Dynamic Contrast Enhanced MRI

45
Sungheon Gene Kim, PhD NYUSOM/Radiology/CBI Dynamic Contrast Enhanced MRI

Transcript of Dynamic Contrast Enhanced MRI

Page 1: Dynamic Contrast Enhanced MRI

Sungheon Gene Kim, PhD NYUSOM/Radiology/CBI

Dynamic  Contrast  Enhanced  MRI  

Page 2: Dynamic Contrast Enhanced MRI

Normal  and  tumor  vasculature  

(Dreher  et  al.,  JNCI,  2006,  98  (5):335-­‐344)  

Page 3: Dynamic Contrast Enhanced MRI

• The  Gd-­‐induced  dipole  dipole  interactions  with  the  surrounding  water  molecules  lead  to  shortening  of  T1  (broadening  of  the  spectral  lines,  positive  contrast  in  T1  weighted  image).  

• The  Gd-­‐complex  also  induce  susceptibility  effects,  as  a  result  of  the  magnetic  field  gradient  between  the  contrast  agents  in  the  blood  vessels  and  the  surrounding  tissue,  that  lead  to  shortening  of  T2  or  T2*  (negative  contrast).  

• Generic  name:  Gadopentetate  dimeglumine,    

• Chemical  compound:  Gadolinium-­‐diethylenetriaminepentaacetic  acid    

•  Introduced  in  1981,  as  the  first  paramagnetic  MRI  contrast  agent.  The  used  metal  ion  Gd3+  (Gadolinium)  is  toxic,  and  therefore  bound  in  the  renally  excreted  DTPA  chelate,  a  very  stable  complex.    

Gd-­‐DTPA  

Page 4: Dynamic Contrast Enhanced MRI

1.  T1  weighted  DCE-­‐MRI  •  Contrast  kinetic  models  •  Practical  examples  •  Arterial  input  fuction  •  Other  things  to  consider  

2.  T2  weighted  DCE-­‐MRI  •  DSC-­‐MRI  

Contents  

Page 5: Dynamic Contrast Enhanced MRI

Example  of  DCE-­‐MRI  T1w-DCE-MRI

(TR=5 ms, TE=4 ms, FA=20 deg, 2.5 s/frame, 10 min)

Page 6: Dynamic Contrast Enhanced MRI

(Kim et al, JMRI 2007)

Bolus  tracking  T1w-DCE-MRI

Page 7: Dynamic Contrast Enhanced MRI

Analysis  of  DCE-­‐MRI  Data  

(Poptani et al, NMR Biomed, 2003)

S0 : Average of 24 (60 s) precontrast images

Si : Signal intensity

Intensity based measures •  Max slope •  Peak enh. •  Peak time •  Washout slope •  Initial area under the curve (IAUC)

(Noworolski et al, J Magn Reson Img, 2003)

T1w-DCE-MRI

Page 8: Dynamic Contrast Enhanced MRI

Physiologically  relevant  parameters  

(Taylor et al, J Magn Reson Img, 1999)

T1w-DCE-MRI

EES Extravascular Extracellular Space F Capillary flow P Permeability of capillary wall S Surface area of capillaries E Extraction ratio Ca [Gd] in arterial blood Ce [Gd] in EES Cv [Gd] in veneous blood

Page 9: Dynamic Contrast Enhanced MRI

Compartmental  Model  T1w-DCE-MRI

Cp(t) C1(t) K1

K2

Plasma to tissue transfer Parameter Rate constant K1 Rate K1Cp(t)

Tissue to plasma transfer Parameter Rate constant K2 Rate K2C1(t)

Intracellular space (vi)

EES (ve)

At equilibrium,

Volume fraction of EES

Page 10: Dynamic Contrast Enhanced MRI

Tofts  &  Kermode  Model  (Tofts and Kermode, MRM 17:357-67, 1991)

T1w-DCE-MRI

The plasma curve is assumed a bi-exponential decay:

where a1, a2, m1 and m2 are determined empirically.

where

Page 11: Dynamic Contrast Enhanced MRI

General  Kinetic  Model  T1w-DCE-MRI

Cp(t)

Ct(t) Ktrans

Kep ve

JMRI (1999)

Page 12: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI

Exercise  #1  

A N2

Spoiled gradient echo sequence (TE = 4 ms, TR = 5 ms, FA = 20 deg)

Find Ktrans, ve and kep of the tumor ROI N2.

Page 13: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI Exercise #1

MRI  signal  to  Gd  concentration  

r1 ~ 5.0 mmol-1sec-1 at 3T

(Liu et al, ISMRM 2005)

Signal from spoiled gradient echo sequence :

Signal enhancement :

If pre-contrast T1 (R1o) is available, S(t) can be converted to Ct(t) .

Page 14: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI

Exercise  #1  

A

N2

Spoiled gradient echo sequence (TE = 4 ms, TR = 5 ms, FA = 20 deg)

Find Ktrans, ve and kep of the tumor ROI N2.

Page 15: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI Exercise #1

Curve  fitting  

Ktrans = 0.42 min-1

ve = 0.47

Cp(t)

Ct(t) Ktrans

Kep ve

Page 16: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI Exercise #1

Effect  of  Ktrans  

Ktrans = 0.1 – 1.0 min-1

ve = 0.47

Cp(t)

Ct(t) Ktrans

Kep ve

Page 17: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI Exercise #1

Effect  of  ve  Ktrans = 0.42 min-1

ve = 0.1 – 0.8

Cp(t)

Ct(t) Ktrans

Kep ve

Page 18: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI Exercise #1

Can  we  do  better?  

Ktrans = 0.42 min-1

ve = 0.47

Cp(t)

Ct(t) Ktrans

Kep ve

Page 19: Dynamic Contrast Enhanced MRI

GKM  with  vascular  compartment  T1w-DCE-MRI

Intracellular space (vi) EES (ve)

Vascular space (vp)

Ktrans = 0.42 min-1

ve = 0.47 vp = 0.001

Page 20: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI

Delay  and  Dispersion  

(Gabrys et al, 2005) where

(Calamante et al, 2000)

?

?

α=1-5

α=1-5

Page 21: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI Exercise #1

Extended  GKM  with  AIF  dispersion  

Ktrans = 0.21 min-1

ve = 0.30 vp = 0.17 α = 7 s (fixed)

Ktrans = 0.42 min-1

ve = 0.47 vp = 0.001

Page 22: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI

Extraction  in  capillary  bed  

Artery

Capillaries

Vein

CA

CV

f

Permeability-Surface area product (PS)

Renkin-Crone model

Page 23: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI

Ktrans=F(f,  PS)  

0.2

0.2

0.2 0.2 0.2

0.4

0.40.4 0.4

0.6

0.6

0.6 0.6

0.8

0.8

0.8

1

1

1.2

PS (/min)

Fp (/

min

)Ktrans Map

0.5 1 1.5 2

0.5

1

1.5

2

PS limited

Flow limited

Page 24: Dynamic Contrast Enhanced MRI

T1w-DCE-MRI

More  modeling….  

Figure 8 from Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability S P Sourbron and D L Buckley 2012 Phys. Med. Biol. 57 R1 doi:10.1088/0031-9155/57/2/R1

Adiabatic approximation to the TH (AATH, St Lawrence and Lee 1998)

(Sangren and Sheppard, 1953)

(Johnson and Wilson, 1966)

Page 25: Dynamic Contrast Enhanced MRI

AATH  model  T1w-DCE-MRI

Ktrans = 0.18 min-1

ve = 0.29 PS = 0.19 min-1

Fp = 1.42 min-1

Tc = 8 s vp = 0.19 α = 7 s

(Taylor et al, J Magn Reson Img, 1999)

Page 26: Dynamic Contrast Enhanced MRI

Underlying  Assumptions  T1w-DCE-MRI

1.  Compartments with the instantly well-mixed CA

2.  No CA flux between adjacent EES compartments

3.  Linear inter-compartment flux

4.  Time invariant parameters

5.  Arterial Cp Capillary Cp

6.  Fast exchange of all mobile protons within the tissue

Page 27: Dynamic Contrast Enhanced MRI

(Dreher  et  al.,  JNCI,  2006,  98  (5):335-­‐344)  

•  Human Squamous Cell Carcinoma (FaDu)

•  BALB/C nu/nu mouse

•  Dorsal skin fold window chamber

•  Red: Rhodamine-labeled 2-MDa dextran

•  Green: dextrans with lower molecular weights (3.3, 10, 40, and 70 kDa)

Tumor  micro-­‐vascular  environment  T1w-DCE-MRI

Page 28: Dynamic Contrast Enhanced MRI

(Dreher  et  al.,  JNCI,  2006,  98  (5):335-­‐344)  

T1w-DCE-MRI

Diffusion  of  macromolecules  

Page 29: Dynamic Contrast Enhanced MRI

Diffusion  of  contrast  agent  

Pellerin et al, MRM 58:1124-1134 (2007)

Diffusion-perfusion (DP) model

T1w-DCE-MRI

Page 30: Dynamic Contrast Enhanced MRI

Underlying  Assumptions  T1w-DCE-MRI

1.  Compartments with the instantly well-mixed CA

2.  No CA flux between adjacent EES compartments

3.  Linear inter-compartment flux

4.  Time invariant parameters

5.  Arterial Cp Capillary Cp

6.  Fast exchange of all mobile protons within the tissue

Page 31: Dynamic Contrast Enhanced MRI

R1  vs.  [Gd]    

(Landis et al., MRM 42:467-478, 1999; Wedeking et al. MRI 10:97-108)

T1w-DCE-MRI

(Liu et al, ISMRM 2005)

Page 32: Dynamic Contrast Enhanced MRI

Transcytolemmal  Water  Exchange  

τi

R1i

R1o

•  When [Ct] ~ 0, Water exchange effect not visible to NMR measurement. Fast eXchange Limit (FXL)

•  As [Ct] increases, Water exchange effect becomes visible to NMR measurement. Bi-exp. longitudinal relaxation

Shortening T1

Intracellular space

Extracellular space

T1w-DCE-MRI

Page 33: Dynamic Contrast Enhanced MRI

Bolus  Enhanced  Relaxation  Overview  (BOLERO)/  Shutter-­‐Speed  Analysis  

Bloch-McConnell two-site exchange model

FXR (Fast eXchange Regime)

τI : Mean intracellular water lifetime po : volume fraction of tissue water in EES R1i : intracellular rate constant without exchange R1o : extracellular pre-CR rate constant r1 : extracellular CR relaxivity

SXR (Slow eXchange Regime)

(Landis et al., MRM 42:467-478, 1999)

T1w-DCE-MRI

Page 34: Dynamic Contrast Enhanced MRI

Application  to  Breast  Cancer  

(Huang et al., Radiology 261:394-403, 2011)

T1w-DCE-MRI

Page 35: Dynamic Contrast Enhanced MRI

1.  T1  weighted  DCE-­‐MRI  •  Contrast  kinetic  models  •  Practical  examples  •  Arterial  input  fuction  •  Other  things  to  consider  

2.  T2  weighted  DCE-­‐MRI  •  DSC-­‐MRI  

Contents  

Page 36: Dynamic Contrast Enhanced MRI

Susceptibility  Contrast  T2w-DCE-MRI

(Tofts et al., Quantitative MRI of the Brain)

Page 37: Dynamic Contrast Enhanced MRI

The magnetic field in a sample depends on the strength of magnet and the susceptibility constant of the sample.

Tissue χ = -10-5 ~ -10-6 diamagnetic substance Gd χ = ~ 3.2 x10-7/mM paramagnetic substance

The magnetic field within 1mM solution of Gd in 1.5T (64 MHz) will have approximately a 20 Hz shift in resonance frequency relative to undoped water.

Susceptibility  

(Barbier et al., JMRI 13:496-520, 2001)

T2w-DCE-MRI

Page 38: Dynamic Contrast Enhanced MRI

T2/T2*-­‐weighed  DCE-­‐MRI  T2w-DCE-MRI

(Tofts et al., Quantitative MRI of the Brain)

Page 39: Dynamic Contrast Enhanced MRI

(uL/g)

Cerebral  Blood  Volume  (CBV)  

(Barbier et al., JMRI 13:496-520, 2001)

T2w-DCE-MRI

Page 40: Dynamic Contrast Enhanced MRI

(uLg-1s-1)

Cerebral  Blood  Flow  (CBF)  

(Barbier et al., JMRI 13:496-520, 2001)

T2w-DCE-MRI

Page 41: Dynamic Contrast Enhanced MRI

(From Table 1 and 2)

Tissue rMTT (s)

Human brain 5.0 Baboon 4.2 Rat brain, cortical parietal surface 1.4 Rat brain, whole brain 1.5

Mean  Transit  Time  (MTT)  

(Barbier et al., JMRI 13:496-520, 2001)

T2w-DCE-MRI

Page 42: Dynamic Contrast Enhanced MRI

Kinetic  Model  Analysis  T2w-DCE-MRI

Page 43: Dynamic Contrast Enhanced MRI

Gradient-­‐Echo  Experiments:  R2*  Changes  

• At the long echo times and at a high concentration of contrast agent:

• Sensitive to both macro- and microvasculature.

(Barbier et al., JMRI 13:496-520, 2001)

T2w-DCE-MRI

Page 44: Dynamic Contrast Enhanced MRI

Spin-­‐Echo  Experiments:  R2  Changes  

•  Diffusion effects become more visible.

•  With large vessels, each diffusing water molecule experiences an approximately constant field gradient, which can be refocused.

•  For small vessels, a diffusing water molecule experiences a whole range of magnetic fields resulting in the averaging of phase differences.

(Barbier et al., JMRI 13:496-520, 2001)

T2w-DCE-MRI

Page 45: Dynamic Contrast Enhanced MRI

1.  T1  weighted  DCE-­‐MRI  •  Contrast  kinetic  models  •  Practical  examples  •  Arterial  input  fuction  •  Other  things  to  consider  

2.  T2  weighted  DCE-­‐MRI  •  Susceptibility  contrast  •  CBV,  CBF,  MTT  •  GE  vs.  SE  

Summary