy in the photograph can be modeled as a circular cylinder

    of diameter  d   and mass  m. If the buoy is pushed down in the

    water, which has density , it will oscillate vertically. Determine

    the frequency of oscillation. Evaluate your result for  d  D  1:2 m,m D   900 kg, and surface seawater, which has a density of   D1027 kg=m3.  Hint:  Use Archimedes’ principle, which states that

    a body wholly or partially submerged in a fluid is buoyed up by a

    force equal to the weight of the displaced fluid.

    Solution 

    Referring to the FBD of the buoy at the right, mg is it’s weight and F b  is the added

    buoyancy force due to the displacement of the buoy by an amount y  from it’s static

    equilibrium position. Summing forces in the y  direction, we obtain

    XF y W   mg .mg C F b/ D m Ry   )   m Ry C F b D 0:   (1)

    The added buoyancy force is equal to the weight of the fluid displaced when the

    buoy is deflected by the distance y . Therefore, it must be

    F b D ˝g D "

    2

    2y

    #g;

    where ˝  is the volume of the fluid displaced. Therefore, Eq. (1) becomes

    m

    Ry

    C 4

    gd 2y

     D0

      ) Ry

    C gd 2

    4m

      y

     D0:

    This equation is in standard form, so we can write the natural frequency !n and the frequency f   as

    !n D   d 2

    r g

    m  )   f  D   !n

    2 D   d 

    4

    r  g

    m D 0:566 Hz,

    where, to obtain the numerical result, we have used  d  D   1:2 m,    D   1027 kg=m3,   m D   900 kg, andg D 9:81 m=s2.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    20/109

    1236   Solutions Manual 

    Problem 9.17

    For the silicon nanowire in Example 9.2, use the lumped mass model

    shown, in which a point mass  m  is connected to a rod of negligible

    mass and length L  that is pinned at  O , to determine the natural fre-

    quency  !n  and frequency f   of the nanowire. Use the values givenin Example 9.2 for the mass of the lumped mass, the length of the

    massless rod, and the parameters used to determine the spring constant

    k D 3EI cs=L3. You may use either ı  or    as the position variable inyour solution. Assume that the displacement of  m  is small so that it

    moves vertically.

    Solution 

    Referring to the FBD  of the nanowire at the right, which shows the

    nanowire displaced from its static equilibrium position, we let F sbe the elastic force in the spring. Assuming that both  ı  and    are

    small and summing moments about point O , we obtainXM O W   .mg F s/L D I O˛n D I O R ;   (1)

    where   ˛n D   R   from the angular acceleration of the nanowire,I O D mL2 by the parallel axis theorem, and   and ı  are measured from the static equilibrium position of the nanowire. Noting that the force in the spring is given by  F s D k.ı C ıst/ D kL.  C  st/, we can writeEq. (1) as

    mL2 R  C kL2.  C  st/ mgL D 0   )   R  C   km

       D 0;where we have used the fact that  kL st D mg.

    From Example 9.2, we know that the cross section of the Si nanowire is circular and that it has thefollowing properties:

    L D 9:8106 m; d  D 2r D 330109 m;  D 2330 kg=m3;   and   E D 152 GPa;where d  is the diameter of the wire,  r  is its radius,   is its density, and E  is its modulus of elasticity. Since

    the centroidal area moment of inertia of the cross section is I cs D   14 r4, we can compute k  as

    k D   3.152109 N=m2/

    14

    .165109 m/4.9:8106 m/3   D 0:2820 N=m:

    The mass m  of the lumped mass at the end of the wire is simply the mass of the wire, which is the density of 

    Si multiplied by the volume of the wire, that is,

    m D r2L D 1:9531015 kg:Using the values of  k  and  m  found above, we find that the natural frequency  !n and frequency f   are

    !n Dr 

    k

    m D 1:20107 rad=s and   f  D   !n

    2 D 1:91106 Hz:   (2)

    The frequency of vibration goes down when all the mass is lumped at the end of the wire since it now has

    a larger mass moment of inertia with respect to point  O  when compared with rigid body model used in

    Example 9.2.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    21/109

     Dynamics 1e   1237

    Problem 9.18

    The small sphere A  has mass m  and is fixed at the end of the arm  OA of negligible mass, which is pinned

    at O . If the linear elastic spring has stiffness  k , determine the equation of motion for small oscillations,

    using

    (a) the vertical position of the mass A  as the position coordinate,

    (b) the angle formed by the arm OA with the horizontal as the position coordinate.

    Solution 

    When the nanowire is displaced from its equilibrium position,the  FBD   is as shown on the right, where  F s  is the elastic

    restoring force due to the spring. Summing moments about

    point O  and using the fact that both y  and    are small, we

    obtain XM O W   mgL F sL D I O˛OA;   (1)

    where I O D mL2 by the parallel axis theorem and ˛OA is the angular acceleration of the nanowire.Part (a).   With y  as the vertical position of  m  measured from the static equibrium position of the nanowire,

    the force in the spring can be written as

    F s D

    k.ıstC

    y/;

    where ıst  is the deflection of the spring in the static equilibrium position. Using this force law, along with the

    kinematics relation ˛OA D Ry=L, the equation of motion (Eq. (1)) in terms of  y  becomesmgL k.ıst C y/L D mL2 Ry=L:

    Since mg D kıst, we havem Ry C ky D 0:

    Part (b).   Using    as the coordinate measuring the position of the nanowire from its static equibrium

    position, the force in the spring can be written as

    F s D k.ıst C L/;where ıst  is the deflection of the spring in the static equilibrium position. Using this force law, along with the

    kinematics relation ˛OA D R , the equation of motion (Eq. (1)) in terms of  y  becomesmgL k.ıst C L/L D mL2 R:

    Since mg D kıst, we havem R  C k  D 0:

    Of course both equations of motion give the same vibration frequency.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    22/109

    1238   Solutions Manual 

    Problems 9.19 and 9.20

    Grandfather clocks keep time by advancing the hands a set amount per oscillation of the pendulum.

    Therefore, the pendulum needs to have a very accurate period for the clock to keep time accurately. As

    a fine adjustment of the pendulum’s period, many grandfather clocks have an adjustment nut on a bolt

    at the bottom of the pendulum disk. By screwing this nut inward or outward, the mass distribution of the pendulum can be changed and its period adjusted. In the following problems, model the pendulum

    as a uniform disk of radius  r  and mass mp, which is at the end of a rod of negligible mass and length

    L r . Model the adjustment nut as a particle of mass  mn, and let the distance between the bottom of thependulum disk and the nut be d .

    Problem 9.19   If the adjustment is initially at a distance d  D  9 mm from the bottom of the pendulumdisk, how much would the period of the pendulum change if the nut were screwed  4 mm closer to the

    disk? In addition, how much time would the clock gain or lose in a 24 h period if this were done? Let

    mp D 0:7 kg, r D 0:1 m, mn D 8 g, and L D 0:85 m.Problem 9.20   The clock is running slow so that it is losing 1 minute every 24 hours (i.e., the clock 

    takes 1441 minutes to complete a 1440 minute day). If the adjustment nut is at  d  D 2 cm, what would itsmass need to have to correct the pendulum’s period if the nut is moved to  d  D  0 cm? Let mp D  0:7 kg,r D 0:1 m, and L D 0:85 m.

    Solution to 9.19 

    Referring to the FBD  at the right, we see that as the pendulum swings, on

    the weight of the pendulum disk and the adjustment nut do work. Since the

    system is conservative, we apply the energy method to find the equation

    of motion and thus the natural frequency of oscillation. The kinetic energy

    of the system can be written as

     D  12

    .I O/d !2p

     C  12

    .I O/n!2p

     D  12

     Œ.I O/d 

     CI O/n !

    2p ;

    where .I O/d   is the mass moment of inertia of the pendulum disk with

    respect to point O , .I O/n is the mass moment of inertia of the adjustment

    nut with respect to point  O, and  !p D  P  is the angular velocity of thependulum. The moments of inertia are given by

    .I O/p D   12mpr2 C mpL2 and   .I O/n D mn.L C r C d /2D mp.12r2 C L2/:

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    23/109

     Dynamics 1e   1239

    The potential energy of the system can be written as

    V  D mpgL cos    mng.L C r C d / cos  D g mpL C mn.L C r C d / cos   g mpL C mn.L C r C d / 1

      2

    2 ;where we have used the approximation cos    1  2=2. Applying the energy method, we find

    dt.T  C V / D mp12r2 C L2C mn.L C r C d /2 P R  C g mpL C mn.L C r C d /  P  D 0

    ) mp12r2 C L2C mn.L C r C d /2 R  C g mpL C mn.L C r C d /   D 0;and therefore the natural frequency is

    !2n D  g

    mpL C mn.L C r C d /

    mp12r2 C L2C mn.L C r C d /2:

    Using g D   9:81 m=s2,  mp D   0:7 kg,  L D   0:85 m,  mn D   0:008 kg,  r D   0:1 m, and the fact that theperiod is   D 2=!n, with the initial position of the adjustment nut at  d  D 9 mm D 0:009 m, the period  9is (note that we keep more than four significant figures since the difference in period is very small)

     9 D   2!n

    ˇ̌̌ˇd D0:009

    D 1:85731339 s;

    and with the nut  4 mm closer at d  D 5 mm D 0:005 m, the period  5 is

     5 D   2!n ˇ̌̌̌d D0:005 D 1:85725259 s;

    so that the change in period is

     9  5 D 0:00006080 s:To determine how much time the clock would gain or lose in a 24 hr period, we write

     9

     5D 1:00003274 D   1440 min

    tnew)   tnew D 1439:953 min:

    so that the day would be  shorter  by

    1440

    1439:953

    D0:047 min

      )  0:047 min 60   smin D 2:82 s

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    24/109

    1240   Solutions Manual 

    Solution to 9.20 

    Referring to the FBD  at the right, we see that as the pendulum swings, on

    the weight of the pendulum disk and the adjustment nut do work. Since the

    system is conservative, we apply the energy method to find the equation

    of motion and thus the natural frequency of oscillation. The kinetic energy

    of the system can be written as

    T  D   12

    .I O/d !2p C   12 .I O/n!2p D   12 Œ.I O/d  C I O/n !2p ;

    where .I O/d   is the mass moment of inertia of the pendulum disk with

    respect to point O , .I O/n is the mass moment of inertia of the adjustment

    nut with respect to point  O, and  !p D  P  is the angular velocity of thependulum. The moments of inertia are given by

    .I O/p D   12mpr2 C mpL2 and   .I O/n D mn.L C r C d /2D mp.12r2 C L2/:

    The potential energy of the system can be written as

    V  D mpgL cos    mng.L C r C d / cos  D g mpL C mn.L C r C d / cos   g mpL C mn.L C r C d / 1   2

    2

    ;

    where we have used the approximation cos    1  2=2. Applying the energy method, we find

    dt.T  C V / D mp

    12

    r2 C L2C mn.L C r C d /2

     P R  C g mpL C mn.L C r C d /  

    P  D 0) mp12r2 C L2C mn.L C r C d /2 R  C g mpL C mn.L C r C d /   D 0;

    and therefore the natural frequency is

    !2n D  g

    mpL C mn.L C r C d /

    mp

    12

    r2 C L2C mn.L C r C d /2 :Now that we have the natural frequency, the period can be calculated using    D 2=!n. Since the clock 

    is running slow and loses one minute every  24  hours, it takes 1441 minutes to complete a 1440 minute day.

    That is,  correct D 1440 min and  actual D 1441 min. Therefore correct

     actual D  1440

    1441   )   correct.d 

     D0 m/

     actual.d  D 0:02 m/ D  1440

    1441 ;   (1)

    that is, the actual period is when the nut is at d  D 0:02 m and the correct  period is when the nut is at d  D 0 m.Substituting in the expression for the period in terms of the natural frequency into Eq. (1), we obtain

    2.!n/correct

    2.!n/actual

    D

    s   gŒmpLCmn.LCrC0:02/

    mp

    12r2CL2

    Cmn.LCrC0:02/2s 

      gŒmpLCmn.LCr/mp

    12r

    2CL2Cmn.LCr/2

    D   14401441

    ;   (2)

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    25/109

     Dynamics 1e   1241

    where we have substituted  d  D   0 m into  .!n/correct  and d  D   0:02 m into  .!n/actual. When we substituteg D   9:81 m=s2,  mp D  0:7 kg,  L D  0:85 m, and r D  0:1 m into Eq. (2), both sides are squared, and it issimplified, it becomes the following quadratic equation in the unknown  mn

    m2n C 0:6524mn 0:02446 D 0:   (3)

    Solving Eq. (3) for mn, we obtain

    mn D 0:688 kg and   mn D 0:0356 kg   )   mn D 35:6 g,

    where the positive root has been chosen for the mass.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    26/109

    1242   Solutions Manual 

    Problems 9.21 and 9.22

    The uniform cylinder rolls without slipping on a flat surface. Let k1 Dk2 D   k   and   r  D   R=2. Assume that the horizontal motion of   G   issmall.

    Problem 9.21   Determine the equation of motion for the cylinder by

    writing its Newton-Euler equations. Use the horizontal position of the

    mass center G  as the degree of freedom.

    Problem 9.22   Determine the equation of motion for the cylinder using

    the energy method. Use the horizontal position of the mass center G  as

    the degree of freedom.

    Solution to 9.21

    Referring to the FBD  on the right, we can sum moments about point  O

    to obtain XM O W   2RF A C .R r/F B D I O˛G;   (1)

    where F A is the force in the spring of constant  k1, F B  is the force in the

    spring of constant k2, ˛G  is the angular acceleration of the cylinder, and

    where

    I O D I G C mR2 D   12mR2 C mR2 D   32mR2:For the spring forces, we can write

    F A D k1xA   and   F B D k2xB ;where x

    A and  x

    B are the horizontal deflection of the springs at A  and B ,

    respectively. Since the cylinder rolls without slip at O , we can write the velocity of points A  and  B  as

    EvA D EvO C !G  ErA=O D !G Ok 2R O| D 2R!G O{;EvB D EvO C !G  ErB=G D !G Ok .R r/ O| D .R r/!G O{ D 12R!G O{;

    where we have used the fact that  r D  R =2. Since we are assuming that the horizontal motions are small,these expressions for velocity imply that

    xA D 2R G   and   xB D 12R G ;where  G  is the rotation of the cylinder. Since xG D R G , we can write the above two expressions for themotion of points A  and  B  as

    xA D 2xG   and   xB D  12xG;

    and so the spring force equations become (also using k1 D k2 D k)F A D 2kxG   and   F B D   12kxG:

    Substituting everything into Eq. (1) and noting that  ˛G D RxG=R, we obtain

    4kRxG C12

    R12

    kxG D   32mR2 RxG

    R

      ) RxG C

     17k

    6m xG D 0.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    27/109

     Dynamics 1e   1243

    Solution to 9.22 

    Referring to the FBD on the right, we that only F A and  F B  do work as the

    wheel undergoes small horizontal motion, where  F A is the force in the

    spring of constant k1, F B  is the force in the spring of constant k2. Since

    both of those spring forces are conservative, we can apply the energy

    method to determine the equation of motion of the cylinder. With this

    in mind, the kinetic energy of the cylinder is

    T  D   12

    mv2G C   12I G!2G;

    here !G  is the angular speed of the cylinder as it rolls without slip at

    point O . Since I G D   12mR2, vG D PxG , and !G D PxG=R, the kineticenergy can be written as

    T  D   12

    m Px2G C   1212

    mR2

    PxG

    R

    2D   3

    4m Px2G:

    For the potential energy of the springs, we can write

    V  D   12

    k1x2A C  12k2x2B D   12kx2A C   12kx2B ;

    where xA and  xB  are the horizontal deflection of the springs at  A  and  B , respectively, and we have used the

    fact that k1 D k2 D k. Since the cylinder rolls without slip at  O , we can write the velocity of points A  andB  as

    EvA D EvO C !G  ErA=O D !G Ok 2R O| D 2R!G O{;EvB D EvO C !G  ErB=G D !G Ok .R r/ O| D .R r/!G O{ D 12R!G O{;

    where we have used the fact that  r D  R =2. Since we are assuming that the horizontal motions are small,these expressions for velocity imply that

    xA D 2R G   and   xB D 12R G ;

    where  G  is the rotation of the cylinder. Since xG D R G , we can write the above two expressions for themotion of points A  and  B  as

    xA D 2xG   and   xB D   12xG;and so the potential energy becomes

    V  D   12

    k.2xG/2 C   1

    2k

    12

    xG

    2 D   17

    8 k x2G:

    Substituting  T   and V   into   d dt

    .T  C V / D 0, we obtain

    32

    m PxG RxG C   174  kxG PxG D 0   ) RxG C 17k

    6m xG D 0.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    28/109

    1244   Solutions Manual 

    Problems 9.23 and 9.24

    The uniform cylinder of mass  m  and radius  R  rolls without slipping on the

    inclined surface. The spring with constant k  wraps around the cylinder as it

    rolls.

    Problem 9.23   Determine the equation of motion for the cylinder by writing

    its Newton-Euler equations. Determine the numerical value of the period of 

    oscillation of the cylinder using  k D  30 N=m, m D   10 kg, R D  30 cm, and  D 20ı.Problem 9.24   Determine the equation of motion for the cylinder using the

    energy method. Determine the numerical value of the period of oscillation of 

    the cylinder using k D 30 N=m, m D 10 kg, R D 30 cm, and   D 20ı.

    Solution to 9.23 

    Referring to the  FBD  at the right and summing moments about point  O , weobtain X

    M O W .mg sin /R C 2RF s D I G˛G C mRaGx ;   (1)

    where F s  is the force in the spring,  ˛G is the angular acceleration of the cylinder,

    F  is the force of friction between the cylinder and the ground, and  aGx  is the x

    component of the acceleration of the mass center of the cylinder. If the center of 

    the cylinder at G  moves a distance xG  down the incline, then point A  must move a distance 2xG  and so the

    total deflection of the spring must consist of its deflection when the system is in static equilibrium  ıst  plus its

    deflection away from static equilibrium 2xG , which implies that

    F s D k.ıst C 2xG/;

    In addition, since the cylinder rolls without slip at point  O , we can write the angular acceleration of the

    cylinder as ˛G D RxG=R. Substituting this kinematics equation and the force law shown above into Eq. (1)and using I G D   12mR2, we obtain

    mgR sin   C 2kR.ıst C 2xG/ D   12mR2 RxG

    R

    mR RxG:

    Using the fact that mgR sin   D 2kRıst and then simplifying this equation, we obtain the equation of motionas

    RxG C  8k

    3m xG D 0:   (2)

    From Eq. (2), we can see that the natural frequency and period are given by

    !n Dr 

    8k

    3m  )     D   2

    !nD 2

    r 3m

    8k D 2:22 s,

    where we have substituted in  m D 10 kg and k D 30 N=m.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    29/109

     Dynamics 1e   1245

    Solution to 9.24 

    Referring to the  FBD  at the right we see that  F s  and mg are the only two forces

    that do work (since the cylinder rolls without slip on a stationary surface, the

    friction force F   does no work). Since both of these forces are conservative, we

    can apply the energy method to obtain the equation of motion for the system.

    The kinetic energy of the system is

    T  D   12

    I O!2G D   12

    12

    mR2 C mR2!2G D   34mR2!2G D   34mR Px2G;where !G  is the angular velocity of the cylinder, we have used the parallel axis theorem to find  I O , and

    we have used the kinematic relation that PxG D R!G   to write !G  since the cylinder rolls without slip atpoint O . If the center of the cylinder at G  moves a distance xG  down the incline, then point  A  must move

    a distance 2xG  and so the total deflection of the spring must consist of its deflection when the system is in

    static equilibrium ıst  plus its deflection away from static equilibrium 2xG , which implies that

    V  D   12

    k.ıst C 2xG/2 mgxG sin ;

    Substituting the kinetic and potential energies into the energy method, we obtain

    dt.T  C V / D   3

    2m PxG RxG C k.ıst C 2xG/.2 PxG/ mg PxG sin   D 0;

    Canceling PxG , using the fact that mg sin   D 2kıst, and then simplifying this equation, we obtain the equationof motion as

    RxG C  8k

    3mxG D 0:   (3)

    From Eq. (3), we can see that the natural frequency and period are given by

    !n Dr 

    8k

    3m  )     D   2

    !nD 2

    r 3m

    8k D 2:22 s,

    where we have substituted in  m D 10 kg and k D 30 N=m.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    30/109

    1246   Solutions Manual 

    Problem 9.25

    A uniform bar of mass m  is placed off-center on two counter-rotating

    drums A  and B . Each drum is driven with constant angular speed  !0,

    and the coefficient of kinetic friction between the drums and the bar

    is  k. Determine the natural frequency of oscillation of the bar onthe rollers.  Hint:  Measure the horizontal position of  G  relative to the

    midpoint between the two drums, and assume that the drums rotate

    sufficiently fast so that the drums are always slipping relative to the bar.

    Solution 

    Referring to the FBD at the right, notice that the coordinate

    system we are using measures the horizontal position of 

    the mass center of the bar  xG  relative to the midpoint

    between the two drums. Since drum A  rotates clockwise,

    the friction force it exerts on the bar  F A is to the right andsince drum B  rotates counterclockwise, the friction force

    it exerts on the bar  F B  is to the left. With this in mind, the

    balance laws for the bar shown can be written asXF x W   F A F B D maGx ;   (1)XF y W   N A C N B  mg D maGy;   (2)XM G W   N B.h=2 xG/ N A.h=2 C xG/ D I G˛bar:   (3)

    Since the counter-rotating drums must be slipping relative to the bar, the force laws are given by

    F A

     DkN A   and   F B

     DkN B :

    Since the bar does not rotate or move vertically, the kinematics equations are given by

    aGx D RxG; aGy D 0;   and   ˛bar D 0:Substituting the force laws and kinematics into Eq. (1), we obtain

    kN A kN B D m RxG:   (4)Substituting the kinematics into Eqs. (2) and (3) and then solving the resulting two equations for N A and  N Bgives

    N A D mg

    1

    2   xG

    h

      and   N B D mg

    1

    2 C  xG

    h

    :

    Substituting the two normal forces into Eq. (4), we obtain the equation of motion as

    kmg

    1

    2  xG

    h

    kmg

    1

    2 C  xG

    h

    D m RxG   ) RxG C

     2kg

    h  xG D 0:

    Therefore, the natural frequency of oscillation is

    !n Dr 

    2kg

    h  :

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    31/109

     Dynamics 1e   1247

    Problem 9.26

    The uniform cylinder A  of radius r  and mass m  is released from

    a small angle    inside the large cylinder of radius  R. Assuming

    that it rolls without slipping, determine the natural frequency and

    period of oscillation of  A.

    Solution 

    Referring to the FBD  shown at the right, as long as the cylinder rolls

    without slipping, only the weight force mg will do work on it. Since

    the weight force is conservative, we can apply the energy method

    to find the equation of motion. With this in mind, the kinetic energy

    can be written as

    T  D   12

    mv2G C   12I G!2G;

    where vG  is the speed of the mass center of the cylinder,  !G  is the

    angular speed of the cylinder, and  I G  is its mass moment of inertia.

    Since point  G   is moving in a circle centered at  O  and since the

    cylinder A  of radius r   is rolling without slip inside the larger cylinder B , we can write the speed of  G  as

    vG D .R r/ P  D r!G   )   !G D  R r

    rP;

    where !G  is the angular speed of the cylinder A. Using these results, the kinetic energy becomes

    T  D   12

    m.R r/2 P 2 C   12

    12

    mr2R r

    r

    2 P 2 D   34

    m.R r/2 P 2;   (1)

    where we have used I G D   12mr 2 for a uniform cylinder. In addition, using the datum line shown in the figureabove, the potential energy of the cylinder can be written as

    V  D mg.R r/ cos :

    Adding the potential energy to the kinetic energy in Eq. (1) and applying the energy method, we obtain

    dt.T  C V / D   3

    2m.R r/2 P R  C mg.R r/ P  sin   D 0   )   R  C   2g

    3.R

    r/ sin   D 0:

    For small values of   , we can approximate sin    by   and we obtain

    R  C   2g3.R r/   D 0   )   !n D

    s   2g

    3.R r/   and     D 2s 

    3.R r/2g

      .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    32/109

    1248   Solutions Manual 

    Problem 9.27

    The uniform sphere  A  of radius  r  and mass  m  is released from

    a small angle    inside the large cylinder of radius  R. Assuming

    that it rolls without slipping, determine the natural frequency and

    period of oscillation of the sphere.

    Solution 

    Referring to the FBD  shown at the right, as long as the sphere rolls

    without slipping, only the weight force mg will do work on it. Since

    the weight force is conservative, we can apply the energy method

    to find the equation of motion. With this in mind, the kinetic energy

    can be written as

    T  D   12

    mv2G C   12I G!2G;

    where vG  is the speed of the mass center of the sphere,  !G  is the

    angular speed of the sphere, and  I G  is its mass moment of inertia.

    Since point  G   is moving in a circle centered at  O  and since the

    sphere A  of radius r   is rolling without slip inside the larger cylinder B , we can write the speed of  G  as

    vG D .R r/ P  D r!G   )   !G D  R r

    rP;

    where !G  is the angular speed of the sphere A. Using these results, the kinetic energy becomes

    T  D   12

    m.R r/2 P 2 C   12

    25

    mr 2R r

    r

    2 P 2 D   710

    m.R r/2 P 2;   (1)

    where we have used I G D   25mr 2 for a uniform cylinder. In addition, using the datum line shown in the figureabove, the potential energy of the sphere can be written as

    V  D mg.R r/ cos :

    Adding the potential energy to the kinetic energy in Eq. (1) and applying the energy method, we obtain

    dt.T  C V / D   7

    5m.R r/2 P R  C mg.R r/ P  sin   D 0   )   R  C   5g

    7.R

    r/ sin   D 0:

    For small values of   , we can approximate sin    by   and we obtain

    R  C   5g7.R r/   D 0   )   !n D

    s   5g

    7.R r/   and     D 2s 

    7.R r/5g

      .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    33/109

     Dynamics 1e   1249

    Problem 9.28

    The U-tube manometer lies in the vertical plane and contains a fluid of density

     that has been displaced a distance  y  and oscillates in the tube. If the cross-

    sectional area of the tube is  A  and the total length of the fluid in the tube is L,

    determine the natural period of oscillation of the fluid, using the energy method. Hint:  As long as the curved portion of the tube is always filled with liquid (i.e.,

    the oscillations don’t get large enough to empty part of it), the contribution of 

    the liquid in the curved portion to the potential energy is constant .

    Solution 

    To apply the energy method to find the equation of motion of the oscillating

    fluid, we need to write the kinetic and potential energy of the fluid in the

    tube. Referring to the top figure on the right and assuming the all the fluid

    moves as a unit, we can write the kinetic energy of the fluid as

    T  D   12

    m Py2 D   12

    AL Py2;where we have computed the mass of the fluid in the tube as m D AL, Pyis the speed of each element of the fluid, and the coordinate  y  is measure

    downward from the equilibrium level of the surface of the fluid. Referring

    the bottom figure on the right, the total potential energy of the fluid can

    be computed as the sum of the individual potential energies of the four

    segments of fluid B , D , E , and F , that is,

    V  D V B C V D C V E C V F 

    D AgL C 2   y„ ƒ ‚ …

    length of  B

    y C 1

    2L C 

    2   y„ ƒ‚ …

    dist. from datum to center of  B

    CV D

    Ag

    L C 2

      y

    „ ƒ ‚ …length of  E

    y C  1

    2

    L C 

    2  y

    „ ƒ‚ …

    dist. from datum to center of  E

    CV F ;

    where C  is the constant  length of the fluid in the curved portion of the tube and V F  is always equal to zero.

    Simplifying this expression for  V , we obtain

    V  D 14

    Ag

    .C   L/2 4y2:Applying the energy method to this system, we obtain

    dt.T  C V / D 0   )   AL Py Ry C 2Agy Py D 0   ) Ry C  2g

    L  y D 0   )   !n D

    r 2g

    L ;

    where we have used the fact that  V D, C , and L  are all constant. Therefore, the period of oscillation of the

    fluid is

      D   2!n

    D 2s 

     L

    2g:

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    34/109

    1250   Solutions Manual 

    Problem 9.29

    The uniform semicylinder of radius R  and mass m rolls without slip on

    the horizontal surface. Using the energy method, determine the period

    of oscillation for small  .

    Solution 

    Referring to the  FBD  on the right and noting the semicylinder

    rolls with slip on the surface at point  O , we see that the only

    force that does work on the semicylinder as it rocks back and

    forth is the weight force mg. Since that force is conservative, we

    can apply the energy method to find the equation of motion as

    instructed. Using the datum indicated, the potential energy of thesemicylinder is

    V  D mg

    4R

    3

    cos    mg

    4R

    3

    1  2=2;   (1)

    where we have used the small angle approximation for  cos  .

    Since the semicylinder is rolling without slip at point  O, that point must be the   IC  of the semicylinder.

    Therefore, we can write the kinetic energy as

    T  D   12

    I O P 2;   (2)

    where P  is the angular velocity of the semicylinder. To find  I O  we first note that

    I G D

    1

    2    16

    92

    mR2 and then   I O D I G C m`2 I G C m

    R  4R

    3

    2;

    where `  is the distance from O   to G  as seen in the figure above and we have approximated `  by R   4R3

      for

    small  . Simplifying I O , we obtain

    I O D  9  16

    6  mR2:   (3)

    Substituting Eq. (3) into Eq. (2) and then using Eqs. (1) and (2) to apply the energy method to the semicylinder,

    we obtain the following equation of motion:

    dt.T  C V / D 0   )

    9  166

    mR2 P R  C mg

    4R3

     P  D 0   )   R  C   8g

    .9  16/R   D 0:

    Therefore, the natural frequency and period of oscillation are

    !n Ds 

      8g

    .9  16/R   )     D s 

    .9  16/R2g

      .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    35/109

     Dynamics 1e   1251

    Problem 9.30

    The thin shell semicylinder of radius R  and mass m  rolls without slip

    on the horizontal surface. Using the energy method, determine the

    period of oscillation for small  .

    Solution 

    Referring to the  FBD  on the right and noting the thin shell

    semicylinder rolls with slip on the surface at point O , we see

    that the only force that does work on the thin shell semicylinder

    as it rocks back and forth is the weight force  mg. Since that

    force is conservative, we can apply the energy method to find

    the equation of motion as instructed. Before doing so, we needto find the distance  d  from point A  to the center of mass of 

    the thin shell semicylinder at G . Since the total mass of the

    thin shell semicylinder is  m  and that the length of the shell

    is 2R C R, its mass per unit length is   D  m=.2R C R/.Therefore, applying the definition of the center of mass, the

    distance d  is given by

    md  D 0 C R

    2R

    D R

      m

    2R C R

    2R

      )   d  D   2R

    2 C :

    Now that we have d , using the datum indicated, the potential energy of the thin shell semicylinder is

    V  D mg

      2R

    2 C

    cos    mg

      2R

    2 C

    1  2=2;   (1)where we have used the small angle approximation for  cos  . Since the thin shell semicylinder is rolling

    without slip at point O , that point must be the  IC  of the thin shell semicylinder. Therefore, we can write the

    kinetic energy as

    T  D   12

    I O P 2;   (2)where P   is the angular velocity of the thin shell semicylinder. To find  I O  we must first find  I G  and thenapply the parallel axis theorem to obtain as I O D  I G C m`2, where `  is the distance from  G  to  O . SinceI G  for the body we are considering does not appear in the inside back cover of the books, we will first find

    I A  by treating the thin shell semicylinder as a composite body made up of the straight segment  B C   andsemicircular segment BO C . Therefore

    I A D .I A/BC  C .I A/BOC  D   112mBC .2R/2 C mBOC R2:

    Since the linear density of the thin shell semicylinder is    as given above, we can write the mass of each

    segment as

    mBC  D .2R/ D  2m

    2 C   and   mBOC  D .R/ D  m

    2 C ;

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    36/109

    1252   Solutions Manual 

    and therefore I A becomes

    I A D  1

    12

      2m

    2 C

    .2R/2 C   m2 C   R

    2 D   2 C 33.2 C / mR

    2:

    We can now find I G  using the parallel axis theorem as

    I A D I G C md 2 )   I G D I A md 2 D  2 C 33.2 C / mR

    2 m

      2R

    2 C 2

    D   32 C 8  8

    3.2 C /2   mR2:

    Finally, we can find I O   by again using the parallel axis theorem as

    I O D I G C m`2 I G C m.R d /2 D  32 C 8  8

    3.2 C /2   mR2 C m

    R   2R

    2 C 2

    D  2.3  2/3.2 C /   mR

    2;

    where we have approximated  `  by  R d  for small  . Substituting I O  into Eq. (2) and then using Eqs. (1)and (2) to apply the energy method to the thin shell semicylinder, we obtain the following equation of motion:

    d dt

    .T  C V / D 0   ) 2.3  2/3.2 C /

    mR2 P R  C mg   2R2 C

     P  D 0   )   R  C   3g.3  2/R   D 0:

    Therefore, the natural frequency and period of oscillation are

    !n Ds 

      3g

    .3  2/R   )     D 2s 

    .3  2/R3g

      .

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    37/109

     Dynamics 1e   1253

    Problem 9.31

    The magnification factor for a forced (undamped) harmonic oscillator is measured to be equal to   5.

    Determine the driving frequency of the forcing if the natural frequency of the system is  100 rad=s.

    Solution 

    The MF for a harmonic oscillator depends on the forcing frequency and the natural frequency of a system

    according to

    MF D   11 .!0=!n/2 :

    Since we know that  MF D 5  and  !n D  100 rad=s, we can substitute these values in to the above equationand solve for the forcing frequency  !0. Doing so, we obtain

    5 D   11 .!0=100/2   )   !0 D 89:4 rad=s.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    38/109

    1254   Solutions Manual 

    Problem 9.32

    Suppose that equation of motion of a forced harmonic oscillator is

    given by Rx C !2nx D .F 0=m/ cos !0t . Obtain the expression for theresponse of the oscillator, and compare it to the response presented in

    Eq. (9.42) (which is for a forced harmonic oscillator with the equationof motion given in Eq. (9.37)).

    Solution 

    The response is given by general solution to the equation of motion, that is, it is given by

    x.t/ D xc C xp;

    where xc  is the complementary solution and  xp  is the particular solution. The complementary solution for

    the given equation of motion is still given by

    xc D A sin !nt C B cos !nt;where A  and  B  are constants determined by the initial conditions. To find a particular solution, we try a

    solution of the form  xp D  D cos !0t , where D  is a constant to be determined. Substituting this assumedsolution into the equation of motion, we obtain

    D!20 cos !0t C !2nD cos !0t D  F 0

    m  cos !0t   )   D

    !2n  !20

    D   F 0m

      )   D D   F 0=m!2n  !20

    )   D DF 0m

      1

    !2n

    1 .!0=!n/2 D

    F 0m

    mk

    1 .!0=!n/2 D

      F 0=k

    1 .!0=!n/2

    Therefore, the response is given by

    x.t/ D A sin !nt C B cos !nt C   F 0=k1 .!0=!n/2

     cos !0t:

    Notice that we can find the response due to  cos !0t  forcing by replacing the “sin” with a “cos” in the response

    due to sin !0t   forcing.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    39/109

     Dynamics 1e   1255

    Problem 9.33

    Derive the equations of motion for the unbalanced motor introduced

    in this section by applying Newton’s second law to the center of 

    mass of the system shown in Fig. 9.12.

    Solution 

    The  FBD  of the mass center G  of the system is shown in the top

    figure on the right, where N  is the net horizontal force acting on

    the system, m  is the total mass of the system (i.e., m D mm C mp),and F s  is the force on the platform due to the springs. Applying

    Newton’s second law to the center of mass and summing forces in

    the vertical direction, we findXF y W mg F s D m RyG;   (1)

    where, referring to the middle figure on the right, yG  measures the

    vertical position of the mass center. The force law for the springs

    is given by

    F s D keq.ym ıst/;where, referring to the middle figure on the right, ym is the vertical

    position of the motor and platforms (they move together), keq   is

    the equivalent spring constant of the six springs supporting the

    platform, and  ıst   is the static deflection of the spring when the

    system is in static equilibrium. Substituting the force law into thebalance law in Eq. (1) we find

    mg keq.ym ıst/ D m RyG   )   m RyG C keqym D 0;   (2)where we have used the fact that  mg D keqıst. Notice that Eq. (2) contains two dependent variables ym andyG  and so we need to eliminate one of them. To show that this equation is equivalent to Eq. (9.36) in the

    textbook, we will need to eliminate  yG  by using the definition of the mass center. Referring to the bottom

    figure above, we find

    myG D muyu C .m mu/ym   )   myG D mu.ym C h C " sin / C .m mu/ym:Canceling muym  and noting that sin   D sin !r t , this equation becomes

    myG D mu.h C " sin !r t / C mym   )   m RyG D mu"!2r  sin !r t C m Rym;where we have used the fact that  h  is constant in taking the second derivative. Substituting  m RyG  from thisexpression into Eq. (2), we obtain the equation of motion as

    .mm C mp/ Rym C keqym D mu"!2r   sin !r t   ) Rym C  keq

    mm C mpym D   mu"!

    2r

    mm C mpsin !r t ,

    where we have made the substitution  m D mm C mp.August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    40/109

    1256   Solutions Manual 

    Problem 9.34

    Determine the amplitude of vibration of the unbalanced motor we

    studied in Example 9.4 if the forcing frequency of the motor is

    0:95!n.

    Solution 

    Referring to Example 9.4, the response if the unbalance motor was found to be

    ym D"

    vm0

    !n  !r

    !n

    mu"!2r =keq

    1 .!r=!n/2#

    sin !nt C  mu"!

    2r =keq

    1 .!r=!n/2  sin !r t;   (1)

    where ym  in defined in the figure on the right,  vm0 D Pym.0/, andthe natural frequency was found to be

    !n Ds 

      keq

    mm C mp:

    The goal then is to find the amplitude of  ym in Eq. (1). We begin by

    writing Equation (1) as

    ym D P  sin !nt C Q sin !r t;where

    P  D   vm0!n

     !r!n

    mu"!2r = keq

    1 .!r=!n/2  and   Q D   mu"!

    2r =keq

    1 .!r=!n/2:

    We now let ! D !r  !n, which means that ym can be written asym D P  sin !nt C Q sin.! C !n/t D P  sin !nt C Q.sin !t  cos !nt C cos !t sin !nt /

    D Q sin !t„ ƒ‚ …A

    cos !nt C .P  C Q cos !t/„ ƒ ‚ …B

    sin !nt

    Dp 

    A2 C B2 sin.!nt C /;where the angle   can be determined, but is not needed to find the amplitude of vibration. Thus we see that

    the amplitude is

    jymj Dp 

    A2 C B2 Dq 

    .Q sin !t/2 C .P  C Q cos !t/2 Dq 

    P 2 C Q2 C 2PQ cos.!r  !n/t ;where we have substituted !r  !n  for ! . Notice that the amplitude of vibration is itself a function of time. We can now apply the known quantities from Example 9.4, which were mm

     D 40 kg, mp

     D 15 kg,

    keq D 6ks D 420;000 N=m, " D 15 cm, !r D 0:95!n, vm.0/ D 0:4 m=s, and three different values of  mu:10 g, 100 g, and 1000 g. Using these, we find that the amplitude of vibration for each of the three unbalanced

    masses is

    mu D 0:01 kg   ) jymj Dq 

    2:19106 cos.4:37t/ C 1:89105 m;

    mu D 0:1 kg   ) jymj Dq 

    1:10105 cos.4:37t/ C 1:11105 m;

    mu D 1 kg   ) jymj Dq 

    9:80104 cos.4:37t/ C 1:01103 m;August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    41/109

     Dynamics 1e   1257

    A Closer Look.   A plot showing each of these three amplitudes as

    a function of time is shown at the right. The green curve corresponds

    to mu D 10 g, the blue curve corresponds to mu D 100 g, and the redcurve corresponds to mu D 1000 g. Note that these curves representthe amplitude of the response at any time t . These curves envelope the

    actual response ym as can be seen in the three figures below. The first

    figure shows the response as well as the amplitude of the response for

    mu D 10 g.

    The second plot shows the response as well as the amplitude of the response for  mu D 100 g. The thirdplot shows the response as well as the amplitude of the response for mu D 1000 g.

    Notice that in each case the amplitude of the response jymj that we found forms an envelope over the responseym. When the forcing frequency is very close to the natural frequency as it is in this problem, the amplitude

    of the response increases and decreases as we have seen in this problem. If the vibrations were sound waves,the volume would alternately increase and decrease; this is referred to as the beat phenomenon.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    42/109

    1258   Solutions Manual 

    Problem 9.35

    A uniform bar of mass  m  and length L  is pinned to a slider at  O . The slider is

    forced to oscillate horizontally according to  y.t/ D Y   sin !st . The system liesin the vertical plane.

    (a) Derive the equation of motion of the bar for small angles  .

    (b) Determine the amplitude of steady-state vibration of the bar.

    Solution 

    Referring to the  FBD  on the right, to obtain the equation of motion of the bar,

    we can sum moments about point O  using the equation

    EM O D I O Ębar C ErG=O  mEaO :Doing so, we obtainX

    M O W mgL

    2  sin   Ok D I O R  Ok C

     L

    2 .cos   O{ C sin   O| / m RyO O| ;

    where  RyO O|   is the acceleration of point  O . Carrying out the cross product,noting that I O D   13mL2, and that RyO D Y !2s   sin !st , the equation of motionbecomes

    1

    3mL2 R  C mg L

    2  sin    m L

    2 Y !2s   sin !st cos   D 0;

    which, for small   can be written as

    1

    3mL2 R  C mg L

    2   D m L

    2 Y !2s   sin !st   )   R  C

      3g

    2L   D   3Y 

    2L !2s   sin !st .

    To find the amplitude of steady-state vibration of the bar, we need to find a particular solution and then the

    amplitude of that solution will be what we seek. We assume a particular solution of the form

     p D D sin !st;where D  is a constant to be determined. Substituting this particular solution into the equation of motion, we

    obtain

    D!2

    s   sin !st C  3g

    2L D sin !st D  3Y 

    2L !2

    s   sin !st   )   D!2n  !2s D   3Y 2L !2s)   D D   3Y=.2L/.!s=!n/

    2

    1 .!s=!n/2  ;

    where we have used !2n D 3g=.2L/ from the equation of motion. Therefore, the amplitude of steady-statevibration is

     amp D   3Y=.2L/.!s=!n/2

    1 .!s=!n/2   :

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    43/109

     Dynamics 1e   1259

    Problem 9.36

    Consider a sign mounted on a circular hollow steel pole of length

    L D   5 m, outer diameter  d o D   5 cm, and inner diameter  d i D   4 cm.Aerodynamic forces due to wind provide a harmonic torsional excitation

    with frequency  f 0 D   3 Hz  and amplitude  M 0 D   10 Nm  about the  ´axis. The mass center of the sign lies on the central axis  ´  of the pole.The mass moment of inertia of the sign is  I ́  D 0:1 kgm2. The torsionalstiffness of the pole can be estimated as  k t D  Gst

    d 4o  d 4i

    =.32L/,

    where Gst  is the shear modulus of steel, which is 79 GPa. Neglecting the

    inertia of the pole, calculate the amplitude of vibration of the sign.

    Solution 

    Referring to the FBD  of the sign on the right,  T e  is the exciting torque on the

    sign due to the wind and T p  is the restoring torque due to the steel pole of 

    length L. Summing moments about the ´  axis, we obtainXM ́  W   T e  T p D I ́ R;   (1)

    where   is the angle of rotation of the sign about the  ´  axis from its static

    equilibrium position. The force law for the excitation torque and restoring

    torque are given by, respectively,

    T e D

    M 0 sin.2f 0t /   and   T p D

    kt 

     D "Gstd 

    4o  d 4i 32L #;

    where   kt   is the torsional stiffness of the pole and we have substituted in the given relationship for  kt .

    Substituting the force laws in to Eq. (1), we obtain

    M 0 sin.2f 0t / "

    Gst

    d 4o  d 4i

    32L

    #  D I ́ R    )   I ́ R  C

    "Gst

    d 4o  d 4i

    32L

    #  D M 0 sin.2f 0t /;

    so we see that using  d o D 0:05 m, d i D 0:04 m, L D 5 m, Gst D 79109 Pa, and I ́  D 0:1 kgm2, we obtain

    !n

     Ds Gstd 

    4o  d 4i 32LI ́ D 239:2 rad=s; !0 D 2f 0 D 18:85 rad=s

    keff  D  Gst

    d 4o  d 4i

    32L

      D 5724 Nm; .F 0/eff  D M 0 D 10 Nm;

    where !0  is the forcing frequency, keff  is the effective spring constant, and  .F 0/eff  is the effective forcing

    amplitude. Applying Eq. (9.43) from the text, we find the following amplitude

     amp D   .F 0/eff = keff 1 .!0=!n/2   )    amp D 0:00176 rad=s.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    44/109

    1260   Solutions Manual 

    Problems 9.37 and 9.38

    One of the propellers on the Beech King Air 200 is unbalanced such that the eccentric mass  mu   is a

    distance R  from the spin axis of the propeller. The propellers spin at a constant rate !r , and the mass of 

    each engine is me  (this includes the mass of the propeller). Assume that the wing is a uniform beam that is

    cantilevered at A, has mass mw  and bending stiffness EI , and whose mass center is at G. For each problem,evaluate your answers for mu D 3 oz, me D 450 lb, R D 5:1 ft, !r D 2000 rpm, EI  D 1:131011 lbin:2,d  D 8:7 ft, and h D 10:9 ft.Problem 9.37   Neglect the mass of the wing and model the wing as done in Example 9.2. Determine the

    resonance frequency of the system, and find the MF for the given parameters.

    Problem 9.38   Let the mass of the wing be mw D 350 lb, and model the wing as done in Example 9.2.Determine the resonance frequency of the system and find the MF for the given parameters.

    Solution to 9.37 

    The figure at the right shows an  FBD  of the wing

    and engine with the unbalanced mass removed as

    well as an  FBD  of just the unbalanced mass  mu.

    Summing forces in the x  and  y  directions on theunbalanced mass mu givesX

    F x W F x D muaux;   (1)XF y W F y  mug D muauy;   (2)

    where aux  and auy are the x  and y  components,

    respectively, of the acceleration of the unbalanced

    mass. Next, summing moments about point  A  on

    the wing, we obtain

    XM A W   megd   F xR sin ˇ F y.d  C R cos ˇ/ M t D I A˛wing:   (3)where M t  is the lumped torsional stiffness of the wing at point  A, I A D med 2, and ˛wing D R . Note that wehave treated the engine as a point mass. The force law for the torsional stiffness is given by

    M t D kt.  C  st/ D   3EI d 

      .  C  st/;

    where k t  is the lumped torsional spring constant,   st  is the rotation of the wing in its static equilibrium

    position, and kt  was determined using the result from Example 9.2. The last thing we need to do is determine

    the acceleration of the unbalanced mass. Noting that the propeller is rotating with a constant angular velocity

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    45/109

     Dynamics 1e   1261

    and neglecting the rotation of the wing when computing the angular velocity and acceleration of the propeller,

    we find the acceleration of the unbalanced mass to be

    Eau D Eae C Ęprop Eru=e  !2propEru=e D d  R  O|  !2p.R cos ˇ O{ C R sin ˇ O| /;

    so that

    aux D R!2p cos ˇ   and   auy D d  R   R!2p sin ˇ:Substituting the kinematics equations into Eqs. (1) and (2) gives

    F x D muR!2p cos ˇ   and   F y D mud  R  C muR!2p sin ˇ mug:

    Substituting  F x  and  F y   into Eq. (3), we obtain the following equation of motion

    megd  C muR2!2p sin ˇ cos ˇ mu.d  C R cos ˇ/

    d  R  C R!2p sin ˇ g  3EI 

    d   .  C  st/ D med 2 R :

    Canceling terms and rearranging, we obtain

    .mu C me/d 2 R  C muRd  cos ˇ R   .mu C me/dg C mudR!2p sin ˇ mugR cos ˇ C  3EI d    .  C  st/ D 0:

    Since .3EI=d/ st D megd  C mug.d  C R cos ˇ/, this becomes

    .mu C me/d 2 C muRd  cos !pt„ ƒ‚ …time-dependent inertia

    R  C 3EI d 

        D mudR!2p sin !pt;

    where we have substituted !pt   for ˇ. Notice that the inertia term (i.e., the coefficient of  R ) is time-dependentsince it contains cos !pt , which means that this equation of motion is not in our standard form, which required

    that the coefficients be constant. On the other hand, also notice that

    ˇ̌.mu C me/d 2ˇ̌ D 1058 slugft2 and   jmuRd  cos !pt j 0:2584 slug ft2;

    and therefore, the inertia term is dominated by the constant part, which means that we can approximate the

    equation of motion as

    .mu C me/d 2 R  C 3EI d 

        D mudR!2p sin !pt;   (4)and so using

    EI  D 1:131011 lbin:2 D 7:847108 lbft2;mu D 3 oz

      1 lb

    16 oz  1

    32:2 ft=s2D 5:823103 slug;

    me D 450 lb   1

    32:2 ft=s2

    D 13:98 slug;   and

    d  D 8:7 ft;

    we find that the resonance frequency of the wing is

    !n Ds 

      3EI 

    .mu C me/d 3 D 506 rad=s or   f  D  !n

    2 D 80:5 Hz.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    46/109

    1262   Solutions Manual 

    As for the MF, we need to find a particular solution   p  to the equation of motion in Eq. (4), and then use its

    amplitude to find determine the  MF. The most direct way to find a particular solution is to assume a solution

    of the form  p D D sin !pt   and then substitute it into the equation of motion. Doing so, we obtain

    D.mu C me/d 2!2p sin !pt C 3EI 

    d   D sin !pt D mudR!2p sin !pt;

    which, upon canceling sin !pt  and solving for D  gives

    D D mudR!2p

    3EI d 

      .mu C me/d 2!2pD mud 

    2R!2p=.3EI /

    1 .mu C me/d 3!2p=.3EI / D mud 

    2R!2p=.3EI /

    1 .!p=!n/2

    D   muR.mu C me/d 

    .!p=!n/2

    1 .!p=!n/2:

    Therefore,

    j p

    j D  muR

    .mu C me/d .!p=!n/

    2

    1 .!p=!n/2

    )   MF D j pj.mu C me/d muR

      D   .!p=!n/2

    1 .!p=!n/2 D 0:207,

    where we have used !n D 505:7 rad=s and !p D 2000 rpm D 209:4 rad=s.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    47/109

     Dynamics 1e   1263

    Solution to 9.38 

    The figure at the right shows an  FBD  of the wing

    and engine with the unbalanced mass removed as

    well as an  FBD  of just the unbalanced mass  mu.

    Summing forces in the x  and  y  directions on the

    unbalanced mass mu givesXF x W F x D muaux;   (5)XF y W F y  mug D muauy;   (6)

    where aux  and auy are the x  and y  components,

    respectively, of the acceleration of the unbalanced

    mass. Next, summing moments about point  A  on

    the wing, we obtain

    XM A W   mwgh C megd   F xR sin ˇ F y.d  C R cos ˇ/ M t D I A˛wing:   (7)where M t  is the lumped torsional stiffness of the wing at point A  and ˛wing D R . Note that we have treatedthe engine as a point mass. The mass moment of inertia with respect to point A  is

    I A D med 2 C   112mw.2h/2 C mwh2 D med 2 C   43mwh2;where we have assumed that the wing is a uniform beam of length 2h. The force law for the torsional stiffness

    is given by

    M t D kt.  C  st/ D   3EI d 

      .  C  st/;where k t  is the lumped torsional spring constant,   st  is the rotation of the wing in its static equilibrium

    position, and kt was determined using the result from Example 9.2. The last thing we need to do is determine

    the acceleration of the unbalanced mass. Noting that the propeller is rotating with a constant angular velocity

    and neglecting the rotation of the wing when computing the angular velocity and acceleration of the propeller,

    we find the acceleration of the unbalanced mass to be

    Eau D Eae C Ęprop Eru=e  !2propEru=e D d  R  O|  !2p.R cos ˇ O{ C R sin ˇ O| /;so that

    aux D R!2p cos ˇ   and   auy D d  R   R!2p sin ˇ:Substituting the kinematics equations into Eqs. (5) and (6) gives

    F x

     D muR!

    2p cos ˇ   and   F y

     Dmud  R 

     CmuR!

    2p sin ˇ

    mug:

    Substituting  F x  and  F y   into Eq. (7), we obtain the following equation of motion

    mwgh C megd  C muR2!2p sin ˇ cos ˇ mu.d  C R cos ˇ/

    d  R  C R!2p sin ˇ g  3EI 

    d   .  C  st/

    D med 2 C   43mwh2 R :Canceling terms and rearranging, we obtain

    .mu C me/d 2 C   43mwh2 C muRd  cos ˇ

    R   .mu C me/dg mwgh C mudR!2p sin ˇAugust 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    48/109

    1264   Solutions Manual 

    mugR cos ˇ C  3EI d 

      .  C  st/ D 0;

    or, since .3EI=d/ st D mwgh C megd  C mug.d  C R cos ˇ/, this becomes

    .mu Cme/d 

    2

    C  43

    mwh2

    CmuRd  cos !pt„ ƒ‚ …

    time-dependent inertia R  C

     3EI 

       

     D mudR!

    2p sin !pt;

    where we have substituted !pt   for ˇ. Notice that the inertia term (i.e., the coefficient of  R ) is time-dependentsince it contains cos !pt , which means that this equation of motion is not in our standard form, which required

    that the coefficients be constant. On the other hand, also notice thatˇ̌.mu C me/d 2 C   43mwh2

    ˇ̌ D 2780 slug ft2 and   jmuRd  cos !pt j 0:2584 slug ft2;and therefore, the inertia term is dominated by the constant part, which means that we can approximate the

    equation of motion as

    .mu C me/d 2 C   43mwh2 R  C 3EI 

    d    

     D mudR!

    2

    p

     sin !pt:   (8)

    Therefore, the resonance frequency of the wing is

    !n Ds 

      3EI 

    .mu C me/d 3 C   43mwh2d D 312 rad=s or   f  D   !n

    2 D 49:7 Hz,

    where we have used

    EI  D 1:131011 lbin:2 D 7:847108 lbft2;mu

     D3 oz   1 lb16 oz

      1

    32:2 ft=s2 D 5:82310

    3 slug;

    me D 450 lb

      1

    32:2 ft=s2

    D 13:98 slug;

    mw D 350 lb

      1

    32:2 ft=s2

    D 10:87 slug

    d  D 8:7 ft;   andh D 10:9 ft:

    As for the MF, we need to find a particular solution   p  to the equation of motion in Eq. (8), and then use its

    amplitude to find determine the  MF. The most direct way to find a particular solution is to assume a solution

    of the form  p

     DD sin !pt   and then substitute it into the equation of motion. Doing so, we obtain

    D.mu C me/d 2 C   43mwh2!2p sin !pt C 3EI d    D sin !pt D mudR!2p sin !pt;which, upon canceling sin !pt  and solving for D  gives

    D D mudR!2p

    3EI d 

      .mu C me/d 2 C   43mwh2!2p Dmud 2R!2p=.3EI /

    1 .mu C me/d 3 C   43mwh2d !2p=.3EI /D mud 

    2R!2p=.3EI /

    1 .!p=!n/2  D   muR

    .mu C me/d .!p=!n/

    2

    1 .!p=!n/2:

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    49/109

     Dynamics 1e   1265

    Therefore,

    j pj D   muR.mu C me/d 

    .!p=!n/2

    1 .!p=!n/2

    )   MF D j p

    j.mu

    Cme/d 

    muR  D

      .!p=!n/2

    1 .!p=!n/2 D 0:820,

    where we have used !n D 312:0 rad=s and !p D 2000 rpm D 209:4 rad=s.

    August 10, 2009

  • 8/17/2019 Dynamics Solns Ch09

    50/109

    1266   Solutions Manual 

    Problem 9.39

    An unbalanced motor is mounted at the tip of a rigid beam of mass mb and length L. The beam is restrained

    by a torsional spring of stiffness kt  and an additional support of stiffness  k  located at the half length of the

    beam. In the static equilibrium position, the beam is horizontal and the torsional spring does not exert any

    moment on the beam. The mass of the motor is mm, and the unbalance results in a harmonic excitationF.t/ D F  sin !0t  in the vertical direction. Derive the equation of motion for the system assuming that   is small.

    Solution 

    Referring to the�