Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane...

57
Daniel L. Akins, Ph.D. Professor & Chair of Chemistry and Biochemistry The City College Marshak Science Building 160 Convent Avenue New York, NY 10031 [email protected] www.sci.ccny.cuny.edu/~akins Publications "HighYield Photoly0c Genera0on of Brominated Singlewalled Carbon Nanotubes and their Applica0on for Gas Sensing," Deon Hines, Mark Rümmeli, David Adebimpe and Daniel L. Akins, Chem. Commun., 50 , 1156811571 (2014). "Controllable modifica0on of electronic Structure of CarbonSupported Core–Shell Cu@Pd Catalysts for formic acid oxida0on," Ren, Mingjun; Zhou, Yi; Tao, Feifei; Zou, Zhiqing; Akins, Daniel; Yang, Hui, J. Phys. Chem. C 118 , 12669−12675 (2014). "Enhanced Raman Scacering by Molecular Nanoaggregates (Invited Review Ar0cle)," Daniel L. Akins, Nanomater Nanotechnol, 2014, 4:4. "Highly alloyed PtRu black electrocatalysts for methanol oxida0on prepared using magnesia nanopar0cles as sacrificial templates," Liangliang Zou, Jing Guo, Juanying Liu, Zhiqing Zou, Daniel L. Akins and Hui Yang, Journal of Power Sources, 248 , 356362 (2014). "Vibra0onal and electronical proper0es of func0onalized singlewalled carbon nanotubes and doublewalled boron nitride nanotubes," M. Aydin and D. L. Akins in Physical and Chemical Proper9es of Carbon Nanotubes. Edited by: Satoru Suzuki. ISBN 9789535110026; Published 20130227. Dr. Akins has been a Professor of Chemistry at The City College of New York since 1981, and director of the CUNY Center for Analysis of Structure and Interfaces since 1988. 2014- current Professor & Chair, Department of Chemistry and Biochemistry. 1988-2015 Director, CUNY–Center for Analysis of Structures and Interfaces (CASI). 1981-2015 Professor of Physical Chemistry. 1979-1981 Senior Scientist, Polaroid Corp. 1968-1969 Postdoc: Institute of Molecular Biophysics, The Florida State University. 1968 Ph.D., The University of California, Berkeley Dr. Daniel L. Akins Research Interests Keywords: Syntheses of semiconductor and magne0c oxide nanopar0cles and nanorods; spectroscopic and dynamical inves0ga0ons of spontaneous and nonlinear laser Raman scacering by monomeric and aggregated molecules on surfaces; excited state dynamics and determina0on of photophysical parameters for cyanine dyes and donoracceptor Systems; quantum chemical calcula0ons of porphyrins and dye molecules.

Transcript of Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane...

Page 1: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Daniel L. Akins, Ph.D. Professor & Chair of Chemistry and Biochemistry The City College Marshak Science Building 160 Convent Avenue New York, NY 10031 [email protected] www.sci.ccny.cuny.edu/~akins

Publications "High-­‐Yield  Photoly0c  Genera0on  of  Brominated  Single-­‐walled  Carbon  Nanotubes  and  their  Applica0on  for  Gas  Sensing,"  Deon  Hines,  Mark  Rümmeli,  David  Adebimpe  and  Daniel  L.  Akins,  Chem.  Commun.,  50,  11568-­‐11571  (2014).  

"Controllable  modifica0on  of  electronic  Structure  of  Carbon-­‐Supported  Core–Shell  Cu@Pd  Catalysts  for  formic  acid  oxida0on,"  Ren,  Mingjun;  Zhou,  Yi;  Tao,  Feifei;  Zou,  Zhiqing;  Akins,  Daniel;  Yang,  Hui,  J.  Phys.  Chem.  C  118,  12669−12675  (2014).  "Enhanced  Raman  Scacering  by  Molecular  Nanoaggregates  (Invited  Review  Ar0cle),"  Daniel  L.  Akins,  Nanomater  Nanotechnol,  2014,  4:4.  

"Highly  alloyed  PtRu  black  electrocatalysts  for  methanol  oxida0on  prepared  using  magnesia  nanopar0cles  as  sacrificial  templates,"  Liangliang  Zou,  Jing  Guo,  Juanying  Liu,  Zhiqing  Zou,  Daniel  L.  Akins  and  Hui  Yang,  Journal  of  Power  Sources,  248,  356-­‐362  (2014).  "Vibra0onal  and  electronical  proper0es  of  func0onalized  single-­‐walled  carbon  nanotubes  and  double-­‐walled  boron  nitride  nanotubes,"  M.  Aydin  and  D.  L.  Akins  in  Physical  and  Chemical  Proper9es  of  Carbon  Nanotubes.    Edited  by:  Satoru  Suzuki.    ISBN  978-­‐953-­‐51-­‐1002-­‐6;  Published  2013-­‐02-­‐27.

Dr.   Akins   has   been   a  Professor  of  Chemistry  at  The   City   College   of   New  York   since   1981,   and  director   of   the   CUNY-­‐Center   for   Analysis   of  Structure   and   Interfaces  since  1988.  

2014- current Professor & Chair, Department of Chemistry and Biochemistry.

1988-2015 Director, CUNY–Center for Analysis of Structures and Interfaces (CASI).

1981-2015 Professor of Physical Chemistry. 1979-1981 Senior Scientist, Polaroid Corp. 1968-1969 Postdoc: Institute of Molecular

Biophysics, The Florida State University.

1968 Ph.D., The University of California, Berkeley

Dr. Daniel L. Akins

Research Interests Keywords: Syntheses   of   semiconductor   and  magne0c   oxide   nanopar0cles   and   nanorods;   spectroscopic  and   dynamical   inves0ga0ons   of   spontaneous   and   nonlinear   laser   Raman   scacering   by  monomeric  and  aggregated  molecules  on  surfaces;  excited  state  dynamics  and  determina0on  of  photophysical  parameters  for  cyanine  dyes  and  donor-­‐acceptor    Systems;    quantum  chemical  calcula0ons  of  porphyrins  and  dye  molecules.

Page 2: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Mark R. Biscoe Assistant Professor of Chemistry The City College of New York 160 Convent Ave. New York, NY 10031 [email protected] http://www.sci.ccny.cuny.edu/~mbiscoe/index.html

Publications Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R. J. Am. Chem. Soc. 2014, 136, 14027-14030. Li, L; Wang, C.-Y.; Huang, R.; Biscoe, M. R. Nature Chem. 2013, 5, 607-612. Joshi-Pangu, A.; Biscoe, M. R. Synlett 2012, 23, 1103-1107. Joshi-Pangu, A.; Ma, X.; Diane, M.; Iqbal, S.; Kribs, R.; Huang, R.; Wang, C.-Y.; Biscoe, M. R. J. Org. Chem. 2012, 77, 6629-6633. Joshi-Pangu, A.; Wang, C.-Y.; Biscoe, M. R. J. Am. Chem. Soc. 2011, 133, 8478-8481. Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011, 13, 1218-1221.

Research Interests Keywords: Transition metal catalysis, Organic synthesis, Asymmetric synthesis Broadly, research in the Biscoe group focuses on catalysis. The two major types of catalysis in which we are interested are transition metal catalysis and macromolecular catalysis. Our primary goals involve the development of practical and reliable processes for the construction of C–C and C–X (X = heteroatom) bonds. We are particularly interested in the development of new processes for the formation of common structural motifs of importance in medicinal chemistry and drug discovery.

Prof. Biscoe is an organic/organometal l ic chemist i n t e r e s t e d i n t h e d e v e l o p m e n t o f n e w reaction methodologies for a p p l i c a t i o n i n d r u g discovery.

2009- current Professor, City College of New York 2005-2008 NIH Postdoctoral Fellow, MIT 2000-2005 PhD, Columbia University

Dr. Mark R. Biscoe

Page 3: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Zimei Bu Associate Professor The City College of New York 160 Convent Avenue New York, NY 10031 [email protected] http://www.sci.ccny.cuny.edu/~zbu/

Publications Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering., Chen X, Ali Khajeh J, Ju JH, Gupta YK, Stanley CB, Do C, Heller WT, Aggarwal AK, Callaway DJ, Bu Z, J Biol Chem. 2015; 290(10):6639-52. Molecular conformation of the full-length tumor suppressor NF2/Merlin - a small angle neutron scattering study. Ali Khajeh, J., Ju, J., Atchiba, M., Allaire,M., Stanley, C., Heller, W.T., Callaway, D.J., Bu, Z., J Mol Biol. 2014 Jul 29;426(15):2755-68. Ligand-induced dynamic changes in extended PDZ domains from NHERF1., Bhattacharya S, Ju JH, Orlova N, Khajeh JA, Cowburn D, Bu Z., J Mol Biol. 2013 Jul 24;425(14):2509-28. Open Con fo rma t i on o f Ez r i n Bound to Phosphatidylinositol 4,5-Bisphosphate and to F-actin Revealed by Neutron Scattering, Jayasundar JJ, Ju JH, He L, Liu D, Meilleur F, Zhao J, Callaway DJ, Bu Z., J. Bio. Chem. 287:37119-33, 2012 Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy. Farago, B., Li, J., Cornilescu, G., Callaway, D.J.E., Bu, Z., Biophys J. 99:3473-82, 2010 Research Interests

Keywords: Cell signaling, cell adhesion, intracellular trafficking of membrane receptors, neutron scattering, protein dynamics Research Projects include: 1.  Structure, dynamics, and assembly of transmembrane cell adhesion molecules and receptors; 2.  Protein-lipid interactions; 3.  How intracellular adapter proteins influence the trafficking, assembly and function of transmembrane

receptors; 4.  Small angle X-ray and neutron scattering; 5.  Quasielastic neutron scattering, neutron spin echo spectroscopy.

is a molecular biophysicist at City College

Dr. Zimei Bu

Page 4: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Elise Champeil Associate Professor John Jay College of Criminal Justice 524 west 59th street New York, NY10019 [email protected] http://www.jjay.cuny.edu/faculty/elise-champeil

Publications Champeil E., Sapse A.M “Synthesis of a Mitomycin C-Lexitropsin Hybrid”. Comptes rendus des Séances de l’Académie Francaise, 17, 2014 1190. Champeil E., Paz M., Lukasiewicz E., Kong W., Watson S., Sapse A.M.“Synthesis of a major m i t o m y c i n C D N A a d d u c t v i a a triaminomitosene”. Bioorganic and Medicinal Chemistry Letters, 22, 2012 7198. Lesar C.T., Decatur J., Luckasiewicz E., Champeil E.“ Identi f icat ion of Gamma-Hydroxybutyric acid (GHB) and Gamma-Butyrolactone (GBL) in beverages using NMR and the PURGE so lven t -suppress ion technique”. Forensic Science International,212, 2011 40. Weng M-W, Zheng Y., Jasti V.P., Champeil E., Tomasz M., Wang Y., Basu A.K., Tang M.-S. “Repair of mitomycin C mono- and interstrand cross-linked DNA adducts by UvrABC: a new model”, Nucleic Acid Research, 38, 2010 6976. Liu J., Proni G., Champeil E. “Identification and quant i ta t ion o f 3 ,4-methy lened ioxy-N-methylamphetamine (MDMA, ecstasy) in human urine by 1H NMR spectroscopy. Application to five cases of intoxication”, Forensic Science International, 194, 2010 103.

Research Interests Synthesis of Mitomycin C and Decarbamoyl mitomycin C DNA adducts: Our aim is to synthesize DNA interstrand crosslinks generated by decarbamoyl mitomycin C (DMC) and mitomycin C (MC) (MC α-ICL and DMC β-ICLs). In addition, the role of p21 in the upstream p53-independent signaling pathway in response to these crosslinks is examined. Analysis of drugs (recreational and medicinal) in bio fluids using NMR spectroscopy.

Prof. Champeil is a synthetic chemist interested in the DNA alkylating drug Mitomycin C (MC). She synthesized MC-DNA Interstrand crosslinks to determine how the local structure of these adducts is responsible for the different b i o c h e m i c a l r e s p o n s e s produced by cancer cells upon treatment.

2014- 2010 Current position 2006-2010 Assistant professor (John Jay College) 2003-2006 Postdoc (CUNY) 2002 PhD, Trinity College, Ireland

Dr. Elise Champeil

Page 5: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Publications Frik, M. et al. In vitro and in vivo Evaluation of Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer. J. Med. Chem. 2014, 57, 9995–10012. Fernández-Gallardo, J. et al. Organometallic Titanocene-Gold Compounds as Potential Chemotherapeutics in Renal Cancer. Study of their Protein Kinase Inhibitory Properties. Organometallics. 2014, 33, 6669–6681. Hokai, Y. et al. Auranofin and Related Heterometallic Gold(I)-Thiolates as Potent Inhibitors of Methicillin-Resistant Staphylococcus aureus Bacterial Strains. J. Inorg. Biochem. 2014, 138, 81-88. Frik, M. et al. Luminescent iminophosphorane gold, palladium and platinum complexes as potential anticancer agents. Inorg. Chem. Front. 2014, 3, 231-241. Lease, N. et al . Potential Anticancer Heterometallic Fe-Au and Fe-Pd Agents: Initial Mechanistic Insights. J. Med. Chem. 2013, 56, 5806-5818.

Research Interests Keywords: Organometallic, Cancer, Antimicrobial, Gold Catalysis, Water-soluble, C-C and C-Heteroatom Bond formation Our group is focused on the synthesis of metallodrugs as anticancer and antimicrobial agents with a special interest on heterometallic gold-based compounds. We study the biological activity and possible mode of action of the compounds (in our own cell culture room). We use gold derivatives in homogeneous catalysis and we study the possible mechanism of these catalysts by using different techniques.

M a r i a C o n t e l i s a n inorganic/organometall ic synthetic chemist. Her main interests lie on the rational design of metallodrugs and homogeneous catalysts.

2011- current Associate Professor Brooklyn College 2006-2010 Assistant Professor Brooklyn College 2001-2006 Senior Researcher CSIC-University of

Zaragoza, Spain 1999-2000 Postdoc University of Utrecht, Holland 1997-1999 Postdoc Australian National University, Australia 1993-1996 PhD Public University of Navarra, Spain

Dr. Maria Contel

Maria Contel Associate Professor Brooklyn College 2900 Bedford Avenue Brooklyn, NY 11210 [email protected] http://userhome.brooklyn.cuny.edu/mariacontel/

Page 6: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Ruel Z. B. Desamero Associate Professor York College, the Institute of Macromolecular Assembly, and the Graduate Center 94-20 Guy R. Brewer Blvd. Jamaica, NY 11451 [email protected] www.cuny.edu/xxxx

Publications A. Mojica, E., J. Vedad, and R.Z.B. Desamero (2015) “Vibrational Analysis of α-Cyanohydroxycinnamic acid” Journal of Molecular Structure (in press). B. Profit, A.A., J. Vedad, M. Saleh and R.Z.B. Desamero (2015) “Aromaticity and Amyloid Formation: Effect of π-Electron Distribution and Aryl Substituent Geometry on the Self-Assembly of Peptides Derived from hIAPP22-29 “ Archives of Biochemistry and Biophysics 567: 46-58. C. Nie, B., H. Deng, R.Z.B. Desamero and R. Callender (2013) “Large Scale Dynamics of the Michaelis Complex in Bacillus stearothermophilus Lactate Dehydrogenase Revealed by Single Tryptophan Mutants Study” Biochemistry 52: 1886-1892. D. Profit, A.A., V. Felsen, J. Chinwong, E.-R. Mojica, and R.Z.B. Desamero (2013) “Evidence of π-stacking Interactions in the Self-assembly of hIAPP22-29” PROTEINS: Structure, Function and Bioinformatics 81: 690-703. E. Deng, H., D.V. Vu, K. Clinch, R. Desamero, R.B. Dryer and R. Callender (2011) “Conformational Heterogeneity Within the Michaelis Complex of Lactate Dehydrogenase” Journal of Physical Chemistry B 115: 7670-7678.

Research Interests Keywords: vibrational spectroscopy; fluorescence; circular dichroism; temperature-jump techniques; structural biology; protein biochemistry; enzymology My research is centered on investigating the structural and dynamical aspects of protein-small molecule interactions using techniques such as vibrational spectroscopy and temperature-jump relaxation. One aspect of the work is to understand at the molecular level how protein systems work. Enzyme-substrate interactions have long been recognized as representing an extreme expression of structural complementarities in biological chemistry. Basic research geared towards understanding the inner workings of an enzyme system is important if cures for the diseases caused by a malfunctioning or deficient enzyme are to be found. We have also started investigating the mechanism behind amyloid formation with the goal of synthesizing peptide inhibitors that diminish protein aggregation.

D r . D e s a m e r o i s a spectroscopist by training cur rent ly invest iga t ing protein-ligand interaction as well as protein-protein aggregation using various techniques.

2010 - current Associate Professor, York College - CUNY 2003 - 2010 Assistant Professor, York College - CUNY 2000 - 2002 Postdoc, Albert Einstein College of Medicine 1998 - 2000 Postdoc, City College - CUNY 1998 PhD, University of Connecticut

Dr. Ruel Desamero

Page 7: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Terry Dowd Associate Professor Brooklyn College 2847 Old Ingersoll 2900 Bedford Ave. Brooklyn, NY [email protected] http://academic.brooklyn.cuny.edu/chem/howell/facultyWebPages/Dowd/Dowd_home.htm

Publications C h a n K L , D o w d T L , G i b n e y B R . , “Characterization of the Zn(II) binding properties of the human Wilms' tumor suppressor protein C-terminal zinc finger peptide.” (2014) Inorg Chem. 53:6309. Malashkevich, V., Dowd, T.L., "The X-ray Crystal Structure of Bovine 3 Glu-Osteocalcin.“ Biochemistry (2013) 52:8387. B. Kalmatsky, T.L. Dowd, “Structural studies of N-terminal mutants of connexin 32 using 1H NMR spectroscopy.” Arch. Biochem. Biophys. (2012) 526: 1-8. A.U. Monir, T.L. Dowd, “The Effect of Lead on Bone Mineral Properties From Female Adult C57/BL6 Mice.” Bone 2010 47:888-94. B. Kalmatsky, T.L. Dowd, “Structural studies of the N-terminus of Connexin 32 using 1H NMR spectroscopy.” Arch. Biochim. Biophys. 2009 490: 9-16.

Research Interests My research involves investigating the role of the bone protein osteocalcin in bone mineral diseases such as Pb2+ toxicity, low Mg2+ diets and diabetes. The research involves multiple techniques such as atomic absorption, FTIR Imaging and microCT to investigate alterations in mouse bone mineral properties. The second project involves NMR structural-functional studies of the gap junction molecule Connexin in health and diseases such as deafness, fatal skin disease and neuropathy. The project uses 2D NMR techniques on a high field magnet and electrophysiological techniques characterizing the mutant gap junction channels.

Dr. Terry Dowd is involved in two areas of research. One area is the alteration in bone mineral properties in disease. The second project involves al terat ions in s t r u c t u r e – f u n c t i o n relationships in the gap junction molecule Connexin in deafness, neuropathy and skin disease.

2014- current Associate Professor 2005 Assistant Professor 1992-1996 Instructor 1986-1992 Postdoc 1986 Ph.D.

Dr. Terry Dowd

Page 8: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Charles Michael Drain Professor Hunter College & Rockefeller University Department of Chemistry 695 Park Avenue New York NY [email protected] www.hunter.cuny.edu/chemistry/mike/drain

Publications T. M. Shaffer, M. A. Wall, S. Harmsen, V. A. Longo, C. M. Drain, M. F. Kircher, J. Grimm, Nano Letters 2015, 15, 864-868. "Silica Nanoparticles as Substrates for Chelator-free Labeling of Oxophilic Radioisotopes" S. Singh, A. Aggarwal, N. V. S. D. K. Bhupathiraju, B. Newton, A. Nafees, R. Gao, C. M. Drain, Tet. Let. 2014, 55, 6311-6314. "Synthesis and cell phototoxicity of a triply bridged fused diporphyrin appended with six thioglucose units" A. Aggarwal, S. Thompson, S. Singh, B. Newton, A. Moore, R. Gao, X. Gu, S. Mukherjee, C.M. Drain. Photochem. Photobiol. 2014, 90, 419–430. “Photophysics of Glycosylated Derivatives of a Chlorin, Isobacteriochlorin and Bacteriochlorin for Photodynamic Theragnostics: Discovery of a Two-photon-absorbing Photosensitizer” M. Jurow, A. Varotto, V. Manichev, N. A. Travlou, D. A. Giannakoudakis, C. M. Drain, RSC Adv. 2013, 3, 21360–21364, “Self-organized nanostructured materials of alkylated phthalocyanines and underivitized C60 on ITO” M. Jurow, V. Manichev, C. Pabon, B. Hageman, Y. Matolina, C. M. Drain Inorg. Chem. 2013, 52, 10576-10582. “Self-Organization of Zr(IV) Porphyrinoids on Graphene Oxide Surfaces by Axial Metal Coordination” Research Interests

Keywords: porphyrins, photophysics, phototherapy, nanotechnology, supramolecular Bottom-up self-organization of functional photonic materials composed of porphyrinoid dyes allows fabrication of next generation sensors, solar energy harvesting, and biomedical devices. Click-chemistry makes the dye commercially viable, and the fundamental photophysical properties of these materials guides development of more efficient dyes. (2) Porphyrinoid dyes are being developed as theranostics (the same compound is used for both therapy and diagnostic) for photodynamic therapy of diseases such as cancer. (3) Biomedical applications of nanoparticles composed of organic and inorganic materials, including radiolabled materials, for imaging and therapy are being developed in collaboration with Researchers at Memorial Sloan Kettering and Rockefeller University.

CM Drain is chair of the Department of Chemistry at H u n t e r C o l l e g e w i t h research in supramolecular materials, photonics, photo-therapeutics, and medical photo-diagnostics

1996- present Professor, Hunter College CUNY 1990- present Adj. Faculty, Rockefeller University 1990-1993 Postdoc, Univ. of Strasburg, France 1984-1988 PhD, Tufts University

Dr. Charles Michael Drain

Page 9: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Dr Dorthe M. Eisele

Dr Dorthe M. Eisele Department of Chemistry, City College Center for Discovery and Innovation Advanced Science Research Center 85 Saint Nicolas Terrace, New York, NY 10031 [email protected] http://eiselegroup.com/ www.cuny.edu/asrc

Selected Publications Eisele,  D.M.,  Arias,  D.H.,  Fu,  X.,  Bloemsma,  Steiner,  C.P.,  Jensen,  R.,  Rebentrost,  P.,  Eisele,  H.,  Llyod,  S.,  Tokmakoff,  A.,  Knoester,  J.,  Nicastro,  D.,  Nelson,  K.A.,  &  Bawendi,  M.G.  “Robust  Excitons  in  SoA  Supramolecular  Nanotubes.”  PNAS  111  (2014)  E3367-­‐E3375. Eisele,  D.M.,  Cone,  C.W.,  Bloemsma,  E.A.,  Vlaming,  C.G.F.  van  der  Kwaak,  S.M.,  Silbey,  R.J.,  Bawendi,  M.G.,  Knoester,  J.,  Rabe,  J.P.,  and  Vanden  Bout,  D.A.  “U9lizing  Redox-­‐Chemistry  to  Elucidate  the  Nature  of  Exciton  Transi9ons  in  Supramolecular  Dye  Nanotubes.”  Nature  Chem.  4  (2012)  655–662.    Eisele,  D.M.,  v.  Berlepsch,  H.,  Böccher,  C.,  Stevenson,  K.J.,  Vanden  Bout,  D.A.,  Kirstein,  S.,  and  Rabe,  J.P.  “Photoinduced  growth  of  sub-­‐7  nm  silver  nanowires  within  a  chemically  ac9ve  organic  nano9bular  template.”  JACS  132,  (2010)  2104-­‐2105.   Eisele,  D.M.,  Knoester,  J.,  Kirstein,  S.,  Rabe,  J.P.,  and  Vanden  Bout,  D.A.  “Uniform  exciton  fluorescence  from  individual  molecular  nanotubes  immobilized  on  solid  Substrates.”  Nature  Nanotech.  4  (2009)  658-­‐663.

Research Interests Keywords: New materials & design principles for solar energy systems; Artificial and biological model systems for light-harvesting (LH) in order to better understand the fundamental processes that govern nature's highly efficient photosynthetic masterpieces; Collective phenomena found in self-assembled nanoscale systems such as supra-molecular assemblies (Frenkel exciton systems), semiconductor nanostructures (Wannier exciton systems), metallic nanostructures (plasmonic systems), and organic/inorganic hybrid systems; Energy and electron transport processes in nanoscale systems; steady-state and time-resolved spectroscopy combined with microscopy techniques.

Dorthe Eisele is a Professor of Chemistry at City College and a member of the Graduate Center. Her research interests are in materials research and nanoscience, with a focus on new materials and design principles for solar energy systems.

Current: Assistant Professor, Chemistry, City College of New York, Principal Investigator, CUNY Graduate Center (Chemistry).

Previously: Postdoctoral Associate,

Massachusetts Institute of Technology, Cambridge, USA

Dr.rer.nat (Ph.D. equivalent), Humboldt University of Berlin, Berlin, Germany

Page 10: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Emilio Gallicchio Assistant Professor Department of Chemistry, Brooklyn College 2900 Bedford Avenue Brooklyn, NY [email protected] sites.google.com/site/emiliogallicchiolab

Publications Emilio Gallicchio, et al. BEDAM Binding Free Energy Predictions for the SAMPL4 Octa-Acid Host Challenge. J. Comp. Aided Mol. Des.  29, 315-325 (2015). Emilio Gallicchio, et al. Virtual Screening of Integrase Inhibitors by Large Scale Binding Free Energy Calculations: the SAMPL4 Challenge. J Comp Aided Mol Design, 28, 475-490 (2014). Guohua Yi, Mauro Lapelosa, Emilio Gallicchio, Gail Ferstandig Arnold et al. Chimeric Rhinoviruses Displaying MPER Epitopes Elicit Anti-HIV Neutralizing Responses. PLoS ONE 8(9), e72205 (2013). Gallicchio E. Role of Ligand Reorganization and Conformational Restraints on the Binding Free Energies of DAPY Non-Nucleoside Inhibitors to HIV Reverse Transcriptase. Computational Molecular Bioscience, 2, 7-22 (2012).

Research Interests - Thermodynamics of protein-protein and protein-ligand binding - Virtual drug screening -  Protein conformational equilibria - Statistical thermodynamics of protein folding and misfolding - Thermodynamics of solvation of biological macromolecules - Force field development and high resolution protein modeling - Design of high performance computational chemistry algorithms - Parallel and distributed computing

Emilio Gallicchio’s research is in the area of computational molecular biophysics. He uses advanced computational models to investigate the dynamics and thermodynamics of biological systems.

2013- current Asst. Professor, Dept. Chemistry, Brooklyn College 2012-2013 Research Professor, Dept. Chemistry, Rutgers University 2001-2012 Associate Director, BioMaPS Institute, Rutgers University 1997-2000 Postdoctoral, Rutgers University 1991-1996 PhD Columbia University, Chemical Physics

Dr. Emilio Gallicchio

Page 11: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Kevin H. Gardner Director, Structural Biology Initiative CUNY Advanced Science Center, Room 3.322 85 St. Nicholas Terrace New York, NY 10031 [email protected] structbio.asrc.cuny.edu • kglab.org

Publications Y. Guo et al., Coiled-coil coactivators play a structural role mediating interactions in hypoxia inducible factor heterodimerization. J. Biol. Chem., 2015, online now. V. Ocasio et al., Ligand-induced folding of a two component signal ing receiver domain. Biochemistry, 54, 1353-1363. G. Rivera-Cancel et al., Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation, Proc. Natl. Acad. Sci USA, 2014, 111, 17839-17844. L.B. Motta-Mena et al., An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol., 2014, 10, 196-202. T.H. Scheuermann et al., Allosteric inhibition of Hypoxia Inducible Factor 2 with small molecules. Nat. Chem. Biol., 9, 271-276.

Research Interests Keywords: environmental sensing • protein/protein interactions • ligand binding • allostery • NMR spectroscopy • X-ray diffraction • biochemistry • photosensors • cancer • protein engineering

The Gardner lab studies how cells perceive and respond to changes in the environment around them. Such information provides insights into fundamental p r i n c i p l e s o f p r o t e i n structure and signaling, guides the engineering of new protein-based tools, and lays the foundation for new therapeutic strategies.

2014- current Director, Structural Biology Initiative, CUNY Advanced Science Research Center Einstein Professor of Chemistry, City College of New York

1998-2014 Professor of Biophysics and Biochemistry, UT Southwestern Medical Center 1995-1998 Postdoc – Biomolecular NMR methods development, University of Toronto (w/ Dr. Lewis E.

Kay) 1989-1995 Ph.D. – Molecular Biophysics & Biochemistry, Yale University (w/ Dr. Joseph E. Coleman)

Dr. Kevin H. Gardner

Page 12: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Publications Chan, K.L. et al. Characterization of the Zn(II) Binding Properties of the Wilms’ Tumor Suppressor Protein C-Terminal Zinc Finger Peptide”, Inorg. Chem. 2014, 53, 6309-6320. Gibney, B.R. Heme, Encylcopedia of Biophysics, Gordon Roberts, Ed. Springer, 2013. Gibney, B.R. Metallopeptides as Tools to Understand Metalloprotein Folding and Stability in Protein Folding and Metal Ions – Mechanisms, Biology and Disease, Gomes, C and Wittung-Stafshede, P. Eds. 2011, 227-245. Deng, B. et al. Unique Heme Pocket in Human Ncb5or and Structural Basis for Intra-Domain Electron Transfer. J. Biol. Chem. 2010, 285, 30181-30191. Reddy, C.J. . et al. Development and Analysis o a Heme Protein Structure-Electrochemical Function Database Nucleic Acids Reseach 2008, 36, D307-D313. Reddi, A.R. et al. Deducing the Energetic Cost of Protein Folding in Zinc Finger Proteins Using Designed Metallopeptides. J. Am. Chem. Soc. 2007, 129, 12815-12827.

Research Interests Keywords: De novo metalloprotein design, inorganic coordination chemistry, biophysics, bioenergetics, electrochemistry Our research focuses on the role of metal ions in biological systems from both an inorganic coordination chemistry and biophysical perspective. We are currently investigating the role of zinc in controlling gene expressions in human cancer, and the role of heme proteins in cardiovascular disease.

The Gibney Lab uses metalloprotein design to investigate the fundamental engineering of biological systems. These studies provide insight into metal-induced protein folding, heme electrochemistry, and the role of chemically modified hemes in biology.

2018- current Associate Professor Brooklyn College 2005-2008 Associate Professor Columbia University 2000-2005 Assistant Professor Columbia University 1995-2000 NIH Postdoc University of Pennsylvania 1990-1995 PhD University of Michigan 1986-1990 BS (ACS Certified) Florida State University

Dr. Brian R. Gibney

Brian R. Gibney Associate Professor Brooklyn College 2900 Bedford Avenue Brooklyn, NY 11210 [email protected] http://www.biochemistry.nyc

Page 13: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Professor Hunter College of CUNY Dept. of Chemistry & Biochemistry 695 Park Avenue New York NY 10065 [email protected] www.cuny.edu/chemistry/faculty/nancy/greenbaum

Publications Zhao,   C,   Devany,   M,   Greenbaum,   NL   (2014)  Measurement  of  Chemical  Exchange  between  RNA   Conformers   by   19F   NMR.     Biochem.  Biophys.  Res.  Comm.  453,692-­‐695.     Popović,   M,   Greenbaum,   NL   (2014)   Role   of  helical  constraints  of  the  EBS1-­‐IBS1  duplex  of  a   group   II   intron   on   demarca0on   of   the   5ʹ′  splice  site.    RNA  20,  24-­‐35.     Zhao,  C*,  Bachu,  R*,  Popović,  M,  Devany,  M,  Brenowitz,  M,  Schlacerer,  JC,  Greenbaum,  NL  (2013)   Conforma0onal   heterogeneity   of   the  protein-­‐free   human   spliceosomal   U2-­‐U6  snRNA   complex.   RNA   19,   561-­‐573.     *these  authors  contributed  equally  to  the  work.     Popović,   M,   Nelson,   JD,   Schroeder,   KT,  Greenbaum,   NL   (2012)   Impact   of   base   pair  iden0ty   5ʹ′   to   the   spliceosomal   branch   site  adenosine  on  branch  site  conforma0on.    RNA  18,  2093-­‐2103.     Yuan,   F,   Griffin,   L,   Phelps,   L,   Buschmann,   V,  Weston,   K,   Greenbaum,   NL   (2007)   Use   of   a  novel   Förster   resonance   energy   transfer  method   to   iden0fy   loca0ons   of   site-­‐bound  metal   ions   in   the   U2-­‐U6   snRNA   complex.    Nucleic  Acids  Res.  35,  2833-­‐2845.  

Research Interests Keywords: RNA, spliceosome, NMR We  acempt  to  answer  ques0ons  about  how  RNA  molecules  fold  and  interact  with  other  RNA,  metal  ions,  and  proteins  in  order  to  carry  out  the  complex  ac0vity  of  precursor  messenger  (pre-­‐m)RNA  splicing.  This  process,  by  which  noncoding  intron  sequences  of  pre-­‐mRNA  molecules  are  excised  and  flanking  coding  exons  are  ligated  together,  is  an  essen0al  step  in  prepara0on  of  mRNA  transcripts  prior  to  transla0on  of  their  message  into  protein  sequences.    Pre-­‐mRNA  splicing  in  eukaryo0c  cells  is  performed  by  the  spliceosome,  a  dynamic  nuclear  supramolecular  assembly  that  comprises  five  recyclable  small  nuclear  (sn)RNA  molecules  and  many  proteins.  Similari0es  between  spliceosomal  snRNAs  of  and  func0onally  analogous  regions  of  Group  II  introns,  which  excise  themselves  even  in  the  absence  of  proteins,  suggests  shared  evolu0onary  ancestry  and  the  likelihood  that  the  spliceosomal  reac0on  is  also  catalyzed  by  its  RNA  components.  Using  a  combina0on  of  biochemistry,  biophysical,  and  spectroscopy  techniques,  we  characterize  the  molecular  basis  of  recogni0on  and  conforma0onal  dynamic  leading  RNA  splicing  in  the  two  systems.

Prof. Greenbaum is a structural biologist whose research addresses the role of biomolecular structure and funct ion in biochemical activity of noncoding RNA molecules. We incorporate solution NMR, fluorescence techniques, and biochemical approaches in our studies.

2007- current Professor, Hunter College 2004-2007 Associate Professor, Florida State Univ. 1997-2004 Assistant Professor, Florida State Univ. 1992-1996 Postdoc, Columbia University 1985-1989 Postdoc, Rockefeller University 1981-1984 PhD, University of Pennsylvania

Dr. Nancy Greenbaum

Page 14: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Michael E Green Professor City College of New York Dept. of Chemistry 160 Convent Ave New York NY 10031 [email protected] http://forum.sci.ccny.cuny.edu/people/science-division-directory/b009

Publications A. M. Kariev and M. E. Green, "Caution is required in interpretation of mutations in the voltage sensing domain of voltage gated channels as evidence for gating mechanisms.," Int'l J. Molec. Sci. (2015) 16, 1627-1643. A. M. Kariev and M. E. Green, "Quantum Effects in a Simple Ring with Hydrogen Bonds " J. Phys. Chem. B (2015)119,5962-5969 A. M. Kariev, P. Njau, and M. E. Green, "The Open Gate of the Kv1.2 Channel: Quantum Calculations Show The Key Role Of Hydration," Biophys J. (2014). 106, 548-555 A. M. Kariev and M. E. Green, "Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons," Int'l J. Molec. Sci. (2012) 13, 1680-1709

S. Liao and M. E. Green, "Quantum calculations on salt bridges with water: Potentials, structure, and properties," Comput. Theo. Chem. (2011) 963, 207-214.

Research Interests Keywords: Description of research activities and strategy.

Dr. Green is a computational chemist, with a principal in terest in b iophysical problems, especially related to a class of proteins, ion channels, responsible for the nerve impulse, among other things.

Dr. Green has been a faculty member in Chemistry at CCNY since Sept 1966.

Research Interests    Keywords: Quantum calculations, proteins, water structure, hydrogen bonds, salt bridges, membranes, water transport through membranes Research Strategy: Primarily we carry out quantum calculations on overlapping sections of proteins, such as voltage sensing domains of ion channels, to determine structure, bonding, energetics, and transitions of protein, water, hydrogen bonds, and salt bridges, leading to mechanisms, for example, of sensing voltage.

Dr. Michael Green

Page 15: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Name: Alexander Greer Position: Professor Affiliation: CUNY Brooklyn College, Dept. Chemistry Brooklyn, NY 11210 718-951-5000 ext 2830 [email protected] http://academic.brooklyn.cuny.edu/chem/agreer/FirstPage.html 1999-current Professor 1997-1999 Postdoc, UCLA 1994-1996 PhD, University of Wyoming

Dr. Alexander Greer Publications M.   S.   Oliveira,   M.   S.;   Ghogare,   A.   A.;  Abramova,  I.  ;  Greer,  E.  M.;  Prado,  F.  M.  ;  Di  Mascio,   P.;     Greer,   A.   Mechanism   of  Photochemical   O-­‐Atom   Exchange   in  Nitrosamines   with   Molecular   Oxygen.   J.  Org.  Chem.  2015,  80,  6119-­‐6127.    Ghogare,  A.  A.;  Rizvi,  I.;  Hasan,  T.;  Greer,  A.  Pointsource   Delivery   of   a   Photosensi0zer  Drug   and   Singlet   Oxygen:   Eradica0on   of  Glioma   Cells   in   Vitro.   Photochem.  Photobiol.  2014,  90,  1119-­‐1125.    Aebisher,  D.;   Bartusik,  D.;   Liu,   Y.;   Zhao,   Y.;  Barahman,  M.;  Xu,  Q.;  Lyons,  A.  M.;  Greer,  A.   Superhydrophobic   Photosensi0zers.  Mechanis0c   Studies   of   1O2   Genera0on   in  the   Plastron   and   Solid/Liquid   Droplet  Interface.   J.   Am.   Chem.   Soc.   2013,   135,  18990-­‐18998.    Bartusik,   D.;   Aebisher,   D.;   Ghosh,   G.;  Minnis,  M.;  Greer,   A.   Fluorine   End-­‐Capped  Op0cal   Fibers   for   Photosensi0zer   Release  and   Singlet   Oxygen   Produc0on.   J.   Org.  Chem.  2012,  77,  4557-­‐4565.    Zamadar,   M.;   Ghosh,   G.;   Mahendran,   A.;  Minnis,   M.;   Krux,   B.   I.;   Ghogare,   A.   A.;  Aebisher,  D.;  Greer,  A.  Photosensi0zer  Drug  Delivery   via   an  Op0cal   Fiber.   J.  Am.  Chem.  Soc.  2011,  133,  7882-­‐7891.    Greer,   A.   Organic   Chemistry:     Molecular  Crosstalk.  Nature  2007,  447,  273-­‐274  .

Our key research areas are organic chemistry, synthesis, photochemistry, medical devices, drug design, lasers, green chemistry, nanotechnology

Research Interests Our work has focused on photosensitized oxidation reactions that are toxic to organisms and damaging to materials, and can be harnessed for applications such as the disinfection of water supplies. Because a critical need for mechanistic strategies that can generate photosensitized intermediates in a clean and pure fashion, our published results focus on the physical isolation of sensitizer and molecules at surfaces to “separate” singlet oxygen from other reactive oxygen species (ROS). We have a longstanding interest in photooxygen atom transfer processes related to thiophene sulfoxides and nitrosamines. Our work is also involved the synthesis and mechanistic studies of organic sulfanes related to natural product thianthrene, tetrathiocin, trithiole, and pentathiepin anticancer agents.

Page 16: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Dr. Dixie Goss Hunter College Chemistry Dept. 695 Park Ave New York, NY 10065 [email protected] http://www.hunter.cuny.edu/chemistry/faculty/Dixie/goss-group-1/resume

Publications  Recruitment of 40S Ribosome to the 3' Untranslated Region (UTR) of a Viral mRNA, via the eIF4F Complex, Facilitates Cap-independent Translation. Das Sharma S, Kraft JJ, Miller WA, Goss DJ. J Biol Chem. 2015 Mar 19. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Domashevskiy AV, Goss DJ. Toxins (Basel). 2015 Jan 28;7(2):274-98. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions. Khan MA, Ma J, Walden WE, Merrick WC, Theil EC, Goss DJ. Nucleic Acids Res. 2014 Jun;42(10):6567-77. Eukaryotic initiation factor (eIF) 4F binding to barley yellow dwarf virus (BYDV) 3'-untranslated region correlates with translation efficiency. Banerjee B, Goss DJ. J Biol Chem. 2014 Feb 14;289(7):4286-94. Poly(A) binding proteins: are they all created equal? Goss DJ, Kleiman FE. Wiley Interdiscip Rev RNA. 2013 Mar-Apr;4(2):167-79.

Research Interests Keywords: protein synthesis, virus, protein-nucleic acid interactions We use biophysical approaches to understand how non-coding regions of mRNA regulate function. Miss regulation of protein synthesis in responsible for many diseases including cancer. We are interested in how unique structures in viral RNA allow viruses to take over host cell protein synthesis.

Prof. Goss is a professor of Chemistry and Biochemistry and Elion Endowed Scholar

1990- current Professor of Chemistry 1989-1990 Associate Professor of Chemistry 1984-1989 Assistant Professor

Post-Doc. U. of Nebraska and U. of Georgia

1975 Ph.D U. of Nebraska

Dr. Dixie J. Goss

Page 17: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Wayne W. Harding, PhD Associate Professor Hunter College Chemistry Dept. 695 Park Avenue New York NY 10065 [email protected] http://www.hunter.cuny.edu/chemistry/faculty/Harding/Wayne

Publications

Research Interests Keywords: Medicinal chemistry, drug design, organic synthesis, central nervous system, CNS, receptor, serotonin, dopamine

D r. H a r d i n g i s a o r g a n i c / m e d i c i n a l chemist with interests in the design, synthesis a n d e v a l u a t i o n o f l igands for centra l n e r v o u s s y s t e m receptors.

2013- current Associate Professor, Hunter College 2006-2013 Assistant Professor, Hunter College 2004-2006 Postdoctoral Fellow, University of Iowa 1994-1999 Ph.D.

Dr. Wayne Harding Aporphinoid antagonists of 5-HT2A receptors: further evaluation of ring A substituents and the size of ring C. S. Ponnala, N. Kapadia, H. A. Navarro, W. W. Harding, Chem. Biol. Drug Des. 2014, 84, 558 - 566. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: identification of a new aprophine with 5-HT2A antagonist activity. S. Ponnala, J. Gonzales, N. Kapadia, H. A. Navarro, W. W. Harding, Bioorg. Med. Chem. Lett. 2014, 24, 1664 - 1667. New Aporphinoid 5-HT2A and α1Α antagonists via structural manipulations of nantenine. S. Chaudhary, S. Ponnala, O. LeGendre, J. Gonzales, H. A. Navarro, W. W. Harding, Bioorg. Med. Chem. 2011, 19, 5861-5868. Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. S. Pecic, S. Chaudhary, P. Makkar, B. J. Reddy, H. A. Navarro, W. W. Harding, Biorg. Med. Chem. 2010, 18, 5562 - 5575. (±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners, S. Chaudhary, O. LeGendre, S. Pecic, H. A. Navarro, W. W. Harding Biorg. Med. Chem. Lett. 2009, 19, 2530 -2532.

Page 18: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

William H. Hersh Professor Department of Chemistry and Biochemistry Queens College 65-30 Kissena Blvd. Queens, NY 11367-1597 [email protected] http://chem.qc.cuny.edu/~whersh

Publications S. Malik, A. Tarpanova, D. Lichtman, Y. Wallach, J. A. Mukhlall, W. H. Hersh, “Synthesis of Dixanthates and Dithiocarbonyl Disulfides as Models for Poly(disulfide)s, in preparation, 2015. W. H. Hersh, “Synthesis of dinucleoside acylphosphonites by phosphonodiamidite chemistry and investigation of phosphorus epimerization,” Beilstein J. Org. Chem. 2015, 11, 184-191. W. H. Hersh, S. T. Lam, D. J. Moskovic, A. J. Panagiotakis, “A Non-Karplus Effect: Evidence from Phosphorus Heterocycles and DFT Calculations of the Dependence of Vicinal Phosphorus-Hydrogen NMR Coupling Constants on Lone-Pair Conformation,” J. Org. Chem. 2012, 77, 4968-4979. J.  A.  Mukhlall,  W.  H.  Hersh,     “Sulfuriza0on  of   Dinucleoside   Phosphite   Triesters   with  Chiral   Disulfides,”  Nucleosides,   Nucleo9des  &  Nucleic  Acids  2011,  30,  706-­‐725.  

Dr. Hersh is an organic chemist with current research projects on synthesis of chiral oligonucleotide phosphorothioates and helical disulfide polymers. Specialties include NMR, X-ray crystallography, and DFT calculations.

1989 - current Queens College 1982 - 1989 UCLA 1980 – 1982 Postdoc, UC Berkeley 1980 PhD, Columbia University

Dr. William Hersh

Page 19: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Qiao-Sheng Hu Professor and Chair Department of Chemistry College of Staten Island 2800 Victory Blvd. Staten Island, NY 10314 [email protected] http://www.csi.cuny.edu/departments/chemistry

Publications H.-H. Zhang, C.-H. Xing, G. B.Tsemo, Q.-S.Hu, t-Bu3P-Coordinated 2-Phenylaniline-Based Palladacycle Complex as a Precatalyst for the Suzuki Cross-Coupling Polymerization of Aryl Dibromides with Aryldiboronic Acids, ACS MacroLett. 2013, 2, 10-13. H.-H. Zhang, C.-H. Xing, Hu, Q.-S., Controlled Pd(0)/t-Bu3P-Catalyzed Suzuki Cross-Coupling Polymerization of AB-Type Monomers with PhPd(t-Bu3P)I or Pd2(dba)3/t-Bu3P/ArI as the Initiator, J. Am. Chem. Soc. 2012, 134, 13156-13159. T.-P. Liu, Y.-X. Liao, C.-H. Xing, Q.-S. Hu, Fluorenone Synthesis by Palladacycle-Catalyzed Sequential Reactions of 2-Bromobenzaldehydes with Arylboronic Acids, Org. Lett. 2011, 13, 2452-2455. T.-P. Liu, C.-H. Xing, Q.-S. Hu, Tandem Reaction Synthesis of Fluorenes/ Indenofluorenes Based on Pd(OAc)2/PCy3-Catalyzed Suzuki Cross-Coupling and C-H Bond Activation Strategy, Angew. Chem. Int. Ed. 2010, 49, 2971-2974. C.-G. Dong, Q.-S. Hu, Preferential Oxidative Addition in Palladium(0)-Catalyzed Suzuki Cross-Coupling Reactions of Dihaloarenes with Arylboronic Acids, J. Am. Chem. Soc. 2005, 127, 10006-10007.

Research Interests Keywords: catalysis, palladium, cross-coupling reaction, polymerization, conjugated polymers The Hu group are interested in the development of new catalysts including transition metal and organic catalysts for cross-coupling reactions and addition reactions, and novel reactions/processes from readily available and cost-effective small organic molecules. These new reactions/processes and catalysts have potential applications in chemical synthesis and polymer/materials synthesis. The approach is interdisciplinary, ranging from fundamental understanding of reaction mechanisms, reaction methodology development to polymer/materials synthesis.

Q i a o - S h e n g H u i s Professor and Chair of Chemistry Department at the College of Staten Island. His research is focused on the development of new reactions/processes and catalysts for chemical synthesis including polymer/ materials synthesis.

2008- current Professor, CSI-CUNY 2005-2007 Associate Professor, CSI 2000-2005 Assistant Professor, CSI 1997-2000 Postdoc, University of Virginia 1995-1997 Postdoc, North Dakota state Univ. 1991-1994 PhD, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences

Dr. Qiao-Sheng Hu

Page 20: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

David Jeruzalmi Professor of Chemistry Marshak 1219 • City College of New York • Graduate Center of the City University of New York 160 Convent Avenue New York, NY 10031 [email protected]

Publications Lu, M., Yang, J., Ren, Z., Sabui, S., Espejo, A., Bedford, M. T., et al. (2009). Crystal structure of the three tandem FF domains of the transcription elongation regulator CA150. Journal of Molecular Biology, 393(2), 397–408. Pakotiprapha, D., & Jeruzalmi, D. (2013). Smal l -angle X-ray scat ter ing reveals architecture and A(2) B(2) stoichiometry of the UvrA-UvrB DNA damage sensor. Proteins: Structure, Function, and Bioinformatics, 81(1), 132–139. Pakotiprapha, D., Liu, Y., Verdine, G. L., & Jeruzalmi, D. (2009). A structural model for the damage-sensing complex in bacter ial nucleotide excision repair. The Journal of Biological Chemistry, 284(19), 12837–12844. Pakotiprapha, D., Samuels, M., Shen, K., Hu, J. H., & Jeruzalmi, D. (2012). Structure and mechanism of the UvrA–UvrB DNA damage sensor. Nature Structural & Molecular Biology, 1–9. Samuels, M., Gulati, G., Shin, J.-H., Opara, R., McSweeney, E., Sekedat, M., et al. (2009). A biochemically active MCM-like helicase in Bacillus cereus. Nucleic Acids Research, 37(13), 4441–4452. Research Interests

The faithful transmission of gene1c information is an important biological imperative. To carry out this function, organisms have evolved processes to replicate their genomes and defend them from attack. We study important mechanisms associated with the processes of DNA replica1on and repair. The central challenge in understanding these processes stems from the large size of the involved multi-protein DNA complexes; these entities also populate many conformational states. Together, these complications place limits on insights that can be revealed by static crystallographic structures or solution methods alone; both sources of information are essential for defining underlying mechanisms. To this end, my group applies X-ray crystallography, supplemented with electron microscopy, to understand these long-standing problems in DNA biology. We also use biochemical studies to inform these approaches and follow up on the resulting insights.

2012- current Professor of Chemistry, CCNY 2002-2012 Molecular and Cellular Biology, Harvard 1996-2002 The Rockefeller University 1994 Ph.D., Yale University

Dr. David Jeruzalmi Jeruzalmi’s group applies X - r a y c r y s t a l l o g r a p h y, supplemented with electron microscopy, to understand these long-standing problems in DNA biology. We also use biochemical studies to inform these approaches and follow up on the resulting insights.

Page 21: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Shi Jin Associate Professor College of Staten Island 2800 Victory Blvd Staten Island, NY 10314 [email protected] http://www.csi.cuny.edu/faculty/JIN_SHI.html

Publications D. D. Gunbas, C. Xue, S. Patwardhan, M. C. Fravventura, H. Zhang, W. F. Jager, E. J. R. Sudholter, L. D. A. Siebbeles, T. J. Savenije, S. Jin, F. C. Grozema, High charge carrier mobility and efficient charge separation in highly soluble perylenetetracarboxyl-di imides Chemical Communications 2014, 50, 4955. N. Jin, H. Zhang, S. Jin, M. D. Dadmun, B. Zhao, Shifting Sol-Gel Phase Diagram of a Doubly Thermosensitive Hydrophilic Diblock Copolymer Poly(methoxytri(ethylene glycol) acrylate-co-acrylic acid)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) in Aqueous Solution Macromolecules 2012, 45, 4790. C. Xue, S. Jin, Exceptionally Strong Electronic Coupling in Crystalline Perylene Diimides via Tuning Chemistry of Materials 2011, 23, 2689. Y. J. Xu, S. W. Leng, C. M. Xue, R. K. Sun, J. Pan, J. Ford, S. Jin, A room-temperature liquid-crystalline phase with crystalline π stacks Angewandte Chemie-International Edition 2007, 46, 3896.      

Research Interests Keywords: Soft Matter, organic optoelectronic materials

Dr. Jin is a physical/materials chemist who is working on structure design, synthesis, characterization and optimization of organic optoelectronic materials for improved performance in devices such organic solar cells, light emitting diodes and field effect transistors,.

2004- 2011 Assistant Prof. of Chemistry, CUNY 2012-current Associate Prof. of Chemistry, CUNY

Dr. Shi Jin

Page 22: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Andrei Jitianu Associate Professor Lehman College 250 Bedford Park Boulevard West Bronx,10468 NY [email protected] http://www.lehman.edu/academics/chemistry/prof-jitianu.php

Publications L. Predoana, A Jitianu, S. Preda, B. Malic, M. Zaharescu, Thermal behavior of Li-Co-citric acid water based gels as precursors for LiCoO2 powders, Journal of Thermal Analysis and Calorimetry, 2015, 119, 145-153. L. C. Klein , B. McClarren, and A. Jitianu, Silica-Containing Hybrid Nanocomposite “Melting Gels”, Materials Science Forum, 2014, 783-786, 1432-1437. M. Jitianu, DC. Gunness, DE. Aboagye, M. Zaharescu, A. Jitianu, Nanosized Ni-Al layered double hydroxides - Structural characterization, Materials Research Bulletin, 2013, 48, 1864-1873. L. Gambino, A. Jitianu, L.C. Klein, Dielectric behavior of organically modified siloxane melting gels, Journal Of Non-Crystaline Solids 2012, 24, 3501-3504. A. Jitianu, K. Lammers, G.A. Arbuckle-Kiel, L.C. Klein, Thermal analysis of organically modified siloxane melting gels, Journal of Thermal Analysis and Calorimetry, 2012, 107, 2039-2045.

Research Interests Keywords: Sol-gel, Nanocomposites, Hybrids Organic- Inorganic, Coatings, My studies range from the elucidation of early stages of formation of the hybrid materials by sol-gel process to the design of hybrid nanocomposite materials with magnetic, gas-sensing, electric and optical properties. At Lehman my research was mainly focused to developing a new class of materials called Hybrid Melting Gels for hermetic applications in the microelectronics industry and for optical applications. Beside this, studies of nanoparticles or nanocomposites in different systems have been carried out.

J i t ianu ’s r esea rch i s f ocused on ma te r i a l s chemistry, specifically on sol-gel chemistry with directt applications in anticorrosive, hermetic coat ings and nanomaterals for electronic industry.

2013- current Associate Professor, Lehman College-CUNY 2008-2013 Assistant Professor, Lehman College-CUNY 2005-2008 Research Associate, Rutgers University 2002-2003 “Marie Curie” Postdoctoral fellow, University

of Orleans, France 1996-2001 PhD student University of Bucharest, Romania

Dr. Andrei Jitianu

Page 23: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

George John Professor of Chemistry The City College of New York Center for Discovery and Innovation (CDI) -14302 85 St. Nicholas Terrace, New York, NY 10031 [email protected] www.sci.ccny.cuny.edu/~john/

Publications Faure, L.; Nagarajan, S.; Hwang, H.; Montgomery, C. L.; Khan, B. R.; John, G.; Koulen, P.; Blancaflor, E. B.; Chapman, K. D. Synthesis of Phenoxyacyl-Ethanolamides and Their Effects on Fatty Acid Amide Hydrolase Activity, J. Biol. Chem, 2014, 289, (13): 9340-51.   Vijai Shankar, B.; Jadhav. S. R.; Vemula, P. K; John. G. Recent Advances in Cardanol Chemistry in a Nutshell: From a Nut to Nanomaterials, Chem. Soc. Rev., 2013, 42, 427-438, Cover Page feature. Reddy, A. L.M.; Nagarajan, S.; Chumyim, P.; Gowda, S. R.; Dubey, M.; Jadhav, S. R.; John, G.; Ajayan, P. M. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes, Scientific Reports (Nature) 2012, 2, 960-964. Shankar, B. V.; Jadhav, S. R.; Pradhan, P.; De Carlo, S.; John, G. Adhesive vesicles through adaptive response of a biobased surfactant, Angew. Chem. Int. Ed., 2010, 49, 9509 –9512. Cover Page feature. Jadhav, S. R.; Vemula, P. K.; Kumar, R.; Raghavan, S.; John, G. Sugar-derived phase-selective molecular gelators as model solidifiers for oil spills, Angew. Chem. Int. Ed., 2010, 49, 7695-7698, Cover Page.

Research Interests Keywords: biobased materials, green chemistry, soft materials, biorefinery, biomimetics, phase selective gels, oil structuring agents (food/cosmetics), antibacterial coatings, battery components/energy storage, green surfactants John’s research is rooted in the idea that innovation can be inspired by nature to develop economical and sustainable technologies for a greener future. The group has harnessed crop-based precursors such as sugars, fatty acids and plant lipids to design a unique set of multifunctional soft-materials including polymers, gels and green surfactants. His group has successfully developed environmentally benign antibacterial paints, polymer-coatings, molecular gel technologies, oil spill recovery materials, battery components and oil thickening agents. As soft materials research is highly interdisciplinary and collaborative, John’s lab encourages the blending of such diverse elements including organic synthesis, green chemistry, material chemistry, interfacial phenomena, colloid science and biomimetics.

George John is a Professor of Chemistry/the Center for Discovery and Innovation, the City College of New York -CUNY. His research is focused on molecular design of synthetic lipids, membrane mimics, soft nanomaterials, green energy technologies and organic materials chemistry.

Dr. George John

2012- current Professor of Chemistry, CCNY 2004-2012 Associate Prof. of Chemistry, CCNY 2002-2004 Research Faculty, RPI, NY 1996-2002 JSPS Fellow/Scientist, Japan 1994-1995 Postdoc, University of Twente, NL 1993 PhD Kerala University, India

Page 24: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Reza Khayat Assistant Professor City College of New York Center for Discovery and Innovation 85 Saint Nicholas Terrace; 12316 New York, NY 10031 [email protected] www.khayatlab.org

Publications Veesler D, Khayat R, Architecture of a dsDNA viral capsid in complex with its maturation protease. Structure 2014 Feb 4 (22): 1-8 Khayat R, Lee JH, Structural characterization of cleaved, soluble human immunodeficiency virus type-1 envelope glycoprotein trimers. J. Virology, 2013 Sep;87(17):9865-72 Pejchal R, Khayat R, A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield, Science 2011 Nov. 25:334(6059):1097-103 Khayat R, Brunn N, The 2.3-angstrom structure of porcine circovirus 2, 2011 J. Virology Aug; 85(15):7856-62 Khayat R, Lander GC, An automated procedure for detecting protein folds from sub-nanometer resolution electron density, 2010 J. Struct. Bio. Jun; 170(3); 513-21

Research Interests Keywords: cryo-electron microscopy, X-ray crystallography, biophysics, biochemistry, cellular biology We seek to understand the structural and chemical mechanism by which pathogens hijack the cellular machinery of their host for infection and replication. We use a combination of techniques to understand this mechanism at the atomic resolution to relate how chemistry drives biology, and a number of techniques to understand how biology feeds back into chemistry for new pathways to be exploited by the pathogen for infection and replication. We are also interested in developing computational methods to further combine X-ray crystallography with cryo-electron microscopy.

Khayat group studies the structure and function of proteins encoded for and utilized by pathogens to infect and replicate. We use a combination of X-ray c r ys ta l l og raphy, c r yo -e l e c t r o n m i c r o s c o p y, biophysics, biochemistry, and cellular biology to complete these studies.

2012- current Current position 2008-2012 Sr. Research Associate, TSRI 2003-2008 Research Associate, The Scripps

Research Institute 1998-2003 PhD, Columbia University

Dr. Reza Khayat

Page 25: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Mark N. Kobrak Professor Department of Chemistry, Brooklyn College -- CUNY 2900 Bedford Ave. Brooklyn, NY 11210 [email protected] http://userhome.brooklyn.cuny.edu/mkobrak/

Publications C. H. C. Janssen, A. Sanchez and M. N. Kobrak, Selective Extracction of Metal Ions from Aqueous Phase to Ionic Liquids: A Novel Thermodynamic Approach to Separations, ChemPhysChem, 2014, 15, 3536. C. H. C. Janssen, A. Sanchez, G.-J. Witkamp and M. N. Kobrak, A Novel Mechanism for the Extraction of Metals from Water to Ionic Liquids, ChemPhysChem, 2013, 14, 3806. M. N Kobrak, A Proposed Voltage Dependence of the Ionic Strength of a Confined Electrolyte Based on a Grand Canonical Ensemble Model, J. Phys. Cond. Matt., 2013, 25, 095006. H. Li and M.N. Kobrak, Instantaneous Normal Mode Analysis of a Series of Model Molten Salts, ChemPhysChem, 2012, 13, 1934. M. N. Kobrak and H. Li, Electrostatic Interactions in Ionic Liquids: The Dangers of Dipole and Dielectric Descriptions, Phys. Chem. Chem. Phys., 2010, 12, 1922.

Research Interests Keywords: Ionic Liquids, interfaces, molecular dynamics, thermodynamics The group’s interest in ionic liquids center on using both analytical and simulation techniques to understand this novel class of materials. The group has uncovered structure-property relationships relevant to both viscosity and solvent polarity in ionic liquids, aiding in the development of ionic liquids with optimal properties for applications of interest. Recent projects consider the use of ionic liquids for the extraction of metals from the aqueous phase. Additional interests center on using thermodynamics to understand solid-liquid interfaces. The results demonstrate linkages between macroscopically-observable properties such as surface tension and the microscopic structure of the interface.

M a r k K o b r a k i s a theoretical physical chemist with expertise in classical and quantum dynamics simulations. Current work centers on theoret ical description of ionic liquids, and studies of solid-liquid interfaces.

2013- current Professor, Brooklyn College 2006- 2013 Associate Professor, Brooklyn College 2001- 2006 Assistant Professor, Brooklyn College 2000-2001 Post-doctoral fellow, Notre Dame

University and The Pennsylvania State University

1998-1999 Post-doctoral fellow, University of Houston

1992-1997 PhD, University of Chicago

Dr. Mark N. Kobrak

Page 26: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Sanjai Kumar Associate Professor Queens College, and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York 65-30 Kissena Blvd. Queen, NY 11367 [email protected] http://chem.qc.cuny.edu/~skumar/

Publications Hsin-Pin Ho, et al. “Studies on Quantitative Phosphopeptide Analysis by MALDI Mass Spectrometry Without Label, Chromatography or Calibration Curves” Rapid Communications in Mass Spectrometry 2014, 28(24):2681-9 Dibyendu Dana et al. "Development of a highly potent, selective, and cell-active Inhibitor of cysteine cathepsin L-A hybrid design approach" Chemical Communications (Camb) 2014, 50(74):10875-8 Ivone Gomes et al. "GPR171 is a Hypothalamic G Protein-Coupled Receptor for BigLEN, a Neuropeptide involved in Feeding” Proceedings of the National Academy of Sciences (PNAS) USA, 2013, 110(40), 16211–16216 Tirtha K. Da et al. “Centrosomal Kinase Nek2 Cooperates With Oncogenic Pathways To Promote Metastasis” Oncogenesis, 2013, 2, e69; doi:10.1038/oncsis.2013.34 Dibyendu Dana et al. Development of Cell-Active Non-peptidyl Inhibitors of Cysteine Cathepsins” Bioorganic and Medicinal Chemistry, 2013, 21, 2975-87

Research Interests Keywords: Protein kinases, Nek2 kinase, Cathepsin L, Cathepsin B, PTP1B, Chemical Biology, Small molecule Probes and sensors The research in Kumar’s laboratory spans at the interface of chemistry and biology, and is broadly focused on discovery of unknown enzyme function using chemical biology approaches. The current project includes the development of small molecule probes for protein kinases and protein tyrosine phosphatases, a critically important group of cellular signaling enzymes. The probes are then utilized to understand the enzyme function in both normal physiology and human diseases. Another important area of current interest is to develop appropriate chemical biology tools that can be utilized to probe the function of cysteine cathepsin enzymes in diverse cellular processes. For more information, please visit the website.

Dr. Kumar’s lab studies chemical biology approaches to unders tand enzyme function involved in human diseases. Development of small molecule probes and sensors of protein kinases, p r o t e i n t y r o s i n e phosphatases, and cysteine proteases.

2007- current Associate Prof. of Chemistry, Queens College

2002-2007 PostDoc, Albert Einstein College of Medicine

Dr. Sanjai Kumar

Page 27: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Thomas Kurtzman Assistant Professor Lehman College 250 Bedford Park Boulevard West Bronx,10468 NY http://www.lehman.edu/faculty/tkurtzman/

Publications Wickstrom,  L.  et  al.  Parameteriza0on  of  an  effec0ve  poten0al  for  protein-­‐ligand  binding  from  host-­‐guest  affinity  data.  J.  Mol.  Recognit.  (Accepted  Journal  of  Molecular  Recogni9on)  

Nguyen,   C.   N.,   Cruz,   A.,   Gilson,   M.   K.   &  Kurtzman,   T.   Thermodynamics   of   Water   in  an  Enzyme  Ac0ve  Site:  Grid-­‐Based  Hydra0on  Analysis   of   Coagula0on   Factor   Xa.   J.   Chem.  Theory   Comput.   (2014).   doi:10.1021/ct401110x  

Armaiz-­‐Pena,  G.  N.  et  al.  Src  ac0va0on  by  β-­‐adrenoreceptors  is  a  key  switch  for  tumour  metastasis.  Nat.  Commun.  4,  1403  (2013).  

Nguyen,  C.  N.,  Kurtzman  Young,  T.  &  Gilson,  M.  K.  Grid  inhomogeneous  solva0on  theory:  Hydra0on  structure  and  thermodynamics  of  the  miniature  receptor  cucurbit[7]uril.  J.  Chem.  Phys.  137,  044101–044101–17  (2012)  *Young,  T.,  Abel,  R.,  Kim,  B.,  Berne,  B.  J.  &  Friesner,  R.  A.  Mo0fs  for  molecular  recogni0on  exploi0ng  hydrophobic  enclosure  in  protein–ligand  binding.  Proc.  Natl.  Acad.  Sci.  104,  808  –813  (2007).    *Formerly  published  as  T.  Young      

Research Interests Keywords: Solvation Thermodynamics, Statistical Mechanics, Computer Aided Drug Design Research  in  the  Kurtzman  lab  focuses  on  the  development  of  computa0onal  tools  that  can  aid  in  the  discovery  and  ra0onal  design  of  new  drugs.    His  approach  applies  sta0s0cal  mechanical  theory  and  computer  simula0ons  to  becer  understand  the  physical  principles  that  govern  the  molecular   recogni0on   between   proteins   and   small   molecule   ligands   (drugs).     A   par0cular  emphasis   is   placed   on   the   role   that   water   plays   in   the   molecular   recogni0on   process.     A  principal  goal  of  this  research  is  to  help  design  and  discover  drugs  that  bind  with  high  affinity  and  selec0vity  to  given  protein  targets  

The Kurtzman group focuses on the development of methodologies to characterize the structure and thermodynamics of water on the surface of proteins and the exploitation of solvation properties for the discovery and design of new drugs.

2010- Present Assistant Professor, Lehman College-CUNY 2008-2010 AsssistantProfessor,  San  José  State  Univ.  2007-2008 Visiting Professor, Yeshiva University 2004-2007 Postdoctoral Fellow, Columbia University 2002 Doctorate, Stanford University

Tom Kurtzman

Page 28: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Michal Kruk Professor College of Staten Island and Graduate Center Department of Chemistry, Building 6S-241 2800 Victory Boulevard Staten Island, NY 10314 [email protected] http://www.csi.cuny.edu/faculty/departments/chemistry/kruk_michal.html

Publications Huang, L.; Kruk, M. “Versatile Surfactant/Swelling-Agent Template for Synthesis of Large-Pore Ordered Mesoporous Silicas and Related Hollow Nanoparticles”, Chem. Mater. 2015, 27, 679. Kruk, M. “Access to Ultra-large-pore Ordered Mesoporous Materials Through Selection of Surfactant/Swelling-Agent Micellar Templates”, Acc. Chem. Res. 2012, 45, 1678. Mandal, M.; Kruk, M. “Family of Single-micelle-templated Organosilica Hollow Nanospheres and Nanotubes Synthesized through Adjustment of Organosilica/Surfactant Ratio”, Chem. Mater. 2012, 24, 123. Cao, L.; Kruk, M. “Grafting of Polymer Brushes from Nanopore Surface via Atom Transfer Radical Polymerization with Activators Regenerated by Electron Transfer”, Polym. Chem. 2010, 1, 97.

Research Interests Keywords: ordered mesoporous materials, hollow nanoparticles, controlled surface-initiated radical polymerization •  Design of ordered nanoporous materials. •  Application of controlled polymerizations in the synthesis of nanostructured materials, including porous

inorganic/polymer nanocomposites. •  Development of methods for accurate characterization of nanoporous materials. •  Synthesis of nanoporous materials with closed pores. •  Synthesis of single-micelle-templated hollow nanoparticles.

Michal Kruk is a professor in chemistry. His research interest is in design of well-defined nanoporous and nanostructured materials using surfactant micelle templating, nanocasting and controlled surface-initiated polymerization.

2013- current Professor 2011-2013 Associate Professor 2005-2010 Assistant Professor 2003-2005 Visiting Assistant Professor 1998-2003 Postdoctoral fellow 1994-1998 PhD Student in Chemistry

Dr. Michal Kruk

Page 29: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Mahesh Lakshman Professor The City College of New York Department of Chemistry 160 Convent Avenue New York NY [email protected] www.sci.ccny.cuny.edu/~mkl

Publications §  M. Singh, M. K. Lakshman, Diarylmethanes via an unprecedented Pd-catalyzed C–C cross coupling of 1-(aryl)methoxy-1H-benzotriazoles with arylboronic acids, ChemCatChem. 2015, 7, accepted for publication. §  P. F. Thomson, D. Parrish, P. Pradhan, M. K. Lakshman, Modular, metal-catalyzed, cyclo-isomerization approach to angularly-fused polycyclic aromatic hydrocarbons and their derivatives, J. Org. Chem. 2015, 80, 7435–7446. §  R. R. Chamala, D. Parrish, P. Pradhan, M. K. Lakshman, Purinyl N1-directed aromatic C–H oxidation in 6-arylpurines and 6-arylpurine nucleosides, J. Org. Chem. 2013, 78, 7423–7435. §  M. K. Lakshman, A. Kumar, R. Balachandran, B. W. Day. G. Andrei, R. Snoeck, J. Balzarini, Synthesis and biological properties of C-2 triazolylinosine derivatives, J. Org. Chem. 2012, 77, 5870–5883. (Editor-selected featured article) §  M. K. Lakshman, A. C. Deb, R. R. Chamala, P. Pradhan, R. Pratap, Direct arylation of 6-phenylpurine and 6-arylpurine nucleosides by ruthenium-catalyzed C–H bond activation, Angew. Chem., Int. Ed. 2011, 50, 11400–11404. §  S. Bae, M. K. Lakshman, O6-(Benzotriazol-1-yl)inosine derivatives: easily synthesized, reactive nucleosides, J. Am. Chem. Soc. 2007, 129, 782–789.

Research Interests Keywords: Chemical Methodology, Metal catalysis, Nucleoside Modification, Biomolecules The program has many facets but can be broadly divided into the following areas. A. Development of New Chemical Methodology. B. Nucleoside modifications by new metal-catalyzed as well as novel uncatalyzed routes. B. Unusual applications of peptide coupling agents. C. Structural and biological effects of DNA modification by environmental pollutants. C. Novel reactions involving arynes. D. Development of new chemical methodology. Every aspect entails a detailed understanding of chemical process via mechanism studies involving techniques such as molecular spectroscopy, multinuclear NMR, and isotopic labeling.

Lakshman is an organic/bioorganic chemist with interests in: (a) new chemical methodology, (b) nucleoside modification by metal catalysis and uncatalyzed methods, (c) biological agents, (d) novel applications of peptide coupling agents, (e) new aryne reactions.

20008- current Professor 2004-2008 Associate Professor 2000-2004 Assistant Professor 1998-2000 Assistant Professor (U North Dakota) 1994-1997 Senior Scientist (Private Sector) 1990-1994 Fogarty Fellow NIH (HIDDK) 1985-1989 PhD

Dr Mahesh Lakshman

Page 30: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Themis Lazaridis Professor City College of New York Dept of Chemistry and Biochemistry 160 Convent Ave New York NY [email protected] http://www.sci.ccny.cuny.edu/~themis/

Publications Brice A., Lazaridis T. "Structure and Dynamics of a Fusion Peptide Helical Hairpin on the Membrane Surface: Comparison of Molecular Simulations and NMR", J. Phys. Chem. B, 118:4461-70 (2014) Lazaridis T., Versace R. "The treatment of solvent in multiscale biophysical modeling", Isr. J. Chem., 54:1074-83 (2014) Lazaridis T., Leveritt JM, PeBenito L. "Implicit membrane treatment of buried charged groups. Application to peptide translocation across lipid bilayers", BBA Biomembranes, 1838:2149-59 (2014) Prieto L., He Y., Lazaridis T. "Protein arcs may form stable pores in membranes", Biophys J, 106:154-161 (2014) Rahaman A., Lazaridis, T. "A thermodynamic approach to alamethicin pore formation", BBA Biomembranes 1838:98 (2014)

Research Interests My research is in the area of Theoretical and Computational Biophysical Chemistry, which aims to understand how biological systems work in terms of the fundamental laws of Physics and Chemistry. Biomolecules, such as proteins and nucleic acids, have well defined conformations which often change in the course of their function. Our goal is to understand the forces that operate within and between biomolecules and develop quantitative mathematical models for their energy as a function of conformation. Such models are useful in many ways, such as predicting the three-dimensional structure from sequence, characterizing conformational changes involved in biological function, or predicting the binding affinity between two biomolecules.

The Lazaridis lab works in the area of theoretical and computational Biophysics. In the past few years we have worked on the interaction of proteins with biological m e m b r a n e s . W e a r e especially interested in the process of pore formation by antimicrobial peptides and other toxins.

1998- City College 1992-1998 Postdoc, Harvard University 1987-1992 PhD, University of Delaware

Dr Themis Lazaridis

Page 31: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Jianbo Liu Associate Professor Queens College and the Graduate Center of CUNY Department of Chemistry and Biochemistry 65-30 Kissena Blvd. Queens, NY 11367 [email protected] http://chem.qc.cuny.edu/~jliu/Liu_page/Liu_main.htm

Publications Fangwei Liu, Wenchao Lu, Yigang Fang, and J. Liu*, "Evolution of oxidation dynamics of histidine: Non-reactivity in the gas phase, peroxides in hydrated clusters, and pH dependence in solution", Phys. Chem. Chem. Phys. 2014, 16, 22179-22191. J. Liu*, Steven D. Chambreau, and Ghanshyam L. Vaghjiani, "Dynamics simulations and statistical modeling of thermal decomposition of 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-2,3-dimethylimidazolium dicyanamide", J. Phys. Chem. A., 2014, 118, 11133-11144. Wenchao Lu, Fangwei Liu, Rifat Emre, and J. Liu*, "Collision dynamics of protonated N-acetyl methionine with singlet molecular oxygen (a1Dg): The influence of amide bond and ruling out the complex-mediated mechanism at low energies", J. Phys. Chem. B, 2014, 118, 3844-3852. Rui Sun, Matthew R. Siebert, Lai Xu, Steven D. Chambreau*, Ghanshyan L. Vaghjiani, Hans Lischka, Jianbo Liu*, and William L. Hase*, "Direct dynamics simulation of the activation and dissociation of 1,5-dinitrobiuret (HDNB)", J. Phys. Chem. A, 2014, 118, 2228-2236.   Research Interests

Keywords: mass spectrometry, singlet oxygen, reaction dynamics/kinetics, spectroscopy Our research focuses on using various instrumental analysis approaches (e.g., mass spectrometry, laser spectroscopy, and ion-molecule reactions) to probe biologically relevant processes in a spectrum of systems ranging from isolated biomolecules, through micelles and aerosols, to biomolecule solution. The experiments are complemented by extensive computational efforts including statistical modeling and dynamics simulations. We are also active in discovering and developing new instrumentation methods and nanotechnologies.

Physical Chemistry Analytical Chemistry Computational Chemistry Nanomaterials

2013- current Associate Professor, Queens College 2016-2013 Assistant Professor, Queens College 1999-2000 Postdoc, Lawrence Berkeley Lab 1997 Ph.D. (Physical Chemistry)

Dr. Jianbo Liu

Page 32: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Sharon Loverde Assistant Professor, Chemistry, College of Staten Island Graduate Center, Departments of Chemistry, Biochemistry, and Physics CUNY, College of Staten Island 2800 Victory Blvd, 6S-238 Staten Island, NY 10314 [email protected] https://sites.google.com/site/loverdelaboratory/

Publications Zhengyu Ma, D. N. Lebard *, S. M. Loverde *, K. A. Sharp, M. L. Klein, D. E. Discher, T. H. Finkel, Plos One, 11, e112292 (2014). Myungshim Kang and Sharon M. Loverde, Journal of Physical Chemistry B, 118, 11965-11972 (2014). Sharon M. Loverde, Journal of Physical Chemistry Letters, 5, 1669-1675 (2014). Sharon M. Loverde, Molecular Simulation, 40, 794-801 (2014). Wataru Shinoda, D. E. Discher, M. L. Klein, S. M. Loverde, Soft Matter, 9, 11549-11556 (2013).

Research Interests Keywords: Molecular dynamics, molecular self-assembly, polymer membranes, cellular membranes, multi-scale models, polymers/biopolymers

The Loverde laboratory utilizes all-atomistic (AA) a n d c o a r s e - g r a i n e d molecular dynamics (CG-M D ) s i m u l a t i o n s , i n combination with advanced sampling techniques, to i n v e s t i g a t e s o f t a n d biological materials.  

2012- current Assistant Prof. of Chemistry, Biochemistry, and Physics, College of Staten Island, CUNY

Dr. Sharon Loverde

Page 33: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Research Interests Keywords: superhydrophobicity, wetting, polymer pen printing, photocatalysis, thermal interfaces Using natural surfaces as inspiration, the Lyons group fabricates nanoscale materials with unique wetting, catalytic, thermal and/or optical properties. We are especially interested in developing a fundamental understanding of reactions and properties at the solid-liquid-gas interface. We work closely with industry with the goal of transitioning our inventions into industrially relevant innovations; active projects include: anti-reflective self-cleaning optically clear coatings to increase the energy efficiency of photovoltaic panels and the isolation and study of single cells within nano/picoliter gel droplet arrays.

Dr Alan Lyons Alan Lyons is Professor of Chemistry at the College of Staten Island and Graduate Center of CUNY. His research is focused on the effect of topography and chemistry on the wetting, thermal, optical and catalytic properties of surfaces.

Publications Y. Zhao, Y. Liu, QF Xu, M. Barahman, A.M. Lyons, A Catalytic, Self-Cleaning Surface with Stable Superhydrophobic Properties: Printed PDMS Arrays Embedded with TiO2 Nanoparticles, ACS Appl. Mater. Interfaces, 2015, 7 (4), pp 2632–2640.

Z. Mao, M. Ganesh, M. Bucaro, I. Smolianski, R.A. Gross, A.M. Lyons, A High Throughput, High Resolution Enzymatic Lithography Process: Effect of Crystallite Size, Moisture and Enzyme Concentration, Biomacromolecules, 2014, 15 (12), 4627-4636. D. Aebisher, D. Bartusik, Y. Liu, Y. Zhao, M. Barahman, Q.F. Xu, A.M. Lyons, A. Greer, Superhydrophobic Photosensitizers. Mechanistic Studies of 1O2 Generation in the Plastron and Solid/Liquid Droplet Interface, J. Am. Chem. Soc., 2013, 135, 18990–1899. Q.F. Xu, B. Mondal, and A.M. Lyons, Fabricating Superhydrophobic Polymer Surfaces with Excellent Abrasion Resistance by a Simple Lamination Templating Method, ACS Appl. Mater. Interfaces, 2011, 3, 3508–3514. R. Kempers, A.M. Lyons, A.J. Robinson, Modeling & Characterization of Metal Micro-Textured Thermal Interface Materials, ASME J. Heat Transfer, 2013, 136, 01130.

Dr. Alan M. Lyons Professor College of Staten Island and Graduate Center CUNY Room 62-225 2800 Victory Boulevard Staten Island, NY 10314 [email protected] http://csivc.csi.cuny.edu/Alan.Lyons/files/

2008- current Professor, Department of Chemistry, College of Staten Island & Graduate Center CUNY.

1980-2008 Distinguished Member of Technica Staff, Manager & Group Leader Bell Laboratories, Murray Hill NJ

1981- 1987 PhD, MS, Polymer Chemistry NYU-Poly

Page 34: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Prabodhika Mallikaratchy Assistant Professor Lehman College 250 Bedford Park Boulevard West Bronx,10468 NY [email protected] http:/ /www.lehman.edu/academics/chemistry/prof_mallikaratchy.php

Publications Prabodhika Mallikaratchy, Zumrut, Hasan, Ara, Naznin “Discovery of Biomarkers Using Aptamers Evolved in Cell-SELEX Method”, Aptamers selected by cell-SELEX for Theranostics” Principles, Eds. W. Tan and X. Fan, SpringerLink. 2015; p.265. Prabodhika Mallikaratchy, Jeffery Gardner, Lars Ulrik R. Nordstrøm, Nicholas J. Veomett, Michael R. McDevitt, Mark L. Heaney, and David A. Scheinberg.Nucleic Acid Therapeutics. 2013, 23(4): 289-299. doi:10.1089/nat.2013.0425. Prabodhika R. Mallikaratchy, Alessandro Ruggiero, Jeffrey R. Gardner, Vitaly Kuryavyi, William F. Maguire, Mark L. Heaney, Michael R. McDevitt, Dinshaw J. Patel and David A. Scheinberg. “A multivalent DNA aptamer specific for the B cell receptor on human lymphoma and leukemia” Nucleic Acids Res. 2011; 39(6): 2458. Tang Z., Zhu Z., Mallikaratchy P., Yang R., Sefah K., Tan W. “Aptamer-target binding triggered molecular mediation of singlet oxygen generation” Chem. Asian J. 2010; 5 (4): 783.

Research Interests Keywords: DNA aptamers, Cell-SELEX technology, DNA nanotechnology Long-term goal of this laboratory is to develop oligonucleotide aptamer based synthetic antibodies for biological and biomedical applications. Therefore, this research program is aimed at generating new aptamers against biologically important cellular targets, and molecular engineering of multifunctional aptamer structures suitable for drug delivery.  

The Mallikaratchy group focuses on developing DNA aptamers as therapeutics, Cell-SELEX technology and DNA nanotechnology

2010- Present Assistant Professor, Lehman College- CUNY

2008-2010 Assistant Professor, San Jose State Univ. 2003-2007 PhD, University of Florida, Gainesville

Dr. Prabodhika Mallikaratchy

Page 35: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Hiroshi Matsui Professor Hunter College 695 Park Avenue, New York, NY 10065 [email protected] http://www.hunter.cuny.edu/chemistry/faculty/Lou/Lou

Publications Dielectric Response of High Explosives at THz Frequencies Calculated by Density Functional Theory, Lulu Huang, Andrew Shabaev, Sam Lambrakos, Noam Bernstein, Vern Jacobs, Dan Finkenstadt, Lou Massa, Journal of Materials Engineering and Performance (2012) 21(7), 1120-1132.

The Kernel Energy Method: Application to Graphene and Extended Aromatics, Lulu Huang, Hugo Bohorquez, Cherif F. Matta and Lou Massa, IJQC, Vol. 111, 15, 4150-4157 (2011) The Kernel Energy Method: Construction of 3 & 4 tuple Kernels from a List of Double Kernel Interactions, Lulu Huang, Lou Massa, Journal of Molecular Structure: THEOCHEM, Vol. 962, issue 1-3, 72-79 (2010) Calculation of Strong and Weak Interactions in TDA1 and RangDP52 by Kernel Energy Method, Huang, L.; Massa, L.; Karle, I.; Karle, J. Proceedings of the National Academy of Sciences, Vol. 106, No. 10, 3664-3669 (2009) The Kernel Energy Method of Quantum Mechanical Approximation carried to Fourth Order Terms, Huang, L.; Massa, L.; and Karle, J. PNAS, Vol. 105, No. 6, 1849-1854 (2008)

Research Interests Keywords: differential equations, density matrices, density functional theory, Xray crystallography, kernel energy method, information theory, Applications of Quantum Mechanics to the electronic structure of atoms, molecules, and solids.

Postdoc: Brookhaven National Laboratory PhD: Theoretical Molecular Physics, Georgetown University

Dr. Louis Massa

Page 36: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Hiroshi Matsui Professor Hunter College / Weill Medical College of Cornell U 413 E. 69th Street Belfer Research Building New York, NY 10021 [email protected] www.hunter.cuny.edu/chemistry/faculty/Hiroshi/Hiroshil

Publications “Rational strategy for shaped nanomaterial synthesis in reverse micelle reactors”, Z. Wei, H. Matsui, Nature Commun., 5, 3870, (2014). “Impedimetric Detection of Mutant p53 Biomarker-Driven Metastatic Breast Cancers under Hyposmotic Pressure”, M. Shi, N. Shtraizent, A. Polotskaia, J. Bargonetti, H. Matsui, PloSOne, 9(6): e99351., DOI: 10.1371/journal.pone.0099351 (2014). “Biocatalytic Self-Assembly Enables Discovery of Catalytic Peptides by Phage Display”, Y. Maeda, N. Javid, K. Duncan, L. Birchall, K. Gibson, D. Cannon, Y. Kanetsuki, C. Knapp, T. Tuttle, R.V. Ulijn, H. Matsui, J. Am. Chem. Soc., 136, 15893-15896 (2014). “Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generators”, Y. Ikezoe, J. Fang, T.L. Wasik, T. Uemura, Y. Zheng, S. Kitagawa, H. Matsui, Adv. Mater., 27, 288-291 (2014). “Label-free cancer cel l detect ion with impedimetric transducers”, R. de la Rica, S, Thompson, A. Baldi, C. Fernández-Sánchez, C.M. Drain, and H. Matsui, Anal. Chem., 81, 10167 (2009). (featured as research news in the N a t i o n a l C a n c e r I n s t i t u t e i n 2 0 0 9 , http:/ /physics.cancer.gov/news/2009/dec/po_news_e.asp)

Research Interests Keywords: Cancer Nanotechnology, Cancer Diagnostics/therapeutics, Lab-On-a-Chip, Medical Nanoparticles 1.  Study of the effect on cellular structure by cancer metastasis. 2.  Analysis of nanoscale vesicles released from cancer cells for diagnostics and therapeutics. 3.  Electric silicon chip microfabrication for the detection of cancer and related cells. 4.  Synthesis of nanoparticles in complex shapes for medical applications such as MRI contrast agents and drug delivery.

Matsui is a Professor at Hunter College and Weill Medical College of Cornell University. My research a r e a s a r e C a n c e r diagnostics/ therapeutics, Bionanotechnology, Lab-On-a-Chip, and Nanoparticle Synthes is for Medica l Applications.

2001- current Current position 1996-1999 Columbia University, Postdoc 1992-1996 Purdue University, PhD 1991-1992 Stanford University, MS

Dr. Hiroshi Matsui

Page 37: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Dr. Aneta Mieszawska Assistant Professor, Nanomedicine Department of Chemistry Brooklyn College 2900 Bedford Avenue Brooklyn, New York NY [email protected] www.cuny.edu/web/academics/faculty

Publications Mieszawska AJ, Kim Y, Gianella A, van Rooy I, Priem B, Labarre MP, Ozcan C, Cormode DP, Petrov A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJ.; “Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy” Biocojug Chem. 2013, PMID 23957728. Gianella A, Mieszawska AJ, Hoeben FJ, Janssen HM, Jarzyna PA, Cormode DP, Costa KD, Rao S, Farokhzad OC, Langer R, Fayad ZA, Mulder WJ. “Synthesis and in vitro evaluation of a mul t i funct ional and surface-swi tchable nanoemulsion platform.” Chem Commun. 2013 PMID 23877789. Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP.; “Multifunctional gold nanoparticles for diagnosis and therapy of disease” Mol. Pharm. 2013, PMID 23360440. Mieszawska AJ, Gianella A, Cormode DP, Zhao Y, Meijerink A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJ.; “Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging” Chem. Commun. 2012, PMID 22555311. Research Interests

Keywords: second generation nanoparticles, theranostics, biodegradable polymers, nanocrystals The Mieszawska group research focuses on nanotechnology and nanomedicine with specific interest in designing and testing the nanoparticle systems for concurrent imaging and therapy of disease. These theranostic nanoparticles are based on slow releasing biodegradable and biocompatible polymers, such as PLGA or PLA, that encapsulate contrast agents and small drug molecules. The primary goal is to target and deliver efficacious therapy directly to cancer cells. This interdisciplinary research involves active collaboration with clinicians from Icahn School of Medicine at Mount Sinai.

Aneta Mieszawska is an Assistant Professor in the Department of Chemistry at Brooklyn Col lege. Her research is focused on n a n o m e d i c i n e a n d application of nanoparticle based systems for cancer detection and treatment.

2013- current Assistant Professor, Brooklyn College 2011-2013 Postdoctoral Fellow, Icahn School of Medicine at Mount Sinai 2007-2010 Postdoctoral Associate, Tufts University 2002-2007 PhD University of Louisville

Dr. Aneta Mieszawska

Page 38: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Michael V. Mirkin Professor of Chemistry CUNY-Queens College 65-30 Kissena Blvd Flushing, NY 11367 [email protected] http://chem.qc.cuny.edu/~mirkinlab/mvm.html

Publications Nanoelectrochemistry, ed. M.V. Mirkin and S. Amemiya, CRC Press, Boca Raton, FL, 2015 Scanning Electrochemical Microscopy, ed. A.J. Bard and M.V. Mirkin, CRC Press, Boca Raton FL, 2nd edition, 2012. T. Sun, Y. Yu, B.J. Zacher and M.V. Mirkin, Scanning Electrochemical Microscopy of Individual Catalytic Nanoparticles, Angew. Chem. Int. Ed. 2014, 53, 14120 –14123 (VIP article). Y.X. Wang, T. Kakiuchi, Y. Yasui, and M.V. Mirkin, Kinetics of Ion Transfer at the Ionic Liquid/Water Nanointerface, JACS, 2010, 132, 16945-16952. J. Velmurugan, D. Zhan, and M.V. Mirkin, Electrochemistry through Glass, Nature Chem. 2010, 2, 498-502. P. Sun and M.V. Mirkin, Electrochemistry of individual molecules in zeptoliter volumes, JACS, 2008, 130, 8241-8250. P. Sun, F.O. Laforge, T.P. Abeyweera, S.A. Rotenberg, J. Carpino, and M.V. Mirkin, Nanoelectrochemistry of mammalian cells, PNAS, 2008, 105, 443-448.

Research Interests Keywords: Electrochemistry/Physical/Analytical/Nano We employ nanometer-sized electrochemical probes for molecular level characterization of chemical processes and materials. A wide variety of phenomena are studied including charge-transfer reactions at the solid/liquid and liquid/liquid interfaces, electrocatalysis, bioelectrochemistry, and electrochemical imaging. The main focus is on obtaining quantitative physico-chemical information by combination of experiments with mathematical modeling and computer simulations. We also maintain active interest in development of electrochemical techniques for analytical applications. These include carbon nanoprobes, amperometric nanosensors, and resistive-pulse sensors.

Michael V. Mirkin is a professor of chemistry at CUNY-Queens College. His research interests are in the field of electrochemistry and include nano- and bio-electrochemistry, interfacial charge-transfer reactions, e l e c t r o c a t a l y s i s , a n d scanning electrochemical microscopy (SECM).

1993 - current Professor of Chemistry 1990-1993 Postdoc, University of Texas at Austin 1982-1987 PhD in Electrochemistry, Kazakh State

University, USSR.

Dr. Michael V. Mirkin

Page 39: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

David Mootoo Professor Hunter College Chemistry Department 695 Park Avenue New York NY 10065 [email protected] http://www.hunter.cuny.edu/chemistry/faculty/Randy/Randy

Publications Garg, H.; Francella, N.; Tony, K. A.; Augustin, L. A.; Fantini, J.; Barchi Jr, J. J.; Puri, A.; Mootoo; Blumenthal, R. Glycoside analogues of a-galactosylceramide, a novel class of small molecule inhibitors for HIV-1 entry. Antiviral Res. 2008 80, 54-61. Hans, S. K.; Camara, F.; Martin-Montalvo, A.; Brautigan, D. L.; Heimark, D.; Larner, J.; Grindrod, S.; Brown, M.; Mootoo, D. R. Synthesis of the C-glycoside analog of b-galactosamine-(1->4)-3-O-methyl-D-chiro-inositol and assay as activator of protein phosphatases PDHP and PP2Ca. Bioorg. Med. Chem. 2010, 18, 1103-1110. Bachan, S.; Fantini, J.; Joshi, A.; Garg, H.; Mootoo, D. R. Synthesis, gp120 binding and anti-HIV activity of fatty acid esters of 1,1-linked disaccharides. Bioorg. Med. Chem. 2011, 19, 14803-14811. Bachan, S.; Tony, K. A.; Kawamura, A.; Montenegro, D.; Joshi, A.; Garg, H.Synthesis and anti-tumor activity of carbohydrate analogues of the tetrahydrofuran containing acetogenins. Bioorg. Med. Chem. 2013, 21, 6554-6564. Intramolecular nitrogen delivery for the synthesis of C-glycosphingolipids. Altiti, A. S.; Mootoo, D. R. Application to the C-Glycoside of the immunostimulant KRN7000. Org. Lett, 2014, 16, 1466-1469.

Research Interests Keywords:synthesis, glycomimetics, tumor targeting, immunostimulants An broad area of current interest is the design and synthesis of molecules for interrogating anti-cancer pathways. Two strategies that center on targeting cytotoxic agents to tumors and glycolipids that boost the immune system against cancer are being pursued. These projects entail the design and synthesis of novel small molecules and examination of their biological properties, in the context of specific disease mechanisms.

Our research centers o n t h e d e s i g n , s y n t h e s i s a n d a p p l i c a t i o n o f b i o m e c h a n i s t i c p r o b e s , a n d t h e development of new s y n t h e t i c methodologies.

1989- current Professor 1986-1989 Postdoc, Duke University 1982-1986 Ph.D., University of Maryland

Dr. David R. Mootoo

Page 40: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Ryan P. Murelli Assistant Professor Brooklyn College 2900 Bedford Avenue Brooklyn, NY [email protected] http://userhome.brooklyn.cuny.edu/rpmurelli/

Publications Lu, G.; Lomonosova, E.; Cheng, X.; Moran, E. A.; Meyers, M. J.; Le Grice, S. F. J.; Thomas, C. J.; Jiang, J-K.; Meck, C.; Hirsch, D. R.; D'Erasemo, M. P.; Suyabatmaz, D. M.; Murelli, R. P.; Tavis, J. E. "Hydroxylated tropolones inhibit hepatitis B virus replication by blocking the viral ribonuclease H activity" Antimicrob. Agents Chemother. 2015, 59, 1070-1079. Hirsch, D. R.; Cox, G. C.; D'Erasmo, M. P.; Shakya, T.; Meck, C.; Mohd, N.; Wright, G. D.; Murelli, R. P. "Inhibition of ANT(2")-Ia resitance enzyme and rescue of aminoglycoside antibiotic activity by synthetic α-hydroxytropolones" Bioorg. Med. Chem. Lett. 2014, 24, 4943-4947. Meck, C.; D' Erasmo, M. P.; Hirsch, D. R.; Murelli, R. P. "The biology and synthesis of α-hydroxytropolones" Med. Chem. Comm. 2014, 5, 842-852.

Williams, Y. D.; Meck, C.; Mohd, N.; Murelli, R. P. "Triflic acid mediated rearrangements of 3-methoxy-8-oxabicyclo[3.2.1]octa-3,6-dien-2-ones: Synthesis of methoxytropolones and furans" J. Org. Chem. 2013, 78, 11707-11713. Meck, C.; Mohd, N.; Murelli, R. P. "An oxidopyrylium cyclization/ ring-opening route to polysubstituted α-hydroxytropolones" Org. Lett. 2012, 14, 5988-5991.

Research Interests Keywords: Synthetic Organic Chemistry, Medicinal Chemistry, Chemical Biology Our mission is to make fundamental contributions to synthetic organic chemistry, biology and medicine. To accomplish this, we seek out problems in medicinal chemistry and chemical biology that are in need of new synthetic organic chemistry developments. Thus, primary studies carried out by lab members range from reaction discovery and mechanism investigations to multi-step synthetic strategy developments. We simultaneously partner with experts in complementary fields in order to leverage these advancements in a broad range of interdisciplinary projects devoted to lead drug discovery and development.

2010- current Assistant Professor, Boston College 2007-2010 Postdoctoral Associate, Yale University 2002-2007 PhD Student, Boston College

Dr. Ryan Murelli Dr. Murelli is a trained synthetic organic chemist with interests in reaction d e v e l o p m e n t , t o t a l s y n t h e s i s , m e d i c i n a l chemistry and chemical biology. His primary research interest involves troponoids as therapeutic targets and is developing drugs for HIV, Herpes Simplex Virus Hepatitis B, and many more.

Page 41: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Naphtali O’Connor Assistant Professor Lehman College, CUNY 250 Bedford Park Blvd West Bronx, NY 10468 [email protected] lehman.edu/academics/chemistry/prof-oconnor.php

Publications O’Connor, N.A.; Abugharbieh, A.; Buabeng, E.; Yasmeen, F.; Mathew, S.; Samaroo, D.; Cheng, H. “The Crosslinking of Polysaccharides with Polyamines and Dextran-Polyallylamine Antibacterial Hydrogels” Int. J. Biol. Macromol. (2015) 72, 88-93. Samaroo, D.; Perez, E.; Aggarwal, A.; Wills, A.; O’Connor, N.A. “Strategies for Delivering Porphyrinoid-based Photosensit izers in Therapeutic Applications” Therapeutic Delivery (2014), 5(7), 859-872.

Solomon, M.R.; O’Connor, N.A.; Paik, D.C.; Turro, N.J. “Nitroalcohol Induced Hydrogel Formation in Amine-Functionalized Polymers.” J. Appl. Polym. Sci. (2010), 117(2), 1193-1196. O'Connor, N.A.; Stevens, N.; Samaroo, D.; Solomon, M.R.; Martí, A.A.; Dyer, J.; Vishwasrao, H.; Akins, D.L.; Kandel, E.R.; Turro, N.J. “A covalently linked phenanthridine-ruthenium(II) complex as a RNA probe.” Chem. Comm. (2009), 2640-2642. Stevens, N.; O'Connor, N.A.; Vishwasrao, H.; Samaroo, D.; Kandel, E.R.; Akins, D.L.; Drain, Charles M.; Turro, N.J. “Two color RNA intercalating probe for cell imaging applications.” J. Am. Chem. Soc. (2008) 130, 7206-7207. Research Interests

Keywords: biomaterials, hydrogels, polymers My current research focus is the development of materials for biomedical applications. We recently developed a method for preparing polysaccharide-polyamine crosslinked hydrogels. We are currently exploring their application as anti-microbial and wound healing materials. We are also working on the development of curcumin based biomaterials as antibacterial agents and cancer therapeutics.

Naphtali has a varied research background that reflects his wide research interests. His research ranges from developing biomaterials to designing molecular probes.

2008- current Current position 2007-2008 Postdoc/Columbia University 2000-2006 PhD/University of California, Irvine

Dr. Naphtali O’Connor

Page 42: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Ralf M. Peetz, PhD Assoc. Prof. CUNY/ Staten Island and Graduate Center 2800 Victory Boulevard Building 6S-227 Staten Island, NY 103014 [email protected] http://www.csi.cuny.edu/departments/chemistry

Publications Sengupta, Arijit; Doshi, Ami; Jaekle, Frieder; Peetz, Ralf M., Journal of Polymer Science Part A (2015), accepted

Zhilin, Denis M.; Peetz, Ralf M., Journal of Chemical Education (2014), 91(1), 119-122 Sengupta, Arijit; Ghosh, Sutapa; Peetz, Ralf M., Synthetic Metals (2010), 160(17-18), 2037-2040 Burrows, Hugh D.; Narwark, Oliver; Peetz, Ralf; Thorn-Csanyi, Emma; Monkman, Andrew P.; Hamblett, Ian; Navaratnam, Suppiah, Photochemical & Photobiological Sciences (2010), 9(7), 942-948. M u k h e r j e e , N a r a y a n ; P e e t z , R a l f M . , Macromolecules (2008), 41(18), 6677-6685

Research Interests Keywords: Functional Materials, Conjugated Polymers, Donor Acceptor Systems We are currently interested in the controlled synthesis of donor-acceptor macromolecules for potential use in organic polymer photovoltaics. Some candidates featuring promising electronic properties and absorbing over a broad range of wavelengths are currently scheduled to be tested in prototype photovoltaic cells.

Ralf Peetz is interested in functional materials that could be of use in meeting future energy needs.

2003- current CSI and Graduate Center 2000-2003 Postdoc, University of Akron, Institute

of Polymer Science 1997-2000 PhD, University of Hamburg,

Germany

Dr. Ralf M. Peetz

Page 43: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Sébastien Poget Assistant Professor College of Staten Island, CUNY Department of Chemistry 2800 Victory Blvd. Staten Island, NY 10314 [email protected] www.csi.cuny.edu/faculty/POGET_SEBASTIEN.html

Publications P. Anand, A. Grigoryan, M. H. Bhuiyan, B. Ueberheide, V. Russell, J. Quinoñez, P. Moy, B. T. Chait, S. F. Poget, M. Holford: Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata. PLoS ONE 2014, 9, e94122. S. F. Poget, M. E. Girvin: Solution NMR of membrane proteins in bilayer mimics: Small is beautiful, but sometimes bigger is better. Biochim. Biophys. Acta 2007, 1768, 3098-106. S. F. Poget, S. M. Cahill, M. E. Girvin: Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J. Am. Chem. Soc. 2007, 129 2432-2433.

Research Interests Keywords: Solution-state NMR, membrane protein structural biology, ion channels, toxins, electrophysiology, biophysics The Poget lab is interested in the structural and functional study of membrane proteins through solution-state NMR and other biophysical methods. Our studies focus on better understanding the interactions of animal peptide toxins with their target ion channel domains as tools for an improved understanding of ion channel function and starting point for drug development. To carry out these studies at the cutting edge of structural biology, we are also involved in the development of new and improved methods for membrane protein studies, including development of more powerful membrane mimetics such as bicelles and optimized NMR methods.

Dr. Poget is interested in membrane protein structure a n d f u n c t i o n , w i t h a particular emphasis on the interactions between ion channe l domains and animal peptide toxins.

2009- current Assistant Professor, College of Staten Island, CUNY

2003-2009 Postdoc, Albert Einstein College of Medicine, NY

2001-2003 Postdoc, Rockefeller University, NY 1997-2001 PhD, University of Cambridge, UK

Dr. Sébastien Poget

Page 44: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Krishnaswami Raja, Ph.D. Associate Professor College of Staten Island Department of Chemistry 2800 Victory Boulevard Staten Island, New York 10314 [email protected] h t t p : / / w w w . c s i . c u n y . e d u / f a c u l t y /RAJA_KRISHNASWAMI.html

Publications

“Curcumin-derived green plasticizers for Poly(vinyl) chloride.” Saltos, J., Shi, W.; Mancuso, A, Park, T.; Averick, N.; Sun, C.; Fata, J. E.;. Punia, K.; Raja, K. S.* RSC Adv., 2014, 4 (97), 54725 – 54728. Raja, K.S. Editorial: Green Anti-Cancer Agents and Ayur-Biotechnology: A smart approach towards improving R&D productivity. Anticancer Agents in Med Chem 2013 Dec;13(10):1467-8. Raja, K.S.; Banerjee, P.; Lamoreaux, W.; Shi, W.; A u e r b a c h , A . ;“N o v e l C u r c u m i n a n d Tetrahydrocurcumin derivatives” US patent number 8487139 Dolai, S. ; Shi, W.; and Raja, K.S.“Synthesis of Drug/Dye-Incorporated Polymer–Protein Hybrids” Methods in Molecular Biology Bioconjugation Protocols : Strategies and Vol 751, 29-42, 2011. Raja, K.S., Dolai, S. ; Shi, W.; Wang, Q. Bionanoparticles as nanoscaffolds for chemical manipulation”. Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, 2009, Second Edition.

Research Interests Keywords: Origin of life, stigmergy scaffolds, 3D Cell culture, Ayurbiotecnology, Virus Chemistry, Bioconjugation, Green drug development, Polymer-protein hybrids The Raja group is interested in creating programmable scaffolds for probing the origins of multi-cellular life, synthesis of well defined polymer-bionanoparticle/targeting protein hybrids and green drug discovery and development based on Ayurveda. The research spans the areas of small molecule and polymer synthesis, bioconjugation chemistry and bioengineering.

Krishnaswami Raja is College of Staten Island Chemistry faculty working in t h e a r e a o f Bionanotechnology, Origin of life research and green d r u g d i s c o v e r y a n d development.

2012- current Associate Professor 2005-2012 Assistant Professor, College of Staten

Island 2000-2004 Skaggs Post Doctoral Fellow TSRI 1999 Indian Institute of Science

Dr. Krishnaswami Raja

Page 45: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Kevin Ryan, Ph.D. Associate Professor, Biochemistry Division Department of Chemistry and Biochemistry The City College of New York MR-1337, 160 Convent Ave. New York NY [email protected] http://www.sci.ccny.cuny.edu/~kr107/index2/index.html

Publications Liu, M. T.; Nagre, N. N.; Ryan, K., Structurally diverse low molecular weight activators of the mammalian pre-mRNA 3' cleavage reaction. Bioorganic & Medicinal Chemistry 2014, 22 (2), 834-41; Li, Y.; Peterlin, Z.; et al., Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry. ACS Chemical Biology 2014; Lama, L.; Seidl, C. I.; Ryan, K., New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III. Transcription 2014, 5 (1); Seidl, C. I.; Lama, L.; Ryan, K., Circularized synthetic oligodeoxynucleotides serve as promoterless RNA polymerase III templates for small RNA generation in human cells. Nucleic Acids Research 2013, 41 (4), 2552-64; Kurland, M. D.; Newcomer, M. B.; et al., Discrimination of saturated aldehydes by the rat I7 olfactory receptor. Biochemistry 2010, 49 (30), 6302-4.

Research Interests Keywords: molecular recognition, olfaction, RNA, micro RNA, RNA interference, RNA polymerase III, chemical biology, transcription In the RNA area, we study the use of chemically synthesized transcription templates as potential information-bearing molecules for producing small therapeutic RNA in human cells. A second RNA area is the biochemistry of RNA processing reactions that occur during the biogenesis of messenger RNA in human cells. In the olfaction area, we use pharmacology, organic synthesis and chemical biology to probe the biochemistry of the sense of smell.

Dr. Ryan’s lab applies chemica l concep ts to biological problems in two main areas, RNA and o l f a c t o r y m o l e c u l a r recognition.

2009- current Associate Professor 2003-2008 Assistant Professor 1996-2003 Postdoc, Columbia University (Chemistry

and Biology Depts.) 1996 Ph.D., University of Rochester

Dr. Kevin Ryan

Page 46: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Roberto Sánchez-Delgado Professor Brooklyn College Chemistry Department and The Graduate Center Chemistry Program 2900 Bedford Ave Brooklyn NY 11210 [email protected]

Publications •  C. S. K. Rajapakse, M. Lisai, C. Deregnaucourt, V.

Sinou, C. Latour, D. Roy, J. Schrével, and R. A. Sánchez-Delgado* “Synthesis of New 4-Aminoquinolines and Evaluation of their in vitro Activity against Chloroquine-sensitive and Chloroquine-resistant Plasmodium falciparum” PLoS ONE, 2015 (accepted for publication).

•  A. Sánchez, M. Fang, A. Ahmed, and R. A. Sánchez-Delgado*, “Hydrogenation of arenes, N-heteroaromatic compounds, and alkenes catalyzed by rhodium nanoparticles supported on magnesium oxide” Appl. Catal. A, General, 2014, 477, 117-124.

•  M. Fang and R. A. Sánchez-Delgado* “Ruthenium nanoparticles supported on magnesium oxide: a versatile and recyclable dual-site catalyst for hydrogenation of mono- and poly-cyclic arenes, N-heteroaromatics, and S-heteroaromatics”, J. Catal. 2014, 311, 357-368.

•  E. Iniguez, A. Sánchez, M. A. Vasquez, A. Martínez, J. Olivas, A. Sattler, R. A. Sánchez-Delgado*, and R. A. Maldonado*, “The Metal-Drug Synergy: New RutheniumII Complexes of Ketoconazole are Highly Active against Leishmania major and Trypanosoma cruzi and Non-toxic to Human or Murine Normal Cells” J. Biol. Inorg. Chem. 2013, 18, 779-790.

•  A. Martínez, T. Carreon, E. Iniguez, A. Anzellotti, A. Sánchez, M. Tyan, A. Sattler, L. Herrera, R. A. Maldonado* and R. A. Sánchez-Delgado*, “Searching for new chemotherapies for tropical diseases: Ruthenium-clotrimazole complexes display high in vitro activity against Leishmania major and Trypanosoma cruzi and low toxicity toward normal mammalian cells.” J, Med. Chem. 2012, 55, 3867-3877.

Research Interests Keywords: inorganic, organometallic, medicinal chemistry, catalysis, supported metal nanoparticles

The discovery of novel metal-based drugs against tropical diseases (malaria, Chagas and leishmaniasis) and cancer, and the development of new catalysts derived from transition metal complexes or nano-particles for reactions related to the production of cleaner fossil fuels or improved biofuels.

is Professor of Chemistry at Brooklyn College and Chair of the Inorganic Sub-discipline of the CUNY PhD C h e m i s t r y P r o g r a m . Research on inorganic, organometallic and organic chemistry for medicinal and catalytic applications

2014- current Professor at CUNY 1977-2004 Professor at the Venezuelan Institute for

Scientific Research, IVIC X-X Postdoc with J.A. Osborn at Louis

Pasteur University, Strasbourg, France 1973-76 PhD in Inorganic Chemistry with G.

Wilkinson, Imperial College of Science & Technology, University of London

Dr Roberto Sánchez-Delgado

Page 47: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Chwen-Yang Shew Professor Department of Chemistry College of Staten Island 2800 Victory Boulevard Staten Island, NY 10314 [email protected]

Publications C.-Y. Shew, and K. Yoshikawa, “A toy model for nucleus-sized crowding confinement “J. Phys.: Condens. Matter 27 (2015) 064118. E. Sánchez-Díaz, C.-Y. Shew, X. Li, B. Wu, G. S. Smith and W.-R. Chen, “Phase Behavior Under a Noncentrosymmetric Interaction: Shifted-Charge Colloids Investigated by Monte Carlo Simulation,” J. Phys. Chem. B, 118 (2014) 6963–6971. C.-Y. Shew, K. Kondo and K. Yoshikawa, “Rigidity of a spherical capsule switches the localization of encapsulated particles between inner and peripheral regions under crowding condition: Simple model on cellular architecture,” J. Chem. Phys. 140 (2014) 024907. C.-Y. Shew and K. Yoshikawa, “Abstracting the essence of the confinement effect on crowding microspheres: Mean-field theory and numerical simulation,” Chem. Phys. Lett. 590 (2013) 196-200. C.-Y. Shew, C. Do, K. Hong, Y. Liu, L. Porcar, G. S. Smith, and W.-R. Chen,“ Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: A perspective of integral equation theory,” J. Chem. Phys. 137 (2012) 024907. Research Interests

Keywords: Statistical Mechanics, Computer Simulations, Soft Matters, Polymeric Materials, and Biopolymers Our laboratory is focused on developments of statistical mechanics models to elucidate the thermodynamic properties and structure of polymeric materials and biopolymer systems. Our model studies have been extended to explore the role of the long-ranged electrostatic interaction on the self-assembly structure of like-charged macroions, the intramolecular self-assembly of a giant DNA, and the solution structure of polyelectrolytes. We are currently working on the structure of chromatin and nucleolus in the highly confined, crowded nucleus with applications to cancer cell diagnosis.

Dr. Chwen-Yang Shew

Page 48: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Ruth E. Stark Distinguished Professor City College Dept. of Chemistry and Biochemistry CUNY Institute for Macromolecular Assemblies CCNY CDI 1S-11302, 85 St. Nicholas Terrace New York, NY 10031 [email protected] http://www.sci.ccny.cuny.edu/resgroup

Publications W. S. Lagakos, X. Guan, S.-Y. Ho, L. R. Sawicki, B. Corsico, K. Murota, R. E. Stark, J. Storch, Liver Fatty Acid-binding Protein Binds Monoacylglycerol in vitro and in Mouse Liver Cytosol, J. Biol. Chem., 2013, 288, 19805-15. T.H. Yeats, W. Huang, S. Chatterjee, H. M-F. Viart, M.H. Clausen, R. E. Stark, J.K.C. Rose, Biochemical characterization of CD1 and Putative Orthologs Reveals an Ancient Family of Cutin Synthase-like Proteins that are Conserved Among Land Plants, 2014, Plant J., 77, 667-675. O. Serra,* S. Chatterjee,* M. Figueras, M. Molinas, R.E. Stark, Deconstructing a plant m a c r o m o l e c u l a r a s s e m b l y : c h e m i c a l architecture, molecular flexibility, and mechanical performance of natural and engineered potato suberins, Biomacromolecules, 2014,15, 799-811. K. Dastmalchi, Q. Cai, K. Zhou, W. Huang, O. Serra, R.E. Stark, Completing the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity, J. Agric. Food Chem., 2014, 62, 7963-7975. S. Chatterjee, R. Prados-Rosales, B. Itin, A. Casadevall, R.E. Stark, Solid-state NMR Reveals the Carbon-based Molecu lar Architecture of Melanized Cryptococcus neoformans Fungal Cells, J. Biol. Chem., 2015, 290, 13779-13790. Research Interests

Keywords: molecular biophysics, biopolymers, bioanalytical chemistry, solid- and solution-state NMR The Stark Laboratory uses structural biology approaches to study plant protective polymers, lipid metabolism, and potentially pathogenic melanized fungal cells. Study of the molecular and mesoscopic architectures underlying the integrity of cuticles in natural and engineered tomatoes and potatoes is undertaken using solid- and solution-state nuclear magnetic resonance (NMR), mass spectrometry, and atomic force microscopy. Ligand recognition and peroxisome proliferator-activated receptor interactions of fatty acid-binding proteins are under investigation by solution-state NMR and isothermal titration calorimetry. The molecular structure and development of melanin pigments within fungal cells are probed using (bio)chemical synthesis and solid-state NMR.

Dr. Stark’s biophysics research program focuses on the molecular structure a n d i n t e r - a c t i o n s o f p r o t e c t i v e p l a n t biopolymers, nutri-tionally important fatty acid-binding prote ins, and melanin pigments associated with human fungal infections.

2007 - current CUNY Dist. Prof., CCNY 1985 - 2007 Assoc.-Dist. Prof., Coll. of Staten Island 1979 - 1985 Asst. Prof., Amherst College 1977 - 1979 Postdoctoral Fellow, M.I.T. 1977 PhD, Physical Chemistry, UC San

Diego

Dr. Ruth E. Stark

Page 49: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Maria C. Tamargo Professor The City College of New York Department of Chemistry 160 Convent Avenue New York NY 10031 [email protected] www.ccny-mbe.com

Publications J. DeJesus, G. Chen, L. C. Hernandez-Mainet, A. Shen, M. C. Tamargo, Strain compensated CdSe/ZnSe/ZnCdMgSe quantum wells as building blocks for near to mid-IR intersubband devices, Journal of Crystal Growth 425, 207 (2015) Z. Chen, T. A. Garcia, L. C. Hernandez-Mainet, L. Zhao, H. Deng, L. Krusin-Elbaum, and M. C. Tamargo, Molecular beam epitaxial growth and characterization of Bi2Se3/II-VI semiconductor heterostructures, Applied Physics Letters 105, 242105 (2014) A. P. Ravikumar, T. A. Garcia, J. De Jesus, M. C. Tamargo, and C. F. Gmachl, High detectivity short-wavelength II-VI quantum cascade detector, Applied Physics Letters 105, 061113 (2014) S. Dhomkar, U. Manna, L. Peng, R. Moug, I. C. Noyan, M. C. Tamargo and I. L. Kuskovsky, Feasibility of submonolayer ZnTe/ZnCdSe quantum dots as intermediate band solar cell material system, Solar Energy materials and Solar Cells, C 117, 604–609 (2013) Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures, Applied Physics Letters 99, 041113 (2011)

Research Interests Keywords: Molecular Beam Epitaxy, compound semiconductors, II-VI semiconductors, photonic devices, nanomaterials, topological insulators. Materials growth, properties and applications of semiconductor multi-layered structures grown by molecular beam epitaxy (MBE). Areas of research activity include III-V compounds, strained-layer and short-period superlattices, surface and interface chemistry, visible light emitters, optoelectronic devices, wide bandgap II-VI compounds, II-VI/III-V heteroepitaxy, low dimensional nanostructures, selective area epitaxy, intersubband devices, quantum cascade lasers, VECSELs, topological insulators.

Maria C. Tamargo is Professor of Chemistry at the City College of New York. Her research is in semiconductor materials and nanostructures design, growth by epitaxial growth techniques, characterization methods, and applications.

1993 - present The City College of New York and

The Graduate Center - CUNY 1984-1992 Bellcore 1978-1984 AT&T Bell Labs 1972-1978 PhD (Johns Hopkins University) 1968-1972 BS (University of Puerto Rico)

Dr. Maria C. Tamargo

Page 50: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Ming Tang, PhD Assistant Professor Department of Chemistry 2800 Victory Blvd College of Staten Island Staten Island, NY 10314 [email protected] http://www.csi.cuny.edu/faculty/departments/chemistry/TANG_MING.html

Publications "Advanced Solid-State NMR Approaches for Structure Determination of Membrane Proteins and Amyloid Fibrils", Tang M, Comellas G, Rienstra CM. Acc. Chem. Res., 2013, 46, 2080-2088. "Structure of the Disulfide Bond Generating Membrane Protein DsbB in the Lipid Bilayer", Tang M, Nesbitt AE, Sperling LJ, Berthold DA, Schwieters CD, Gennis RB, Rienstra CM. J. Mol. Biol., 2013, 425, 1670-1682. "Solid-State NMR Study of the Charge-Transfer Complex between Ubiquinone-8 and Disulfide Bond Generating Membrane Protein DsbB" Tang M, Sperling LJ, Berthold DA, Nesbitt AE, Gennis RB, Rienstra CM. J. Am. Chem. Soc. 2011, 133, 4359-4366. "Structure and Mechanism of Beta-Hairpin Antimicrobial Peptides in Lipid Bilayers from Solid-State NMR Spectroscopy" Tang, M.; Hong, M. Mol. BioSyst. 2009, 5, 317-322. "Effects of Guanidinium-Phosphate Hydrogen Bonding on the Membrane-Bound Structure and Activity of an Arginine-Rich Membrane Peptide from Solid-State NMR", Tang, M.; Waring, A. J.; Lehrer, R. I.; Hong, M. Angew. Chem. Int. Ed. 2009, 47, 3202-3205. "Phosphate-Mediated Arginine Insertion into Lipid Membranes and Pore Formation by a Cationic Membrane Peptide from Solid-State NMR" Tang, M.; Waring, A. J.; Hong, M. J. Am. Chem. Soc. 2007, 129, 11438-11446. .

Research Interests Keywords: Membrane proteins, ion channels, amyloidogenic proteins, Phosphoinositide, solid-state NMR, protein aggregates, paramagnetic relaxation enhancement.

Ming Tang is an assistant professor in the chemistry and biochemistry programs at CUNY. His long-term research endeavor is to investigate the function-modulating interactions between p r o t e i n s a n d m e m b r a n e components by solving structures of membrane-associated protein complexes and aggregates. The elucidation of such structure-func t ion re la t ionsh ips w i l l contribute tremendously to our understanding of how proteins interact wi th l ip ids and/or cofactors to operate.

2013- current Assistant Prof. of Chemistry, College of Staten Island, CUNY

Dr. Ming Tang

Page 51: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Micha Tomkiewicz Professor Brooklyn College of CUNY Dept. of Physics, Brooklun College of CUNY, Brooklyn, NY 11210 [email protected] http://academic.brooklyn.cuny.edu/physics/micha/

Publications

Research Interests Keywords: Climate Change, Physics of Sustainability, Energy. Environmental issues, science and society, photoelectrochemistry, electrochemistry, physics and chemistry of solid-liquid interfaces, morphology and transport properties of composite media, solar energy conversion and storage, photovoltaic devices, batteries . Strategy: Students will learn how to do energy audits and carbon footprints on a variety of scales. Students will do longitudal studies on the various components of the global efforts to change energy sources from reliance on fossil fuels to alternative energy sources.

2015- current Professor of physics and Chemistry, Brooklyn College, CUNY

1973 - 1976 IBM Thomas J. Watson 1971 – 1973 UC-Berkeley 1969 PhD - Hebrew University - Jerusalem

Dr. Micha Tomkiewicz Micha Tomkiewicz is a professor of physics and chemistry at Brooklyn College and the school for Graduate Studies of the City University of New York. He served as founding-director of the Environmental Studies Program and the Electrochemistry Institute at Brooklyn College; was divisional editor, Journal of the Electrochemical Society (1981-91); chairman, Energy and Technology Division, the Electrochemical Society (1991-93); and member, International Organizing Committee of the conferences on Photochemical Conversion and Storage of Solar Energy (1989-92).

Weekly blog on climate change at: http://climatechangefork.blog.brooklyn.edu/ Lori Scarlatos, Micha Tomkiewicz, Ryan Courtney; “Using an Agent-Based Modeling Simulation and Game to Teach Socio-Scientific Topics”, Interaction Design & Architecture Journal – IxD&A, N. 19, Winter 2013/2014, pp. 77 – 90. Yevgenie Ostrovskiy, Michael Cheng and Micha Tomkiewicz, “Intensive and Extensive Parametrization of Energy Use and Income in US States and in Global Urban Environments”, The International Journal of Climate Change: Impacts and Responses Volume 4, Issue 4, pp.95-107.(2013) Micha Tomkiewicz and Lori Scarlatos, “Bottom-up Mitigation of Global Climate Change”, the International Journal of Climate Change: Impacts and Responses Volume 4, Issue 1, pp.37-48 (2013) Micha Tomkiewicz; “Climate Change: The Fork at the End of Now”; Momentum Press (2011).  

Page 52: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

name Position Affiliation Address Address New York NY [email protected] www.cuny.edu/xxxx

Dr. Rein V Ulijn Rein Ulijn is founding director of the nanoscience initiative at the Advanced Science Research Centre at CUNY and Professor of Nanochemistry at Hunter College. His research is focused on minimalistic molecular materials and adaptive systems that are inspired by biology.

Dr Rein V Ulijn Director of Nanoscience Einstein Professor of Chemistry, Hunter College Advanced Science Research Centre St Nicolas Terrace New York NY [email protected] www.cuny.edu/asrc

Publications P.W.J.M. Frederix, G.G. Scott, Y.M. Abul-Haija, D. Kalafatovic, C.G. Pappas, N. Javid, N.T. Hunt, R.V. Ulijn and T. Tuttle, Exploring the Sequence Space for (Tri-)peptide Self-Assembly to Design and Discover New Hydrogels, Nature Chemistry, 2015, 7, 30-37. C.G. Pappas, T. Mutasa, P.W.J.M. Frederix, S. Fleming, S. Bai, S. Debnath, S. Kelly, A. Gachagan and R .V. U l i j n , Trans ien t Supramolecular Reconfiguration of Peptide Nanostructures using Ultrasound, Mater. Horiz., 2015, 2, 198-202. S. Debnath, S. Roy and R.V. Ulijn, Peptide Nanofibers with Dynamic Instability through Non-Equilibrium Biocatalytic Assembly, J. Am. Chem. Soc., 2013, 135, 16789-16792. A.R Hirst, S. Roy, M. Arora, A.K. Das, N. Hodson, P. Murray, N. Javid, J. Sefcik, J. Boekhoven, J.H. van Esch, S. Santabarbara, N.T. Hunt and R.V. Ulijn, Biocatalytic Induction of Supramolecular Order, Nature Chemistry, 2010, 2, 1089-1094. R.J. Williams, A.M. Smith, R. Collins, N. Hodson, A.K. Das, R.V. Ulijn, Enzyme Assisted Self-Assembly under Thermodynamic Control, Nature Nanotechnology, 2009, 4, 19-24. Research Interests

Keywords: molecular systems, bionanotechnology, hydrogels, peptides, biocatalysis, adaptive materials The Ulijn group are interested in the development of materials and systems that mimic biology’s adaptive properties but are much simpler. These materials (including gels, emulsions, structured surfaces and nanotubes) have potential applications in health care, cosmetics, lifestyle products, food science. These applications are sought in active collaboration with researchers and companies across the globe. The approach is cross-disciplinary and covers the entire range from fundamental understanding to eventual applications and societal benefit.

2014- current Director of Nanoscience, ASRC 2008-2014 Professor of Nanochemistry, University

of Strathclyde, Glasgow, UK 2003-2008 Associate Prof., U. of Manchester, UK 2001-2003 Postdoc. University of Edinburgh, UK 1998-2001 PhD University of Strathclyde, UK 1992-1998 MSc Wageningen University, NL.

Page 53: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Nan-Loh Yang Professor of Chemistry College of Staten Island 2800 Victory Boulevard Staten Island, NY 10341 [email protected] www.chem.csi.cuny.edu

Publications Ashish Punia, Edward He, Kevin Lee, Probal Banerjee, and Nan-Loh Yang, Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity. Chem. Commun., 2014, 50, 7071. Monica Apostol ;Tatsiana Mironava ;Nan-Loh Yang; Nadine Pernodet Miriam H Rafailovich. Cell sheet patterning using photo-cleavable polymers. Cell sheet patterning using photo-cleavable polymers. Polymer Journal . 2011; 43(8):723- Chong Cheng and Nan-Loh Yang” Well-Defined Diblock Macromonomer with a Norbornene Group at Block Junction: Anionic Living Linking Synthesis and Ring-Opening Metathesis Polymerization” Macromolecules, 2010, 43 (7), pp 3153–3155 Kai Su, Nurxat Nuraje, Lingzhi Zhang, I-Wei Chu, Hiroshi Matsui, and Nan-Loh Yang.“ First Preparations and Characterization of Conductive Polymer Crystalline Nanoneedles” Macromol. Symposia, Special Issue: Polymers at Frontiers of Science and Technology (2009), 279(1), 1-6. Su, Nurxat Nuraje, and Nan-Loh Yang*„An Open-Bench Method for the Preparation of BaTiO3, SrTiO3 and BaxSr1-xTiO3 nanocrystals at 80 oC”,ACS Langmuir,,(2007),23,11369-11371

Research Interests Keywords: Nanoeletronics, Superbugs killers, Photopolymers Novel Polyacetals, Supercapacitor Fast Switch, Amphiphilic Polyelectrolytes, Micelles Professor Yang’s research group is involved in developing amphiphilic non-hemolytic and antibacterial nanoparticle based structural tuningwith optimizing hydrophobic – hydrophilic molecular topography. The nanoelectronics research exploits the characteristic of micell reactors and interfacial polymerization.

Nan-Loh Yang is a Professor of Chemistry at College of Staten Island.. His research areas include: antimicrobial po lymer nanopar t ic le ; polymers with well-defined structure;and materials for nanoelectronics - giant dielectric constant element, fast cionductance switch, 4-stage memory and room temperature magnetoelectric coupling.

Current Professor of Chemistry, CUNY-CSI 1969-1970 Postdoc, Mount Sinai School of Medicine 1969 PhD Polymer Chemistry NYU-Poly

Dr. Nan –Loh Yang

Page 54: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Barbara Zajc Professor The City College of New York Department of Chemistry 160 Convent Avenue New York NY [email protected] http://www.ccny.cuny.edu/profiles/Barbara-Zajc.cfm

Publications Kumar, R.; Singh, G.; Todaro, L. J.; Yang, L.; Zajc, B.: E- or Z-Selective Synthesis of 4-Fluorovinyl-1,2,3-triazoles with Fluorinated Second-Generation Triazole-Substituted Julia-Kocienski Reagents, Org. Biomol. Chem. 2015, 13, 1536–1549 . Chowdhury, M.; Mandal, S. K.; Banerjee, S.; Zajc, B.: Synthesis of Regiospecifically Fluorinated Conjugated Dienamides, Molecules 2014, 19, 4418–4432 (Invited contribution for Molecules Special Issue on Fluorine Chemistry). Singh, G.; Kumar, R.; Swett, J.; Zajc, B.: Modular Synthesis of N-Vinyl Benzotriazoles, Org. Lett. 2013, 15, 4086-4089. Kumar, R.; Zajc, B.: Stereoselective Synthesis of Conjugated Fluoro Enynes, J. Org. Chem. 2012, 77, 8417-8427. Mandal, S. K.; Ghosh, A. K.; Kumar, R.; Zajc, B.: Expedient Synthesis of α-Substituted Fluoroethenes, Org. Biomol. Chem. 2012, 10, 3164-3167 (Featured on the Front Cover of the Journal, Issue 16).

Research Interests Keywords: Fluoroorganic chemistry, Biomolecules, Chemical Carcinogenesis

The research is focused in two main directions. One area involves development of methods for regiospecific introduction of fluorine into organic molecules. Here, an expanding toolbox of novel reagents for the synthesis of variously functionalized vinyl fluorides, highly versatile synthetic intermediates, is being developed. Another area of research involves the use of fluorine as probe in structure activity studies in the area of chemical carcinogenesis. Specifically fluorinated polycyclic aromatic hydrocarbons, their metabolites and their DNA conjugates are synthesized as probes to understanding cellular events after metabolism and DNA binding.

Zajc is an organic/b i o o r g a n i c c h e m i s t working in areas of (a) fluoroorganic chemistry, ( b ) c h e m i c a l carcinogenesis, and (c) synthetic methodology.

2013 Professor 2003 Associate Professor (CCNY) 2001 Assistant Professor (Substitute, CCNY) 1999 Associate Professor (Docent, U of Ljubljana) 1993 Assistant Professor (U of Ljubljana) 1991 Fogarty Fellow NIH (NIDDK) 1989 PhD

Dr. Barbara Zajc

Page 55: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Guoqi Zhang Assistant Professor Department of Sciences John Jay College of Criminal Justice 524 W 59th Street, 10019 New York NY Email: [email protected] http://www.jjay.cuny.edu/faculty/guoqi-zhang

Publications Z. Yin, G. Zhang, S. Zheng, T. Phoenix, J. C. Fettinger, “Assembling mono-, di- and tri-nuclear coordination complexes with a ditopic analogue of 2,2':6',2''-terpyridine: syntheses, structures and catalytic studies”, RSC Advances, 2015, 5, 36156-36166. G. Zhang, G. Proni, S. Zhao, Ed C. Constable, C. E. Housecroft, J. A. Zampese, M. Neuburger, “Chiral tetranuclear and dinuclear copper(II) complexes for TEMPO-mediated aerobic oxidation of alcohols: are four metal centres better than two?”, Dalton Trans. 2014, 43, 12313-12320 G. Zhang, K. V. Vasudevan, B. L. Scott, S. K. Hanson, “Understanding the mechanisms of c o b a l t - c a t a l y z e d h y d r o g e n a t i o n a n d dehydrogenation reactions”, J. Am. Chem. Soc. 2013, 135, 8668-8681. G. Zhang, S. K. Hanson, “Cobalt-catalyzed transfer hydrogenation of C=O and C=N bonds”, Chem. Commun. 2013, 49, 10151-10153. G. Zhang, B. L. Scott, S. K. Hanson, “Mild and homogeneous cobalt-catalyzed hydrogenation of C=C, C=O, and C=N bonds”, Angew. Chem. Int. Ed. 2012, 51, 12102-12106.

Research Interests Keywords: Inorganic/Organometallic Catalysis, Energy Conversion; Forensic Chemistry Description of research activities and strategy: Our research concerns over the design and synthesis of novel non-precious metal complexes and their applications in energy-related catalysis, supramolecular chemistry, anticancer drugs and forensic science.

Prof. Zhang is an inorganic chemist who has broad research in te res ts i n inorganic/organometalic chemistry, non-precious metal catalysis and forensic chemistry, with a focus on the synthesis of novel organic-inorganic functional materials.

2013- current Assistant Professor 2006-2013 Postdoc Los Alamos National Lab and

Uni. Basel 2001-2006 Ph.D., Institute of Chemistry, CAS

Dr. Guoqi Zhang

Page 56: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Shengping Zheng Assistant Professor Hunter College 695 Park Avenue New York, NY 10065 [email protected] http://www.hunter.cuny.edu/chemistry/faculty/Shengping/Shengping

Publications Yin, Z.; Zhang, J.; Wu, J.; Green, R.; Li, S.; Zheng, S. “Synthesis of o-Chlorophenols via an Unexpected Nucleophilic Chlorination of Quinone Monoketals Mediated by N, N’-Dimethylhydrazine Dihydrochloride” Org. Biomol. Chem. 2014, 12, 2854-2858. Yin, Z.; Zhang, J.; Wu, J.; Liu, C.; Sioson, K.; Devany, M.; Hu, C.; Zheng, S. “Double Hetero-Michael Addition of N-Substituted Hydroxylamines to Quinone Monoketals: Synthesis of Bridged Isoxazolidines” Org. Lett. 2013, 15, 3534-3537. Zhang, J.; Wu, J.; Yin, Z.; Zeng, H.; Khanna, K.; Hu, C.; Zheng, S. “An Expedient Stereoselective and Chemoselective Synthesis of Bicyclic Oxazolidinones from Quinols and Isocyanates” Org. Biomol. Chem. 2013, 11, 2939-2942. Zhang, J.; Yin, Z.; Leonard, P.; Wu, J.; Sioson, K.; Liu, C.; Lapo, R.; Zheng, S. “A Variation of Fischer Indolization Involving Condensation of Quinone Monoketals and Aliphatic Hydrazines” Angew. Chem. Int. Ed., 2013, 52, 1753-1757.  

Research Interests Keywords: Organic Synthesis, Anticancer, Antiviral, Heterocycles, Natural Products

1.  New methodologies in heterocycle synthesis

2.  Total synthesis of bioactive natural products

Our group focuses on the synthesis of b ioact ive heterocycles and their SAR studies.

2008- current Assistant Professor, Hunter College 2005-2008 Postdoc, Columbia University 2000-2005 PhD, Columbia University

Dr. Shengping Zheng

Page 57: Dr. Daniel L. Akins Publications - Graduate Center, CUNY...Water-soluble Iminophosphorane Ruthenium(II) Compounds. A Potential Chemotherapeutic Agent for Triple Negative Breast Cancer.

Shuiqin Zhou Professor of Chemistry College of Staten Island 2800 Victory Boulevard Staten Island, NY 10314 [email protected] www.chem.csi.cuny.edu

Publications H. Wang, Y. Sun, J. Yi, J. Fu, J. Di, A. del C. Alonso, S. Zhou. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. Biomaterials, 2015, 53, 117-126. H. Wang, J. Yi, S. Mukherjee,‎ P. Banerjee, S. Zhou. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Nanoscale, 2014, 6, 13001–13011. H. Wang, A. Mararenko, G. Cao, Z. Gai, K. Hong, P. Banerjee, S. Zhou, Multifunctional 1D magnetic and fluorescent nanoparticle chains for enhanced MRI, fluorescent cell imaging, and combined photothermal/chemotherapy, ACS Appl. Mater. Interfaces 2014, 6, 15309–15317. H. Wang, Z. Wei, H. Matsui, S. Zhou, One-pot synthesis of Fe3O4@Carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst. J. Mater. Chem. A, 2014, 2, 15740-15745. Y. Li, S. Zhou. Facile one-pot synthesis of organic dye-complexed microgels for optical detection of glucose at physiological pH. Chem. Commun. 2013, 49, 5553-5555. Research Interests

Keywords: responsive polymers, hybrid nanogels, nanoparticles, carbon dots, assembly, biosensing, drug delivery, cell imaging, environmental remediation The Zhou group is interested in the development of (1) glucose-responsive hybrid nanoparticles (NPs) for glucose sensing and self-regulated insulin delivery; (2) multifunctional nanomaterials from the combination of optically active NPs with responsive polymers for sensing, imaging, and therapy; and (3) composite nanomaterials from the complex assembly of carbon-based NPs, inorganic NPs, and other amphiphilies in the confinement of (bio)polymers and colloids for sensing, catalysis, and environmental remediation

Shuiqin Zhou is a Professor of Chemistry at CUNY College of Staten Island. Her research is focused on responsive polymer-nanoparticle (including carbon dots) hybrid nanogels, inorganic-carbon composite nanoparticles, and complex assembly of nanopart ic les for sensing, imaging, drug delivery, and environmental remediation.

2008- current Professor of Chemistry, CUNY-CSI 2002-2007 Associate Prof. of Chemistry, CUNY-CSI 2000-2002 Senior Chemist, Dow Chemical Company 1996-2000 Postdoc, SUNY at Stony Brook 1993-1996 PhD, Chinese University of Hong Kong 1988-1991 MSc, Xiamen University, China 1984-1988 BSc, Xiamen University, China

Dr. Shuiqin Zhou