DOI: 10.1002/adfm.200800947 120 Governors...

10
1 DOI: 10.1002/adfm.200800947 Fluorimetric erve Gas Sensing Based on Pyrene Imines Incorporated into Films and Sub- micron Fibers By Jeremy M. Rathfon, Zoha M. AL-Badri, Raja Shunmugam, Scott M. Berry, Santosh Pabba, Robert S. Keynton, Robert W. Cohn, and Gregory . Tew* [*] Prof. Gregory N. Tew, Jeremy M. Rathfon, Dr. Zoha M. AL-Badri, Raja Shunmugam Department of Polymer Science and Engineering University of Massachusetts Amherst 120 Governors Drive Amherst, Massachusetts 01003 E-mail: [email protected] Scott M. Berry, Santosh Pabba, Prof. Robert S. Keynton, Prof. Robert W. Cohn ElectroOptics Research Institute and Nanotechnology Center University of Louisville Louisville, Kentucky 40292 Supporting Information I. Characterization II. 1 H and 13 C MR

Transcript of DOI: 10.1002/adfm.200800947 120 Governors...

Page 1: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

1

DOI: 10.1002/adfm.200800947

Fluorimetric �erve Gas Sensing Based on Pyrene Imines Incorporated into Films and Sub-

micron Fibers

By Jeremy M. Rathfon, Zoha M. AL-Badri, Raja Shunmugam, Scott M. Berry, Santosh Pabba,

Robert S. Keynton, Robert W. Cohn, and Gregory #. Tew*

[*] Prof. Gregory N. Tew, Jeremy M. Rathfon, Dr. Zoha M. AL-Badri, Raja Shunmugam

Department of Polymer Science and Engineering

University of Massachusetts Amherst

120 Governors Drive

Amherst, Massachusetts 01003

E-mail: [email protected]

Scott M. Berry, Santosh Pabba, Prof. Robert S. Keynton, Prof. Robert W. Cohn

ElectroOptics Research Institute and Nanotechnology Center

University of Louisville

Louisville, Kentucky 40292

Supporting Information

I. Characterization

II. 1H and

13C �MR

Page 2: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

2

I. Characterization

350 400 450 500 550 600 650

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Absorbance

Wavlength (nm)

No Exposure

Exposed to SAS-Cl

350 400 450 500 550 600 650

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09BA

Wavlength (nm)

Figure S1. UV-Vis spectra of 1 (A) and 2 (B) in toluene before and after exposure to a large

excess (20 µL) of SAS-Cl.

400 450 500 550 600 650

0.0

0.2

0.4

0.6

0.8

1.0BA

Norm

alized Intensity (a.u.)

Wavelength (nm)

No Exposure

Exposed to SAS-Cl

350 400 450 500 550 600 650

0.00

0.02

0.04

0.06

0.08

0.10

Absorbance

Wavelength (nm)

Figure S2. FL (A) and UV-Vis (B) spectra of 1-pyrenecarboxaldehyde in toluene before and

after exposure to a large excess (20 µL) of SAS-Cl.

Page 3: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

3

400 450 500 550 600 650

0.0

0.2

0.4

0.6

0.8

1.0

Norm

alized Intensity (a.u.)

Wavelength (nm)

160 ppmv SAS-Cl

80 ppmv

40 ppmv

20 ppmv

10 ppmv

5 ppmv

2.5 ppmv

No Exposure

Figure S3. The sensitivity of 1, at 1 x 10

-4 wt % in CHCl3, to SAS-Cl.

400 450 500 550 600 650

0.0

0.2

0.4

0.6

0.8

1.0

Norm

alized Intensity (a.u.)

Wavelength (nm)

80 ppmv SAS-Cl

40 ppmv

20 ppmv

10 ppmv

5 ppmv

2.5 ppmv

No Exposure

Figure S4. The sensitivity of 2, at 1 x 10

-4 wt % in toluene, to SAS-Cl.

Page 4: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

Figure S5. FOM of a PS film cross

ppmv SAS-Cl). Film formed from a solution of 15 wt % PS

Figure S6. SEM of various electrospun fibers at 1k and 10k (inset) magnification. 15 wt% PS in

DMF containing 0.1 wt% 1 at 12 (A), 16 (B), and 20 (C) kV applied voltage. 20 wt% PS in

DMF containing 0.13 wt% 1 at 12 (D), 16 (E),

4

FOM of a PS film cross-section ~ 34 µm thick with partial exposure to SAS

Film formed from a solution of 15 wt % PS and 0.1 wt % 1 in toluene.

SEM of various electrospun fibers at 1k and 10k (inset) magnification. 15 wt% PS in

at 12 (A), 16 (B), and 20 (C) kV applied voltage. 20 wt% PS in

at 12 (D), 16 (E), and 20 (F) kV applied voltage.

section ~ 34 µm thick with partial exposure to SAS-Cl (~ 5

in toluene.

SEM of various electrospun fibers at 1k and 10k (inset) magnification. 15 wt% PS in

at 12 (A), 16 (B), and 20 (C) kV applied voltage. 20 wt% PS in

Page 5: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

5

400 450 500 550 600 650

0.0

0.2

0.4

0.6

0.8

1.0

Norm

alized Intensity (a.u.)

Wavelength (nm)

10 ppmv SAS-Cl

5 ppmv

No Exposure

Figure S7. The sensitivity of 1 to SAS-Cl in electrospun PS fibers, from a solution of 20 wt %

PS and 0.13 wt % 1 in DMF.

II. 1H and

13C �MR

Figure S8.

1H NMR of [2-(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1.0

2,6]dec-8-en-4-yl)-ethyl]-

carbamic acid tert-butyl ester in CDCl3.

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

9.072.012.052.051.002.002.01

Chloroform-d

7.25

6.48

5.22

4.80 3.613.59

3.57

3.29 3.27

3.25

3.23

2.82

1.37

O

N

O

O NH

O

O

Page 6: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

6

Figure S9.

13C NMR of [2-(3,5-dioxo-10-oxa-4-aza-tricyclo[5.2.1.0

2,6]dec-8-en-4-yl)-ethyl]-

carbamic acid tert-butyl ester in CDCl3.

180 160 140 120 100 80 60 40 20 0

Chemical Shift (ppm)

Chloroform-d

176.26

155.87

136.41

80.93

77.44

77.00

76.59 47.33

38.71

38.42

28.27

O

N

O

O NH

O

O

Page 7: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

Figure S10. 1H NMR of 1 in CDCl

11 10 9 8

7.071.031.09

Chloroform-d7.98

8.018.03

8.06

8.09

8.15

8.18

8.21

8.43

8.458.87

8.90

9.16

180 160 140

128.58

130.53

131.14

136.38

162.10

176.12

7

in CDCl3.

7 6 5 4 3 2

Chemical Shift (ppm)

2.004.012.002.01

Chloroform-d

2.79

4.01

5.16

6.38

7.25

120 100 80 60 40

Chemical Shift (ppm)

Chloroform-d

39.62

47.35

59.14

76.56

77.00

77.41

80.75

122.82

124.86

125.58

125.79128.58

1 0

20 0

Page 8: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

8

Figure S11. 13C NMR of 1 in CDCl3.

Figure S12.

1H NMR of 2 in CDCl3.

11 10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

6.004.001.077.091.041.08

Chloroform-d

9.24

8.88

8.85

8.55 8.52

8.22

8.19

8.18

8.09

8.07

8.04

8.02

7.99 7.25

3.14 3.12

3.10

1.84

1.82

1.79

1.77

1.75

0.99

0.96

0.94

N

H

2

Page 9: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

9

Figure S13.

13C NMR of 2 in CDCl3.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Chemical Shift (ppm)

Chloroform-d

158.08

132.54

131.26

130.62

129.13

128.46

128.29

127.45

126.02

125.70

125.47

124.92

122.73

77.44

77.00

76.59

76.10

29.03

11.22

N

H

2

Page 10: DOI: 10.1002/adfm.200800947 120 Governors Driveeri.louisville.edu/papers_pres/Rathfon_AFM_2009_supporting.pdf · Figure S5. FOM of a PS film cross ppmv SAS-Cl). Film formed from a

10

Figure S14.

1H NMR of 2 exposed to SAS-Cl in CD2Cl2.