downar

download downar

of 57

Transcript of downar

  • 7/30/2019 downar

    1/57

    Coupled Codes for Multi-PhysicsNuclear Reactor Simulation

    T.J. Downar

    Professor

    Purdue University

    July 20, 2006

  • 7/30/2019 downar

    2/57

    Outline

    Background on Coupled Codes Current Generation Methods (NRC):

    e.g. RELAP5-TRACE/PARCS + TRITON

    Next Generation Methods (DOE):e.g. STAR-CD/DECART

    Next Next Generation Methods

  • 7/30/2019 downar

    3/57

    Research GroupYunlin Xu, Post-Doc

    Mikhail Kalugin, Post-DocJustin Thomas, PhD Student

    Shaun Clarke, PhD Student

    Volkan Seker, PhD StudentEmily Decaret, MS Student

    Andrew Ward, MS Student

    Jere Jenkins, MS Student

    Brendan Kochunas, Undergrad

  • 7/30/2019 downar

    4/57

    Research Group Focus

    U.S. NRC Reactor Physics Methods Development

    (LWR MOX, ESBWR, ACR-700, PBMR, PHWR) Coupled Neutronics/Thermal-Hydraulic Code Development for

    Reactor Transient Simulation

    U.S. DOE Coupled CFD/MOC (INERI/EPRI w/ ANL) Advanced Fuel Cycle Initiative (UNERI) Resonance Self-Shielding Methods (NEER w/ ORNL)

    Other Homeland Security (DHS w/ ORNL) Power Grid (NSF w/ CRI)

  • 7/30/2019 downar

    5/57

  • 7/30/2019 downar

    6/57

    PARCS

    A Multidimensional Multigroup ReactorKinetics Code Based on the Nonlinear

    Nodal Method

    Prepared for Release of PARCS / NRC-V2.7

    Thomas J. Downar

  • 7/30/2019 downar

    7/57

    Coupled Neutron / Nuclide andTemperature/ Fluid Field Equations

    Nuclide Depletion Equation (Bateman)

    )()()()()(

    tNtNtNdt

    tdNBBcCAA

    a

    AA +++=

    ''),',',()',',(

    ),,(4

    1),,,(),(),,,(

    1

    ' '

    +

    =++

    ddEtErEEr

    tErStErErtErtv

    E

    s

    ft

    Neutron Transport Equation (Boltzmann)

  • 7/30/2019 downar

    8/57

    Solving the Core Neutronics Problem

    ConventionalApproach (TRITON/PARCS)

    TRITON: Lattice Calculation Involving Homogenization and

    Group Condensation to Generate Few Group Xsecs PARCS: Diffusion (P1) or SP3 Approximation for Core

    Calculation

  • 7/30/2019 downar

    9/57

    Core Neutronics Modeling

    Fuel

    Assembly

  • 7/30/2019 downar

    10/57

    Transverse Integrated Equations

    3D Neutron Diffusion Equation

    kkf

    eff

    kkkkkkkz

    Dzy

    Dyx

    Dx

    ,1

    =+

    +

    +

    Nodal Methods for Solving

    Reactor Neutronics

    ( ) ( )),(,)1,(,

    ,

    ),(,),1(,

    ,

    ),(),(,

    ),(),(),(),(

    111jiyjiy

    jy

    jixjix

    ix

    jijif

    eff

    jijijiji

    JJh

    JJhk

    zD

    z

    =

    +

    ++

    + +

    =1 1

    ),,(1

    ,,

    ),(

    i

    i

    j

    j

    x

    x

    y

    yjyix

    ji dydxzyxhh

    dyzyx

    x

    D

    h

    Jj

    ji

    y

    yxxjy

    jix +

    =

    =

    1

    ),,(1

    ,

    ),(,

    Where,

  • 7/30/2019 downar

    11/57

    Nodal Diffusion Methods

    The three, 1-D homogeneous equations are coupledthrough a transverse leakage source term.

    Nodal methods differ generally by the expansion

    used for the one-dimensional flux: Analytic Nodal Method (ANM): analytic solution of the 1-Dflux

    Nodal Expansion Method (NEM): polynomial expansion (4th

    order) of the 1-D flux

    Various innovative coarse mesh accelerationmethods (CMFD) are used to reduce thecomputational time

  • 7/30/2019 downar

    12/57

    PARCS Nodal NeutronicsMethods: Solution Kernels

    Diffusion/SP3

    MGFDFMFD

    Diffusion2GFDCMFDCylindrical

    3D

    DiffusionMGnodalTPEN

    Diffusion2GFDCMFDHexagonal

    3D

    SP3MGnodalNEMMG

    SP3MGFDFMFD

    Diffusion2GnodalANM

    Diffusion2GFDCMFD

    Cartesian

    3D

    Angle

    Treatment

    Energy

    Treatment

    Solution

    Method

    Kernel

    Name

    Geometry

    Type

    CMFD = Coarse Mesh Finite DifferenceANM = Analytic Nodal Method

    FMFD = Fine Mesh Finite DifferenceNEMMG = Nodal Expansion Method

  • 7/30/2019 downar

    13/57

    Dehomogenization: Reconstructing LocalInformation from Nodal Solution

    Where j represents all nodes involves for Ith LPRM,

    det

    , , ,( , , ) ( , ) ( , ) ( , )global local

    I g j g j g j

    g j I

    LPRM x y z x y x y x y

    =

    PARCS Detector Model

    det

    , ,,local

    g j g j

    ,

    global

    g jWill be obtained from flux reconstruction.

    are provided from lattice calculation.

    PARCS utilizes Analytic Function Expansion Nodal Method (AFEN) for fluxreconstruction, which involves analytic solution for 2-D diffusion solutionin homogeneous media.

    Similar reconstruction is used to recover pin powers from nodal solution

  • 7/30/2019 downar

    14/57

    U.S. NRC Coupled Code System

    Lattice Code

    TRITON(ORNL)

    Cross

    Section

    Library

    (PMAX)

    Neutron Flux

    Solver

    (PARCS)

    Depletion

    Module

    T/H code

    TRACE

    (RELAP5)

    GENPMAXS

  • 7/30/2019 downar

    15/57

    Coupling of Neutronics andThermal-Hydraulics

    ( )22

    2

    ),,,,( DmDm

    SbSb

    DmDm

    TmTm

    TfTf

    SbDmTmTfcrr

    +

    +

    +

    +

    ++=

    Partials obtained by piecewise linearinterpolation

    Burnup and burnup history dependence

    )2,1,,()2,1,,(

    )2,1,,()2,1,,(

    )2,1,,()2,1,(

    2

    2

    2

    2

    HISHISBUDmDmDm

    HISHISBUDmDmDm

    HISHISBUTmTmTm

    HISHISBUTfTfTf

    HISHISBUSbSbSbHISHISBUcrcr

    =

    =

    =

    =

    =

    =

    Neutron Cross Section Model

  • 7/30/2019 downar

    16/57

    History of TRACE/RELAP5/PARCS Coupling

    1998 PARCS / GI / RELAP Parallel Virtual Machine

    1999 PARCS / GI / TRAC-M

    2000 Merging GI into PARCS (Memory Copy

    instead of PVM)

    Automatic Mapping forPARCS / TRAC-M

    2004 Merging PARCS into

    TRACE Static Linking Library No PVM

  • 7/30/2019 downar

    17/57

    TRACE/PARCS GUI

  • 7/30/2019 downar

    18/57

    NRC Coupled Code Assessment

    Pressurized Water Reactor Main Steam Line Break (i.e. plant uprates) LOCA (e.g. David Besse)

    Boiling Water Reactor Peach Bottom Depletion/Turbine Trip Test Ringhalls Flow Instability

    Next Generation Reactors ESBWR Advanced CANDU (ACR-700) PBMR

  • 7/30/2019 downar

    19/57

    Nuclear Reactor Transient Analysis:Main Steam Line Break

    PWR Plant

    Schematic

  • 7/30/2019 downar

    20/57

    Main Steam Line Break Transient:Core Coolant Temperature

    220230

    240

    250

    260270

    280

    290

    300

    0 20 40 60 80 100

    Time [sec]

    Temperature

    [oC]

    Intact Loop

    Broken Loop

  • 7/30/2019 downar

    21/57

    MSLB: Reactivity Components

    -8.0

    -6.0

    -4.0

    -2.0

    0.0

    2.0

    4.0

    6.0

    0 20 40 60 80 100

    Tim e (s)

    Reactivity($)

    TotalTotal

    DopplerDoppler

    Control RodControl Rod

    DensityDensity

  • 7/30/2019 downar

    22/57

    Main Steam Line Break Analysis:Core Average Power (Point Kinetics)

  • 7/30/2019 downar

    23/57

    Core Neutronics Model

    13

    4

    2

    65

    8

    79

    10

    11

    1218

    17

    16

    15

    14

    13

    19

    neutronic fuelassembly

    reflectorassembly

    stuck rodlocation

  • 7/30/2019 downar

    24/57

    Spatial Kinetics Analysis of MainSteam Line Break

    Initial Steady-State

  • 7/30/2019 downar

    25/57

    MSLB Transient Analysis

    Core Average Power Core Radial Power

  • 7/30/2019 downar

    26/57

    BWR Assessment I:Peach Bottom Turbine Trip Transient

    Sudden Closure of the Turbine Stop Valve (TSV)

    The Pressure Oscillation Generated in the Main Steam PipingPropagates With Relatively Little Attenuation Into the Reactor

    Core

    The Core Pressure Induced Oscillations Result in DramaticChanges in the Core Void Distribution and Fluid Flow

    The Magnitude of the Neutron Flux/Power Increase is StronglyAffected by the Initial Rate of Pressure Rise Caused by thePressure Oscillation and has a Strong Spatial Variation

  • 7/30/2019 downar

    27/57

    Pressure Wave After Turbine Trip

  • 7/30/2019 downar

    28/57

    Core Void / Power During Transient

    Core Average Void Fraction

    PBTT Exercise 3

    0.28

    0.29

    0.30

    0.31

    0.32

    0.33

    0.0 0.5 1.0 1.5 2.0

    Time (s)

    VoidFraction

    Total Power

    PBTT Exercise 3

    0

    50

    100

    150

    200

    250

    300

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Time (s)

    Power(%)

    TRACM/PARC S

    Measurement

  • 7/30/2019 downar

    29/57

    BWR Assessment II: RinghallsOECD/NEA Stability Benchmark

    0.490.630.500.71410477.710

    0.540.990.560.80369472.69

    Reg. Freq

    (hz)

    Regional

    D.R.

    Global Freq

    (hz)

    Global

    D.R.

    Flow

    Kg/s

    Power

    %

    Case

  • 7/30/2019 downar

    30/57

    TRACE/PARCS CPU Requirements*vrs Number of TRACE CHANs

    0

    2

    4

    6

    8

    10

    12

    204 648Number of TRACE Channels

    CPU

    time(hours)

    TRACE

    PARCS

    486

    1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 1 5 1 6 17 1 8 1 9 20 2 1 2 2 23 2 4 2 5 26 2 7 28 29 3 0

    1 1 1 1 4 5 6

    2 7 8 8 10 11 12 13 14 : 8x8

    3 15 16 17 18 19 19 21 21 23 24 25 26 27 28 : SEAV

    4 29 30 31 32 33 34 34 36 37 37 39 40 41 42 43 44

    5 45 46 47 48 49 33 51 34 53 54 55 56 57 58 59 60 43 44

    6 45 64 65 66 49 68 69 70 51 72 53 74 75 76 57 78 78 80 81 52

    7 45 64 85 86 87 68 89 90 91 92 93 94 95 96 75 98 99 1 00 101 102 8 1 104

    8 1 05 1 06 8 5 1 08 8 7 1 1 0 1 11 1 12 8 9 9 2 9 1 9 4 1 17 1 18 9 5 1 20 1 20 1 22 9 9 1 2 4 1 01 1 26 1 27 1 28

    9 1 29 1 30 1 31 1 32 1 33 1 34 1 1 1 1 3 6 1 3 7 1 3 8 1 3 9 9 4 1 41 1 42 1 17 1 44 1 45 1 4 6 1 4 7 1 4 8 1 4 9 1 5 0 1 5 1 1 5 2 1 5 3 1 5 4

    10 155 156 157 158 134 133 161 162 163 137 165 139 167 141 169 144 171 145 147 149 175 176 177 178 179 180

    11 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 179 206

    12 2 07 2 0 8 2 0 9 2 0 9 2 1 1 1 8 4 1 8 6 2 1 4 1 8 8 2 1 6 2 1 7 2 1 8 1 9 1 2 2 0 1 9 3 2 22 1 95 2 24 2 2 5 2 2 6 1 9 9 2 2 8 2 0 1 2 3 0 2 0 3 2 0 4 2 3 3 2 34

    13 2 35 2 36 2 3 7 2 3 8 2 3 9 1 8 4 2 4 1 2 4 2 2 4 3 2 4 3 2 4 5 2 4 6 2 1 7 2 4 8 2 4 9 2 2 0 2 51 2 52 2 53 2 5 4 2 5 4 2 5 6 2 5 7 2 5 8 2 5 9 2 3 0 2 6 1 2 6 2 2 63 2 64

    14 2 65 2 66 2 6 7 2 6 8 2 6 8 2 7 0 2 7 1 2 7 2 2 7 3 2 4 3 2 7 5 2 4 5 2 7 7 2 7 8 2 7 9 2 5 1 2 81 2 82 2 83 2 8 4 2 5 6 2 8 6 2 8 7 2 8 8 2 8 9 2 8 9 2 9 1 2 9 2 2 63 2 94

    15 2 65 2 96 2 6 7 2 9 8 2 9 9 2 9 9 3 0 1 3 0 1 3 0 3 3 0 4 3 0 5 3 0 6 3 0 7 3 0 8 2 7 8 3 1 0 3 11 3 11 2 82 3 1 4 3 1 5 3 1 6 3 1 7 3 1 8 3 1 9 3 2 0 2 9 2 3 2 2 2 63 3 24

    16 2 65 3 26 3 2 7 2 9 8 3 2 9 3 3 0 3 3 1 3 3 2 3 3 3 3 3 4 3 3 5 3 0 6 3 0 7 3 0 7 3 3 9 3 4 0 3 41 3 11 3 43 3 4 4 3 4 5 3 4 6 3 4 7 3 4 7 3 4 9 3 1 9 3 5 1 3 5 1 3 53 3 24

    17 3 55 3 26 3 5 7 3 5 8 3 5 9 3 6 0 3 6 1 3 6 2 3 6 3 3 6 4 3 6 5 3 6 6 3 6 7 3 6 8 3 6 9 3 3 9 3 71 3 72 3 73 3 7 4 3 7 5 3 7 6 3 7 7 3 7 8 3 7 9 3 8 0 3 8 1 3 8 2 3 83 3 24

    18 3 85 3 26 3 8 7 3 8 8 3 8 9 3 9 0 3 9 1 3 6 1 3 6 4 3 6 3 3 9 5 3 6 5 3 9 7 3 9 8 3 9 9 4 0 0 4 01 4 02 4 03 3 7 3 4 0 5 3 7 5 4 0 7 4 0 8 4 0 9 4 1 0 3 8 0 4 1 2 4 13 4 14

    19 4 15 4 1 6 4 1 7 4 1 8 3 8 9 4 2 0 4 2 1 4 2 2 4 2 3 3 9 5 4 2 5 4 2 6 4 2 7 3 9 8 4 2 9 4 00 4 31 4 02 4 3 3 4 3 4 4 3 5 4 3 6 4 3 7 4 3 8 4 3 9 4 3 9 4 4 1 4 42

    20 443 444 417 446 447 420 449 450 451 452 453 426 455 456 457 458 459 460 434 462 436 464 437 466 467 468

    21 469 444 417 472 446 474 475 476 477 478 479 480 481 482 456 457 485 486 487 488 489 490 491 492 467 494

    22 495 496 497 498 499 475 501 502 503 477 479 506 507 481 509 510 511 485 513 487 490 516 517 518 519 494

    23 521 522 523 498 525 526 527 528 528 530 531 506 509 534 535 510 537 538 539 540 541 542 519 544

    24 545 546 547 548 549 526 551 552 553 530 555 556 557 534 559 560 561 540 563 542 565 544

    25 567 546 547 570 570 572 573 552 575 576 577 578 579 560 561 582 563 584 565 586

    26 567 588 589 590 591 572 593 594 595 576 597 598 599 582 601 602 603 586

    27 567 588 607 608 609 594 611 611 613 597 597 599 617 618 619 620

    28 621 622 623 624 625 626 627 627 629 630 631 632 633 620

    29 635 636 637 638 639 640 640 642

    30 643 644 645 646 646 646

    TRACE/PARCS Problem size

    Core TH ->684 x 27= 18468 TRACE cells

    Core Neutronics->684 x 27=18468 PARCS nodes

    ~2 hours on 2 GHz machine for initialization

  • 7/30/2019 downar

    31/57

    Advanced Reactors

    Recent emphasis has been on addressingGENIII+/GENIV licensing concerns:

    ESBWR

    ACR-700

    HTR

    Neutronics methods for MOX fuel analysis as part ofthe LWR PU Disposition program

  • 7/30/2019 downar

    32/57

    Advanced CANDU Reactor

  • 7/30/2019 downar

    33/57

    THE OECD/NEA PBMR COUPLED KINETICS CORE THERMALTHE OECD/NEA PBMR COUPLED KINETICS CORE THERMAL--HYDRAULICS BENCHMARK TEST PROBLEMSHYDRAULICS BENCHMARK TEST PROBLEMS

    Frederik Reitsma PBMR Ltd, South Africa

    Gerhard Strydom 1, Han de Haas 2, Kostadin Ivanov 3, Bismark Tyobeka 3,Ramatsemela Mphahlele 3*, Tom Downar 4, Volkan Seker 4, Hans D Gougar

    5, D F Da Cruz 2

    1 Reactor Analysis Group, PBMR (Pty) Ltd, South Africa 2 Fuel, Actinides & IsotopesGroup, NRG, The Netherlands3 Nuclear Engineering Program, Penn State University, USA 4 Nuclear EngineeringDepartment, Purdue University, USA5

    Fission & Fusion Systems, INEEL, USA*

    National Nuclear Regulator,Centurion, South Africa

    The Second Topical Meeting on High Temperature Reactor 2004September 22-24, 2004

    Beijing, China

    PEBBLE BED MODULAR REACTORPEBBLE BED MODULAR REACTOR

  • 7/30/2019 downar

    34/57

    Goal

    Develop a Numerical Nuclear Reactorwhich performs detailed, first-principle based simulation of the multi-physics phenomenaoccurring in nuclear reactors

    Objectives

    Provide a fully integrated, high-fidelity simulation capability that canbe used for the analysis of light water reactors and advanced

    reactors

    Exploit high performance computers and elaborated models tocomplement experimental verification when designing a newsystem

    Next Generation Coupled Code Methods

    The Numerical Nuclear Reactor(DOE INERI 2001-04)

    (EPRI/DOE 2005-2007)

  • 7/30/2019 downar

    35/57

    Numerical Reactor Elements and

    Participants

    Fuel Rod Config. Loading Pattern Core Geometry

    Channel Geometry

    Inlet Flow Cond. Water/Fuel PropertyAssembly Structure Core Structure

    45 Group

    Cross Section

    Library

    Fuel

    Performance

    Code

    (Anatech)

    Pin-wisePower

    Distribution

    Pin-wise

    Fuel Temp. &Fluid Force

    Fine Mesh CFD

    w/ConjugateHeat Transfer

    Monte Carlo

    w/Temp. Feedback

    FuelDimension

    Continuous

    Xsec Library

    Direct 3D

    Whole Core

    Transport

    KAERI /Purdue

    ANL

    Purdue

    Mechanistic and Detailed T/HCalculation

  • 7/30/2019 downar

    36/57

    Ray Tracing and Method of Characteristics

    fewmm

    in(0);)()(

    ==+ q

    d

    d

    min

    m

    out Flat Source Region ( )ssminmout eqe

    += 1

    Assume Constant Xsecand Flat Sourcewithin a Micro Region

    (s = segment length)

    +

    =

    q

    s

    mout

    min

    m

    =m

    mm Scalar Flux

    Segment

    AverageAngularFlux

    Neutron Balance along Ray

  • 7/30/2019 downar

    37/57

    Ray Tracing Computational Rqmts (2D)

    45Number of Energy Groups

    ~120000

    Total Number of Rays

    12Number of Planes

    ~9GBytes

    Memory Required

    ~24

    hours

    Run Time (1 CPU)

    ~10Number of Ray Tracing Sweeps

    500000Total Number of Regions

    ~10000Number of Cells

    ~50Number of Regions per Cell

    0.2 mmRay Spacing

    8/4# of Azimuthal/Polar Angles(per 90 Degrees)

    ValueParameter

    Typical Ray Tracing Parameters and

    Execut ion Requirements for a Quarter

    Core Problem

    +

    =

    l

    g

    g

    g

    l

    ggmin

    gmout

    sqs

    sinexp1

    sinexp,,

    n2

    1

    )sin( l

    s

  • 7/30/2019 downar

    38/57

    Planar MOC Solution Based 3-D CMFD

    Intranodal Axial FluxShape by NEM/MOC

    Ray Tracing

    Global 3-D CMFDProblem

    Axial Leakageas Source

    Flux

    z

    Local 2-D MOCProblems

    DifferentComposition and

    Temperature

    Cell Homogenized Cross Sections& Radial Cell Coupling Coefficients

    Cell Average Flux& Axial Leakage

  • 7/30/2019 downar

    39/57

    Relative Axially Integrated Pin Power Difference between PARCS and DeCART

    (PARCS - DeCART) / DeCART x 100%

    PWR Comparison of

    PARCS vs. DeCART (ARO-HZP)

  • 7/30/2019 downar

    40/57

    BWR Applications:

    2x2 Assembly Benchmark

    ROD H9

  • 7/30/2019 downar

    41/57

    Comparison w/ Monte Carlo

    Radial Division

    AzimuthalDivision 1 2 3

    1

    0.99

    (-0.32%)

    1.05

    (0.25%)

    1.11

    (-0.87%)

    21.00

    (-0.73%)1.06

    (0.89%)1.13

    (-0.42%)

    30.93

    (0.81%)0.94

    (0.91%)0.97

    (-0.24%)

    40.93

    (-0.01%)0.93

    (0.41%)0.95

    (-0.50%)

  • 7/30/2019 downar

    42/57

    Example of CRUD on BWR Fuel Rods

    Proceedings of the 2004 International Meeting on LWR Fuel Performance,

    Orlando, Florida, September 19-22, 2004,

    Paper 1016.Fuel Failures During Cycle 11 at River Bend, Edward Ruzauskas,

    AREVA, Framatome ANP, Inc., David L Smith, Entergy Operations

  • 7/30/2019 downar

    43/57

    Thermal-Hydraulics: CFD Code STAR-CD Commercial code developed by CD-Adapco.

    Finite-volume based code for the solution ofpressure, 3-D momentum, enthalpy, andturbulence equations over an arbitrary mesh.

    Capabilities required for this project: Conjugate heat transfer Transient analysis Multi-phase models

    Moving boundary and FSI Parallel computing

  • 7/30/2019 downar

    44/57

    CFD Modeling of a Fuel Channel

    Total 192000 cells

    Inlet

    Outlet

  • 7/30/2019 downar

    45/57

    Catawba PWR Results

    Coolant temperaturesat core outlet

    Cladding outer surfacetemperatures at assembly interface

    Twall-Tsat(C)

  • 7/30/2019 downar

    46/57

    STAR-CD 2-Phase Flow Model

    Regime variablewithin liquid-continuous region.

    Used to calculateeffective lengthscales and dragcoefficient formixed Taylor and

    trailing bubbles.

    Void

    slug

    Trailing

    bubbles

    Taylor

    bubbles

    Two-Phase CFD Simulations

  • 7/30/2019 downar

    47/57

    Two Phase CFD Simulations

    OECD-NEA/US-NRC NUPEC BFBT Benchmark Benchmark based on NUPEC BWR Full-size Fine-

    mesh Bundle Tests (BFBT)

    Full-height, heated 8 pin by 8 pin assembly

    tests Distributed radial profile

    Temperature, pressure and detailed voiddistribution measurements

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Area Averaged Void Fraction

    NormalizedHeight

    1.15 1.3 1 .15 1.3 1 .3 1.15 1 .3 1.15

    1.3 0.45 0.89 0.89 0.89 0.45 1.15 1.3

    1.15 0.89 0.89 0.89 0.89 0.89 0.45 1.15

    1.3 0.89 0.89 0 0 0.89 0.89 1.15

    1.3 0.89 0.89 0 0 0.89 0.89 1.15

    1.15 0.45 0.89 0.89 0.89 0.89 0.45 1.15

    1.3 1.15 0.45 0.89 0.89 0.45 1.15 1.3

    1.15 1. 3 1.15 1.15 1.15 1.15 1.3 1.15

    RADIAL POWER

    DISTRIBUTION

    Pressure

    Temperature

  • 7/30/2019 downar

    48/57

    Summary of 2-phase CFD Research

    Assembly level two-phase boiling with STAR-CD bubbly flow model (Completed)

    Extended flow regime models in STAR-CD

    (Ongoing) Experimental Validation of the STAR-CD two-

    phase boiling models (Ongoing)

    Coupled Code Applications under BWROperating Conditions (Initiated)

  • 7/30/2019 downar

    49/57

    Coupling Mechanics: Interface Design

    One Time Overhead only

    Transferred Periodically

    Socket communication

    File I/O

    Zone-wise

    temperature &

    density

    STAR-CD DeCART

    User Input

    Cell-wisetemperature &

    densityCFD

    InterfaceNeutronics

    Geometry

    decomposition

    Zone-wise heat

    generationCell-wise heat

    generation

    Typical

    DeCART

    pin mesh

    Typical

    STAR-CD

    pin mesh

  • 7/30/2019 downar

    50/57

    Convergence of Coupled Calculations

    Two important convergence criteria tracked:

    DeCART side: change in the power distribution

    between consecutive data exchanges:

    STAR-CD side: fuel enthalpy residual, computed internally each CFD iteration

    =

    k

    izone

    k

    izone

    k

    izone

    izone q

    qqq

    1

    max

    1.0E-06

    1.0E-04

    1.0E-02

    1.0E+00

    1.0E+02

    1.0E+04

    1.0E+06

    1.0E+08

    0 100 200 300 400

    STAR-CD Iteration

    FuelEnthalpyResidua

    l

    convergence criterion

  • 7/30/2019 downar

    51/57

    3 x 3 Pin Array Model: Results

    Midplane Temperature Distribution

  • 7/30/2019 downar

    52/57

    Test Problem Timing STAR-CD:

    24 processors ~207,000 mesh/processor Manual decomposition (4 x 6)

    DeCART:

    12 processors

    ~13,000 mesh/processor

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    1 2 3 4 5 6 7 8 9

    Data exchange

    E

    lapsedTime(s)

    DeCART

    STAR-CD

  • 7/30/2019 downar

    53/57

    Coupled DeCART/STAR-CD

    3D Model of Small PWR DeCART discretization:

    (1/4 core)

    3 million flat fluxregions in DeCART

    45 energy groups

    8 azimuthal & 4 polarangles in 90.

    70 million cells in STAR-CD (uses 1/8 coresegment). Fuel Guide tube

    Gadolinia Absorbers

  • 7/30/2019 downar

    54/57

    Small LWR Core Calculation

    Coupled DeCART/STAR-CD calculations have beenperformed on the ANL Beowulf clusterjazz:

    24 processors for DeCART (10 million flat fluxregions)

    104 processors for STAR-CD (70 million CFD cells).

    1 processor for the external interface.

    Steady-state calculations required ~5-6 hours (not yetoptimized)

  • 7/30/2019 downar

    55/57

    Summary of NNR Research

    The Numerical Nuclear Reactor (NNR) provides an integrated, highfidelity analysis capability for PWR applications Verification and validation of phenomenological modules was successful Computational burden is high and needs to be reduced

    Parallel computing More sophisticated coupling: Matrix-Free Newton Krylov

    Extensions of NNR models and methods are now underway forapplication to BWRs

    The Numerical Nuclear Reactor code system forms a foundation foradding important phenomenology to the analytical tool

    EPRI currently supporting application to important practicalissues for LWR operation (e.g. crud deposition analysis)

  • 7/30/2019 downar

    56/57

    The Next Next Generation*

    Neutronics 3D Transport (Kevin Clarno et al)

    3D MCNP + Massively Parallel computing

    Thermal-Hydraulics Interfacial Area Transport (e.g. explicit modeling

    of bubble-bubble interactions)

    The Grandest Nuclear Challenge

    Improved Nuclear Fuel Performance Modeling Coupling to of Neutronics/TH to Fuel Performance

    Code

    * >3-5 years

  • 7/30/2019 downar

    57/57

    Thanks for you attention!

    Questions?