DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM...

17
DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J. Nocke, Prof. E. Hassel University of Rostock Institute of Technical Thermodynamics

Transcript of DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM...

Page 1: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES

Baku, 23.05.2013

M. Hübel, Dr. J. Nocke, Prof. E. Hassel

University of Rostock

Institute of Technical Thermodynamics

Page 2: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

2

Overview

1. Motivation 2. Reference PowerPlant3. Simulation and Validation4. Example Results5. Outlook

Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

Page 3: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

3

MotivationGerman Electric Energy System 2020

Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg

Installed CapacitiesPhotovoltaic: ~ 50 GWWind:~ 55 GW

GRID FREQUENCY

indicats deviations in the energy balance

Consumer LoadMaximum: ~ 80 GWAverage: ~ 60 GW

Page 4: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

4

MotivationGerman Electric Energy System 2020

Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg

Annual ProductionPhotovoltaic: ~ 50 TWhWind: ~ 120 TWh

GRID FREQUENCY

indicats deviations in the energy balance

Annual Consumption~ 600 TWh/a

Page 5: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

5

MotivationGerman Electric Energy System 2020

Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

http://meltblog.de/wp-content/uploads/2013/02/Fotolia_45848443_XS.jpg

Annual ProductionPhotovoltaic: ~ 50 TWhWind: ~ 120 TWh

GRID FREQUENCY

indicats deviations in the energy balance

Annual Consumption~ 600 TWh/a

Fossil: >300 TWh

Page 6: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

6Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

MotivationRole of Fossil Power Plants in the German Electric Energy System

• Most of our consumed electric energy is from thermal power plants – today and in the next decades

• Some grid services, e.g. Primary Control can currently be done only by thermal power plants

• (too) little investments for modernization and optimization within this sector – high potential for optimization

Operating Schedule

GOAL: Flexible power plants

Pmin

Gradmax

t

P

Dec

reas

ing

Min

imum

Loa

d

Incr

easi

ng

Load

Gra

dien

ts

METHODE: Dynamic Modeling

• Identify restrictions• Develop optimization strategies• Comparison of scenarios

Page 7: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

7Lehrstuhl für Technische Thermodynamik – Dynamische Modellierung des Kraftwerks “Jänschwalde”

Block D

Block C

Werk Y2

D2D1

C2C1

Reference Power PlantJänschwalde Block D

• Year of commissioning: 1985• combustible:

lignite• generator output:

530 MW• Efficiency:

36%• live steam

- mass flow rate: 2x230 kg/s- pressure: 162 bar

- temperature: 535 °C

Page 8: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

8

Overview on Power Plant / Model Structure

Lehrstuhl für Technische Thermodynamik – Dynamische Modellierung des Kraftwerks “Jänschwalde”

Boiler

Turbine

Condensator

LP-Preheaters

Feedwater System

HP-Preheaters

Page 9: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

Mass balance

Energy balance

Momentum balance

Heat transfer

Inside wall at boundary layer

according Fouriers α determined by Dittus-Boelterheat transfer equation (1-phase flow) or Chen-correlation (2-phase flow)

n

iimdt

dm

1

t

n

iii WQmh

dt

dU 1

i

n

iiiii

n

iiifiii

n

iii ngzAnApAnccA

dt

mcd

11

01

)()(

2

2

dr

Tda

dt

dT TAQ

Inlet massflow

Outlet massflow

heat flux

Inlet enthalpy flux

Outlet enthalpy flux

Inlet p

Outlet p

Δ p

Toutside Tinside

TFluid

Fundamental equations

Page 10: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

10

Results

Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

Simulation and ValidationInput Data

Page 11: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

11Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

P GeneratorP Generator Simulated

Simulation and ValidationPower Output

Page 12: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

12Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

Simulation and ValidationBoiler Temperatures

Page 13: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

13Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

Simulation and ValidationPreheater Temperatures

Page 14: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

14Institute of Technical Thermodynamics – Transient Modeling of the Lignite Power Plant “Jänschwalde”

Simulation and ValidationPreheater Temperatures

Page 15: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

Fartigue of Headers

Result

• Fartigue for the components varies between 0,0008 and 0,0051 % for the reference scenario

• Evaporator and Superheater 2 are critical components in dynamic operation

Conclusion

• Same input scenario dones not lead to same fatigue because of different temperatues and different geometries

Example ResultsFatigue in components for the reference scenario

Page 16: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

16

different operation modes

Simulation of critical load and wind scenarios under

variation of load gradient, min load of PP

Jänschwalde or operation of the power plant

in special mode

operation parameters

Pmin

Gradmax

Load gradient Scenarios2.5%, 4%, 6%

special operation modes„shut down & restart“„reduce to circulation mode“

Stillstand

Lastgradient

Mindestlast

Min load scenarios50%, 37.5%, 33%, 20 %

Outlook

Institute of Technical Thermodynamics – Effects of fluctuating Wind Power on Power plant operation

Page 17: DYNAMIC MODELLING OF FOSSIL POWER PLANTS – INCREASING FLEXIBILITY TO BALANCE FLUCTUATIONS FROM RENEWABLE ENERGY SOURES Baku, 23.05.2013 M. Hübel, Dr. J.

17

Thank you for your attention!

Dipl.-Ing. M. HübelDr.-Ing. J. Nocke

Prof. Dr.-Ing. E. Hassel

Institute of Technical Thermodynamics – Dynamic Power Plant Simulation

And thanks to our sponsors for financial support