Dr Ian Charest, workshop Edinburgh.pdf · Raizada et al. 2010 Kriegeskorte et al. 2008...

66
Representational similarity analysis Dr Ian Charest, Edinburgh, April 2019

Transcript of Dr Ian Charest, workshop Edinburgh.pdf · Raizada et al. 2010 Kriegeskorte et al. 2008...

Representational similarity analysis

Dr Ian Charest,

Edinburgh, April 2019

univariate regional-mean activation studies

Pattern across voxels

Pattern across subjects

Pattern across stimuli

Mur et al. 2012.(single-image regional average activation)

Haxby et al. 2001. (distinct category-average patterns)

Kanwisher et al.1997 (face area)

Raizada et al. 2010

Kriegeskorte et al. 2008(single-image patterns cluster by category)

A space for neuroimaging studies

Cross-subject correlation studies (e.g. social neuroscience)

Charest & Kriegeskorte, 2015

univariate regional-mean activation studies

Pattern across voxels

Pattern across subjects

Pattern across stimuli

A space for neuroimaging studies

univariate regional-mean activation studies

Pattern across voxels

Pattern across subjects

Pattern across stimuli

A space for neuroimaging studies

Classical MVPA

univariate regional-mean activation studies

Pattern across voxels

Pattern across subjects

Pattern across stimuli

A space for neuroimaging studies

RSA

Classical MVPA

representational pattern(e.g. voxels, neurons, model units)

stimulus(e.g. images, sounds, other

experimental conditions)

d iss

imila

r i ty

activ

i ty

behaviour(e.g. dissimilarity judgments)

computational modelrepresentation

(e.g. face-detector model)

stimulus description(e.g. pixel-based dissimilarity)

brain representation(e.g. fMRI pattern dissimilarities)

Charest et al. 2014, 2015, Kriegeskorte & Kievit 2013, see also: Edelman et al. 1998, Laakso & Cottrell 2000, Op de Beeck et al. 2001, Haxby et al. 2001, Aguirre 2007, Kriegeskorte et al. 2008

Representational similarity analysis

representational dissimilarity

representational dissimilarity matrices(RDMs)

Why investigate representational geometries?

Representational geometryThe geometry of the points in a high-dimensional response pattern space, which are thought to represent particular stimuli.

neuron 1 neuron 3

neuron 2

neuron 1 neuron 3

neuron 2

same geometry→ same information→ same format

downstream neuronscan read out the same information from these codes

slide kindly provided by N. Kriegeskorte

Kriegeskorte & Kievit 2013

category information

...for nonlinear readout

...for linear readout

...inherently categorical

Kriegeskorte & Kievit 2013

How can we best measure representational distances?

dist

data

disttrue

Distance estimates are positively biased

disttrue

pattern1true

pattern1data

pattern2data

distdata

noise

noise

neuron 1

neur

on 2

pattern2true

Distances are positively biased– just like training-set decoding accuracies!

Euclidean distance

Straight-line distance between two patterns in Euclidean space

Image from Alex WaltherRSA workshop 2015

Correlation distance

1 – correlation

Correlation = cosine of the angle between normalised patterns

Image from Alex WaltherRSA workshop 2015

Linear discriminant contrast (LDc)

The default distance measure used in the RSA toolbox (based on the Euclidean distance).

It has two desired properties:

1. Multivariately noise normalised

2. Cross-validated

Noise normalisation

Noise normalisation of the fMRI response patterns increases the reliability of the estimated pattern distances.

Univariate: Divide each voxel’s beta weight by its standard deviation → t value

Multivariate: Multiply each pattern with the inverse of the (square-rooted) covariance matrix → Mahalanobis distance

Cross-validated distance measures

Noise → distance measures are positively biased.

Cross-validated distance measures are unbiased and have an interpretable zero point.

data set 1 data set 2

Images (adopted) from Alex WaltherRSA workshop 2015

.d(A,B)

B

LDcThe cross-validated Mahalanobis distance

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

brain model

?

representational distance matrix

(RDM)

dissimilarity(e.g. 1-correlation across space)

The representational similarity trick

!

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

subject 1 subject 2

?

representational distance matrix

(RDM)

The representational similarity trick

!

dissimilarity(e.g. 1-correlation across space)

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

brain behaviour

?

representational distance matrix

(RDM)

The representational similarity trick

!

dissimilarity(e.g. 1-correlation across space)

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

region 1 region 2

?

representational distance matrix

(RDM)

The representational similarity trick

!

dissimilarity(e.g. 1-correlation across space)

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

fMRI cell recording

?

representational distance matrix

(RDM)

The representational similarity trick

!

dissimilarity(e.g. 1-correlation across space)

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

fMRI MEG

?

representational distance matrix

(RDM)

The representational similarity trick

!

dissimilarity(e.g. 1-correlation across space)

The RSA trick

Kriegeskorte, 2008

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

subject1 subject 2

?

representational distance matrix

(RDM)

dissimilarity(e.g. 1-correlation across space)

Comparing brain RDMs between people

!

animate

bodies

faces

places

objects

inanimate

Charest et al. 2014 PNAS

Stimuli

Objects from the subject’s own photo-album

animate

bodies

faces

inanimate

places

objects

Charest et al. 2014 PNAS

Stimuli

bodies

faces

places

objects

subject 1(hIT)

Representational Dissimilarity Matrix (RDM)

0

100

dis

sim

ilari

ty

[ p

erce

nti

le o

f d

ista

nce

]

Charest et al. 2014 PNAS

Multi-dimensional scaling

faces

places

objects

bodies

subject 1

day 1 day 2

subject 2

correlation

within-subject (ws)

between-subject (bs)

subject similarity matrixday 2

day

1

s 1

s 2

s 3

s 4

s 5

s 20

s 1 s 2 s 3 s 4 s 5 s 20…

individuation index ( ws - bs )

?Charest et al. 2014 PNAS

Comparing brain RDMs between people

Representational geometries in human inferior temporal cortex

Neurotypicals ASC

GLMdenoise improves MVPA analyses

GLMdenoise improves MVPA analysesWithin-participant consistency is improved when using GLMdenoise

GLMdenoise improves MVPA analysesBetween-participants consistency is improved when using GLMdenoise

stim

uli

stimuli00000000000

stim

uli

stimuli00000000000

activitypatterns

experimentalstimuli ...

... ...

brain model

?

representational distance matrix

(RDM)

Relating brain and model RDMs

!

dissimilarity(e.g. 1-correlation across space)

Deep convolutional neural network

Krizhevsky et al. 2012

layer 1

convolutional

layer 2layer 3

layer 4layer 5

layer 6layer 7

fullyconnected

• state of the art in computer vision• trained with stochastic gradient descent • supervised with 1.2 million category-labeled images• 60 million parameters and 650,000 neurons

Is this networkfunctionally similarto the brain?

layer 1

convolutional

layer 2layer 3

layer 4layer 5

layer 6layer 7

fullyconnected

SVMdiscriminants

weightedcombinationof fully connected layersand SVM discriminants

face, anim

all categories

accuracyof human IT

dissimilarity matrixprediction

[group-average of Kendall’s τa]

highest accuracy anymodel can achieve

other subjects’ averageas model

accuracy above chancep<0.001(subjects and stimulias fixed effects)

SE(stimulus bootstrap)

Khaligh-Razavi & Kriegeskorte (2014), Nili et al. 2014 (RSA Toolbox)

layer 1

convolutional

layer 2layer 3

layer 4layer 5

layer 6layer 7

fullyconnected

SVMdiscriminants

weightedcombinationof fully connected layersand SVM discriminants

face, anim

all categories

accuracyof human IT

dissimilarity matrixprediction

[group-average of Kendall’s τa]

highest accuracy anymodel can achieve

other subjects’ averageas model

accuracy above chancep<0.001(subjects and stimulias fixed effects)

SE(stimulus bootstrap)

model comparison(stimulus bootstrap)

Khaligh-Razavi & Kriegeskorte (2014), Nili et al. 2014 (RSA Toolbox)

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

brain behaviour

?

representational distance matrix

(RDM)

dissimilarity(e.g. 1-correlation across space)

Comparing brain RDMs and behavioural RDMs

!

http://meadows-research.com

MEADOWS

@meadowsresearch

bodies

faces

places

objects

unfamiliarimages

0

100

dissimilarity

[per

cent

ile o

f Euc

lidea

n di

stan

ce]

Judgment RDMunfamiliar

Similarity Judgements

bodies

faces

places

objects

unfamiliar

hIT

faces places objectsbodies

subject 1

brain behaviour

subject 2

correlation

within-subject (ws)

between-subject (bs)

subject similarity matrixday 2

day

1

s 1

s 2

s 3

s 4

s 5

s 20

s 1 s 2 s 3 s 4 s 5 s 20…

individuation index ( ws - bs )

?Charest et al. 2014 PNAS

Comparing brain RDMs and behavioural RDMs

Representational Dissimilarity Matrix (RDM)

... experimental stimuli

representational pattern (population coderepresentation)

0

100

diss

imila

rity

[ per

cent

ile o

f dis

tanc

e ]

compute the dissimilarity(e.g. 1 – correlation)

0

0

0

0

human inferior temporal(hIT)

Charest et al. 2014 PNAS

voxe

ls

RSA

Representational Dissimilarity Matrix (RDM)

... experimental stimuli

representational pattern (population coderepresentation)

0

100

diss

imila

rity

[ per

cent

ile o

f dis

tanc

e ]

compute the dissimilarity(e.g. 1 – correlation)

0

0

0

0

EEG activity-patternat time t

EEG

Cha

nnel

am

plitu

des

RSA

linear discriminant analysis

RSA

EEG contains rich topographic information from which you can distinguish mental states

bodies

faces

places

objects

EEG contains rich topographic information from which you can distinguish mental states

bodies

faces

places

objects

Object familiarity decoding from EEG activity patterns

unfamiliar objects

familiar objects

signifiant above-chance decoding

Object familiarity decoding from EEG activity patterns

Object familiarity decoding from EEG activity patterns

stim

uli

stimuli000000000000

stim

uli

stimuli000000000000

activitypatterns

experimentalstimuli ...

... ...

fMRI MEG

?

representational distance matrix

(RDM)

dissimilarity(e.g. 1-correlation across space)

!

Comparing RDMs between measurement modalities

Similarity based fusion of M/EEEg and fMRI

Cichy et al. 2014, 2016

Similarity based fusion of M/EEEg and fMRI

Cichy et al. 2014, 2016

The spatio-temporal dynamics of personally meaningful objects

The spatio-temporal dynamics of personally meaningful objects

Cichy et al. 2014 Nature Neuroscience

Key insightsA1 Representational geometries encapsulate the content and

format of brain representations.

A2 Representational geometries can be characterised by representational dissimilarity matrices (RDMs).

A3 RDMs can easily be compared between brains and models, individuals and species, different brain regions, different measurement modalities, and brain and behaviour.

A4 We can statistically compare multiple computational/theoretical models and assess whether they fully explain the measured brain response patterns.