Du signal audio numérique à l'image numérique

Click here to load reader

download Du signal audio numérique à l'image numérique

of 20

  • date post

    10-Jan-2016
  • Category

    Documents

  • view

    35
  • download

    0

Embed Size (px)

description

Du signal audio numérique à l'image numérique. Cours S.S.I.I., séance 9, décembre 2013, durée : 55 mn, Jean-Paul Stromboni pour les élèves SI3. Objectif et contenu de cette séance :. - PowerPoint PPT Presentation

Transcript of Du signal audio numérique à l'image numérique

Comment on filtre un signal audioS.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Du signal audio numérique à l'image numérique
Cours S.S.I.I., SI3, cours 9, décembre 2015, durée : 55 mn, Jean-Paul Stromboni
Objectif et contenu de cette séance :
Savez vous répondre aux questions suivantes ?
Objectif : étendre aux images numériques les notions introduites pour le signal audio numérique : échantillonnage, quantification, filtrage, et plus tard spectre et compression
Contenu : on voit les notions de résolution, d’image de niveaux de gris, de codage RGB et YUV, de colormap, de filtre d’image, le problème de détection de contours … avec Scilab.
Outils : installer la boîte à outils SIVP dans Scilab
Pour installer SIVP, dans Scilab, aller dans le menu ‘Applications’ puis dans le menu ‘Gestionnaire de Modules’, et installer ‘Scilab Image and Video Processing’ depuis Scilab
Installer également le logiciel libre et gratuit IMLAB
Que signifie résolution de 30 ppp d’une image ?
En quoi une image de niveau de gris diffère-t’elle d’une image RVB ?
Comment distinguer une image en noir et blanc et une image en niveaux de gris ?
Donner la réponse impulsionnelle ou masque, ou noyau, du filtre de Prewitt horizontal
Combien de pixels sur 10 cm en résolution 30 dpi ?
Une table de 256 couleurs codées sur 8 bits occupe combien d’octets ?
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Caractère numérique d’une image de niveaux de gris
L'image suivante est affichée par Imlab avec à droite les pixels de la zone indiquée par le curseur : définition horizontale : N=358 pixels, définition verticale : M=587 pixels, B=8 bits par pixel, 256 valeurs d’intensité possibles, niveaux de gris de 0 pour un pixel noir à 255 pour un pixel blanc.
Propriétés de ‘moon.png’ :
Largeur : 358 pixels
Hauteur : 537 pixels
Profondeur couleur: 8
Taille: 85,7ko (87 809 octets)
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Du signal audio numérique à … l’image numérique
En résumé : la durée devient la distance, le temps devient espace, et une dimension devient deux.
x
y
0
L
H
Im(x,y)
s(t)
t
D
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Une image couleur RGB est la superposition de trois images de niveaux de gris : une rouge R, une verte G et une bleue B:
Properties de ‘joconde.jpg’ (Windows)
imshow(Im); // par contre pour afficher Pixel Region, utiliser IMLAB
size(Im) // donne 300 par 198 par 3, pourquoi ?
Avec Imlab, des pixels du « sourire de Mona Lisa »
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
// avec SIVP
rgb=imread('Joconde.jpg');
r=rgb;
imshow(r)
imwrite(r,'jocr.jpg');
Page *
Séparer les trois images de niveau de gris R, G (vert) et B
g=rgb;
R,G et B :
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Extraire luminance Y et chrominances CB et CR avec Imlab
la luminance Y à gauche, contient plus d’information que les chrominances Cr et Cb :
on sous-échantillonne les plans U et V dans un rapport 2 pour compresser l’image
** rgb2gray() qui calcule Y transforme une image couleur en image de niveaux de gris
À l’aide de IMLAB, menu Image/Color space, choisir YCrCb, puis menu Process, choisir Split components,
et voici Y, Cr et Cb pour ‘joconde.jpg’
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Avec Scilab, calculer Y, Cr et Cb et sous-échantillonner Cr
// sauver l’image dans Im
Im=imread('joconde.jpg');
YCrCb=rgb2ycbcr(Im);
Cr=YCrCb(:,:,1);
Y=YCrCb(:,:,2);
Cb=YCrCb(:,:,3);
// afficher Cr
Taux de compression de l’image RGB ?
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
L’œil différencie 2 millions de couleurs, 24 bits en créent plus de 16.7 millions,
utiliser une table de couleurs (colormap ) est un moyen de compresser une image
Une colormap est un tableau de 2A cases contenant chacune une intensité codée sur B bits, avec 2B>2A
(par exemple 256 couleurs codées chacune sur 24 bits).
Chaque pixel contient alors un index, adresse sur A bits de la case de la colormap où lire la couleur du pixel. Il en résulte un taux de compression : C = B/A.
Scilab contient des colormaps, telles que pinkcolormap, et permet d’en définir de nouvelles :
b=imread('moon.png');
cmap=pinkcolormap(64);
c=ind2rgb(b,cmap);
size(cmap) 64 3
La matrice cmap est constituée de trois colonnes R, G et B où il est permis de constituer sa propre colormap ou de choisir pinkcolormap ou …
Taux de compression ici ?
L’image c est quatre fois plus petite que b, pourquoi ?
R
G
B
r1
g1
b1
r2
g2
b2
r64
g64
b64
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
lena=imread('lena.png');
129.
255.
0.
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
function Z= contraste(X, t) n=size(X,1);p= size(X,2);
Z=double(X);b=median(Z);
129.
255.
0.
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
x varie de 0 à L
Définition : N pixels entre 0 et L
Période échantillonnage : L/N
ik= 0.5*(1+cos(2*%pi*f*k*L/N)
Normalisation de fe : L/N= 1
fx=1 pixel par unité de longueur
x= 0 .. N-1
// fréquence spatiale horizontale
// fréquence d'échantillonnage spatiale normalisée
f=1/P; // fréquence spatiale
sy=ones(1,N);
xtitle('',['x, pour fx=',string(f)],'y')
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Filtres d’images numériques :
Comme pour le signal audio, on peut filtrer une image numérique,
par produit de convolution bidimensionnel :
Un filtre passe haut amplifie les hautes fréquences spatiales (détection des contours)
Un filtre passe bas favorise les basse fréquences spatiales, atténue les bruits, contours, les discontinuités spatiales, mais crée des zones de flou.
Imf= Im * h
Où Im est l’image M x N pixels à filtrer,
Imf est l’image des M x N pixels filtrés,
h est la réponse impulsionnelle du filtre, une matrice de dimensions R x R
Calcul du pixel Imf(i, j) de l’image filtrée :
i varie de 0 à M-1, j de 0 à N-1
Im(k,l) est pris égal à zéro quand k= i-m+R-1 est négatif, ou quand l= j-n+R-1 <0
Imf(i,j) est la somme de R2 termes non nuls impliquant le pixel Im(i,j) et ses voisins
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Exemple de mise en œuvre du produit de convolution 3x3
Soit h ci-dessous, matrice 3 x 3, et réponse impulsionnelle du filtre
Soit sI, sous matrice 3x 3 de Im centrée sur le pixel à filtrer pc
Le pixel filtré vaut
Application : relever pc et calculer le pixel filtré dans le cas suivant
Avec Scilab, faire
h= [1, 1, 1; 0, 0, 0; -1, -1, -1];
Imf = imfilter(Im, h);
Imf2 = imfilter(Im, h’);
pc= 1
p= -3
p= 0
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
// filtrer l'image lena
h
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Détection de contours avec le filtre de Prewitt et son transposé
// Scilab SIVP image='joconde.jpg';
im = imread(image); imd=im2double(im);
aimfy=imcomplement(abs(imfy));
imwrite(aimfx,’aimfy.png’);
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
On somme imfx et imfy et on applique un seuil pour déterminer les contours
// sans seuil
imc=imcomplement(imc);
imc=imcomplement(imc);
imwrite(imc,’./imc.png’)
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Capteurs biologiques : cellules de la rétine
Les bâtonnets (vision de nuit) sont sensibles à la luminosité et pas à la couleur, il y en a 120 millions sur la rétine, ils ont un maximum de sensibilité vers le bleu , c’est-à-dire l = 500 nm environ
Les cônes sur la fovea, petite zone de la rétine, sont 7 millions par œil, il y a
Les cônes verts, capturent plutôt les photons verts, maximum vers l =
Les cônes rouges, capturent les photons rouges, maximum vers l =
Les cônes bleus capturent les photons bleus, maximum vers l =
D’après la courbe ci-dessous :
L’œil humain est plus sensible à la luminosité qu’à la couleur
Les cônes verts sont plus sensibles que les rouges plus sensibles que les bleus
(cf. Wikipédia)
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
R, G, B Yn, Cb, Cr (ou YUV) un autre moyen de compresser
Comment transformer une image couleur à afficher sur un téléviseur noir et blanc, sans perdre l’information sur les couleurs R, G et B ?
On calcule la luminance Y ainsi que les chrominances Cb et Cr :
Y est la luminance de l’image couleur, information sur la luminosité de l’image
Cb est la chrominance bleue, information sur la couleur bleue dans l’image
Cr est la chrominance rouge
Y, Cr, et Cb permettent de reconstituer R, G et B, c’est-à-dire l’image couleur
Mais comme l’œil perçoit le vert comme plus lumineux que le rouge, lui-même plus lumineux que le bleu, on peut sous échantillonner les plans Cr et Cb pour compresser l’image, c’est la première phase du codec jpeg
Si on sous échantillonne dans un rapport 2 horizontalement et verticalement Cr et Cb, on a : R,G,B Y, Cr, Cb Y, Cr/4,Cb/4 taux de compression = 2 ( pourquoi ?)
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Une application au problème de détection des contours d’une image
I(x,y) ci contre est le niveau de gris d’une photographie, x et y peuvent prendre toutes les valeurs entre 0 et L pour x, 0 et H pour y.
Détecter les contours, c’est situer les zones de l’image où l’intensité varie « brusquement » :
On calcule le gradient de I(x,y)
La dérivée partielle horizontale
La dérivée partielle verticale
On évalue le module et l’argument du vecteur gradient :
Le module mesure l’importance de la variation d’intensité
L’argument indique la normale du contour
On compare le module du gradient à un seuil paramétrable pour distinguer
Le filtre de Prewitt est un moyen de calculer ce gradient :
h = fspecial('prewitt'); //gradient vertical
x
y
0
I(x,y)
S.S.I.I. 2015-16, SI3, cours n°9 : Du signal audio numérique à l'image numérique
Page *
Lumière monochromatique :
onde électromagnétique de longueur d’onde l = c / f , f est la fréquence de l’onde, et c la vitesse (ou célérité) de la lumière
Flux de particules (photons) en mouvement rectiligne uniforme de vitesse c
Lumière visible ( à l’œil humain) :
Pour l compris entre environ 400 nm et 700 nm (1nm = 10-9m= 1000 mm)
À chaque l, correspond une couleur primaire, ainsi par exemple : violet : l= 380nm, indigo: 450nm, bleu : 500nm, vert : 570 nm, jaune 590 nm, rouge 680 nm
Lumière polychromatique : composée de couleurs primaires (notion de spectre)
Lumière blanche :
composée de toutes les couleurs primaires (cf. disque de Newton)
Reconstitution sur un écran : 30% de rouge+ 60% de vert et 10% de bleu
(cf. http://www.techno-science.net)
// fréquence d'échantillonnage spatiale normalisée
f=1/P; // fréquence spatiale
sy=ones(1,N);