Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

13
Ulrich Abelein , Mathias Born, Markus Schindler, Andreas Assmuth, Peter Iskra, Torsten Sulima, Ignaz Eisele Doping Profile Dependence of the Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s Vertical Impact Ionization MOSFET’s (I-MOS) Performance (I-MOS) Performance Nano and Giga Challenges in Electronics and Photonics NGC 2007 Phoenix, Arizona, USA 16 March 2007

description

Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance. Nano and Giga Challenges in Electronics and Photonics NGC 2007 Phoenix, Arizona, USA 16 March 2007. Overview. Motivation Vertical Impact Ionisation MOSFET (IMOS): Device Concept - PowerPoint PPT Presentation

Transcript of Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Page 1: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein, Mathias Born, Markus Schindler, Andreas Assmuth, Peter Iskra, Torsten Sulima, Ignaz Eisele

Doping Profile Dependence of the Vertical Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Impact Ionization MOSFET’s (I-MOS)

PerformancePerformance

Nano and Giga Challenges in Electronics and Photonics

NGC 2007

Phoenix, Arizona, USA

16 March 2007

Page 2: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 2NGC 2007

OverviewOverview

• Motivation

• Vertical Impact Ionisation MOSFET (IMOS):– Device Concept– Influence of Doping Profiles

• Electrical Characterization

• Summary and Outlook

Page 3: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 3NGC 2007

MotivationMotivation

Conventional MOSFET:

Subthreshold slope S = dVG/d(logID) is diffusion limited.

min S = kT/q · ln10 = 60 mV/dec @ 300 K

Minimum static leakage current ILEAK:

ILEAK = ID(VT) · 10-VT/S

Shrinking the feature size according to Moore‘s Law makes a reduction of VT necessary.

ILEAK

Solution Reducing S below the kT/q limit!

Achievable by gate controlled impact ionisation

Impact Ionisation MOSFET (IMOS)

Page 4: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 4NGC 2007

Device Concept – Device StructureDevice Concept – Device Structure

n+ Si source

n+ Si drain

i- Si

i- Si

p+ delta layer

Gate oxide (4.5 nm)

Gate oxide (4.5 nm)Drain contact

n+ Poly

n+ Poly

Gate contact

Source contact

Spacer Spacer

Schematic drawing of the vertical IMOS (above) and SIMS profile of the mesa layer stack (left hand side)

Page 5: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 5NGC 2007

Device Concept – Simulation ResultsDevice Concept – Simulation Results

n+ Si source

n+ Si drain

i- Si

i- Si

p+ delta layer

Gate oxide

Drain contact

n+ Poly

Gatecontact

Source contact

Spacer Spacer

-

-2 -1 0 1

Energy in eV

1010 1020 1030

Ionisation rate in pairs / (cm3s)

0

80

Dis

tan

ce i

n n

m

Drain

Source

VGS=VDS=0 VVGS=0 V; VDS=2 VVGS = VDS=2 V

p+ delta barrier lowered by gate field

High field between p+ delta layer and drain

causes impact ionisation

Simulations of the electric field and the ionisation rate in the channel region

Page 6: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 6NGC 2007

Device Concept – Operating ModesDevice Concept – Operating Modes

VDS < 1.25 V Conventional MOSFET mode

2.2 V > VDS > 1.25 V Impact Ionization Mode Holes generated by

impact ionization charge the body.

Dynamic lowering of VT!

VDS > 2.2 V Bipolar Mode Parasitic bipolar transistor contributes to ID

W = 2µm

Page 7: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 7NGC 2007

Device Concept – Operating ModesDevice Concept – Operating Modes

VDS < 1.25 V Conventional

MOSFET mode

VDS > 1.25 V Beginning of

significant impact ionziation

Holes generated by impact

ionization charge the body

Dynamic lowering of VT

S is reduced below kT/q

W = 2 µm

Page 8: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 8NGC 2007

Influence of Doping ProfilesInfluence of Doping Profiles

Unintentional changes in doping profiles due to diffusion!

p+ delta layer doping diffuses into intrinsic zones!

Diffusion Sharper delta layer, larger barrier, higher eelctric fields!

Impact Ionization rates (at const. VDS)

Lower S due to increased body charge for low VDS

Diffusion Lower barrier

Switch on voltage of parasitic bipolar transistor

Extremley low S due to current amplification

Hysteresis in input characteristics

Page 9: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 9NGC 2007

Experimental Results – Doping ProfilesExperimental Results – Doping Profiles

Using 750 °C and 800 °C gate oxide process:

Decreasing of boron diffusion for 750 °C

Maximum doping level increased by a factor of 3

Larger barrier!

Page 10: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 10NGC 2007

Electrical Characerization – Output CharacteristicsElectrical Characerization – Output Characteristics

Low thermal budget sample

Impact ionization mode begins at lower voltage

Later transistion to bipolar mode

VDS = 2.25 V

• LT sample in Impact Ioniziation mode

• HT sample in bipolar mode

W = 2 µm

Page 11: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 11NGC 2007

Electrical Characerization – Input CharacteristicsElectrical Characerization – Input Characteristics

VDS = 2.25 V

LT sample in Impact Ioniziation mode

S = 4 mV/dec

No hysteresis!W = 2 µm

Page 12: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 12NGC 2007

Electrical Characerization – Input CharacteristicsElectrical Characerization – Input Characteristics

VDS = 2.25 V

HT sample in bipolar mode

S = 1.06 mV/dec!

Hysteresis visible

Gate controlled switch-off possible!

W = 2µm

Page 13: Doping Profile Dependence of the Vertical Impact Ionization MOSFET’s (I-MOS) Performance

Ulrich Abelein 13NGC 2007

Summary and OutlookSummary and Outlook

Summary:

• Influence of boron diffusion on device performance was shown• Subthreshold slope of 1.06 mV/dec was shown• Devcie can be optimized to needs of application

– Very low subthreshold slope with measurable hysteresis– Low subthreshold slope without any hystersis

Outlook:

• Realization of the p-channel device• Shrinking device dimensions and reducing supply voltages