Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara...

13
doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11- 10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation and Coherence Time in NTT Lab. Date: 2010-1-18 N am e A ffiliations A ddress Phone em ail RiichiKudo N TT Corporation Hikarino-oka Y okosuka-shiJapan +81 468 59 3321 kudo.riichi@ lab.ntt.co .jp KoichiIshihara N TT Corporation Hikarino-oka Y okosuka-shiJapan +81 468 59 8266 [email protected] t.co.jp Y asushiTakatori N TT Corporation Hikarino-oka Y okosuka-shiJapan taktori.yasushi@ lab.nt t.co.jp Authors:

Transcript of Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara...

Page 1: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 1

Measured Channel Variation and Coherence Time in NTT Lab.

Date: 2010-1-18

Name Affiliations Address Phone email Riichi Kudo NTT Corporation Hikarino-oka

Yokosuka-shi Japan +81 468 59 3321

[email protected]

Koichi Ishihara NTT Corporation Hikarino-oka Yokosuka-shi Japan

+81 468 59 8266

[email protected]

Yasushi Takatori NTT Corporation Hikarino-oka Yokosuka-shi Japan

[email protected]

Authors:

Page 2: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 2

• Channel variation is one of key factors for MU-MIMO.• Coherence time in the current channel model is 400msec

[1].• Previous measured results presented in TGac suggest

larger coherence time [2] [3] while direct measurement of larger coherence time is difficult to actualize.

• In this document, channel variation is presented by the mean squared error (MSE) of the channel matrix which is closely related to the real MU-MIMO performance.

• We also present comparison with the simulation results where 11n channel model [4] is modified by setting larger coherence time.

Introduction

Page 3: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 3

Performance Measure for Channel Variation

• Measured channel matrix of k-th subcarrier at time tn:

• The correlation of the channel between timing t0 and time t1 is calculated by the following equation.

• MSE of the channel is approximated by the following equation [3].

nk

nk

nk

nk

nk

t

t

t

t

t

,4

,3

,2

,1

h

h

h

h

H

1,0,

1,0,10, ,

tt

tttt

kmkm

Hkmkm

kmhh

hh

2

10,

2

10,

10,,

,1,

tt

ttttMSE

km

km

km

Page 4: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 4

MSE in Simulation ModelIn the simulation model, MSE in LOS is lightly smaller than that in NLOS while the difference is relatively small.

-70 -60 -50 -40 -30 -20 -10 00

20

40

60

80

100

NLOS (10m)LOS (4m)

MSE [dB]

CD

F [

%]

D/T of0.002 0.007 0.012

0.050

“D/T” refers to the time difference normalized by channel coherence time. Numbers of Tx antennas and Rx antennas, and coherent time are assumed to be 8, 1, and 400 ms, respectively.

Page 5: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 5

Channel Measurement

P P P P P

P

P

COPY COPY FAXFAX

COP

Y

AP

8m 4m 0m

40 m

26 m

Channel matrices were measured using 8 transmit antennas and 1 receive antenna

48 channel matrices were obtained every 1ms during 2s.We measured the NLOS channel for distance of 8m and LOS channel for distance of 4m.Measurements were conducted at three positions for each scenario.

Page 6: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 6

Measurement parameter

• Frequency 4.85GHz

• Signal bandwidth 20MHz

• Transmit power 0 dBm

• Number of antennas at Tx 8

• Number of antennas at Rx 1 (4)

• Antenna height (LOS) 2.7m (Tx), 0.85m (Rx)

• Antenna height (NLOS) 0.85m (Tx), 0.85m (Rx)

Page 7: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 7

Photo of measurement place

Rx

Tx

Page 8: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 8

MSE in LOSSlopes are almost the same for both 50% and 90% value. MSE@90% is lower than -25 dB even for the delay time of 20ms. MSE differences among three positions are small.

MSE@90% MSE@50%

-35

-30

-25

-20

-15

1 10 100 1000

Pos. 1

Pos. 2

Pos. 3MS

E [

dB]

Time difference [ms]

-35

-30

-25

-20

-15

1 10 100 1000

Pos. 1

Pos. 2Pos. 3

MS

E [

dB]

Time difference [ms]

15msec

15msec

Page 9: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 9

MSE in NLOSSlopes are almost the same for both 50% and 90% value. MSE keeps lower level until around 15msec. MSE in NLOS is larger than LOS especially for short time difference. MSE differences among three positions are small.

-35

-30

-25

-20

-15

1 10 100 1000

Pos. 1

Pos. 2 Pos. 3MS

E [

dB]

Time difference [ms]

MSE@90% MSE@50%

-35

-30

-25

-20

-15

1 10 100 1000

Pos. 1

Pos. 2

Pos. 3MS

E [

dB]

Time difference [ms]

15msec 15msec

Page 10: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 10

Comparison with Simulations (t=20msec)

Simulated channel for NLOS 10mMeasured channel for NLOS 8m

• Slope of the measured channel was in good agreement with simulated results. • MSE of the measured channel with t of 20ms was around D/T of 0.024, which corresponds to the delay time of 9.6ms for coherent time of 400ms.• Coherent time of measured channel corresponds to 800ms.

Simulated channel for LOS 4mMeasured channel for LOS 4m

-70 -60 -50 -40 -30 -20 -10 00

20

40

60

80

100D/T = 0.002D/T = 0.005D/T = 0.007D/T = 0.010D/T = 0.012D/T = 0.024D/T = 0.050D/T = 0.1018m (1)8m (2)8m (3)

MSE [dB]

CD

F [

%]

-70 -60 -50 -40 -30 -20 -10 00

20

40

60

80

100D/T = 0.002D/T = 0.005D/T = 0.007D/T = 0.010D/T = 0.012D/T = 0.024D/T = 0.050D/T = 0.1014m (1)4m (2)4m (3)

MSE (dB)

CD

F [d

B]

Page 11: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 11

Summary-1

• Channel variation was evaluated by measured MSE in both LOS and NLOS scenarios.

• MSE@90% is less than -20 dBc even for time difference of 20 msec in both scenarios while measured MSE in NLOS was larger than that in LOS.

• CDFs of measured channel MSE at a delay of 20 msec were compared to distributions of MSE generated from the current TGac channel model. The measured results agreed well with the model at a delay of 9.6 msec.

Page 12: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 12

• This suggests that the assumed Doppler level in the current TGac channel model is excessive by at least a factor of 2.

• This finding is also supported by the results of previous channel measurement campaigns presented at TGac.

• We recommend that the TGac Doppler model be revised to assume an equivalent coherence time of 800ms.

• Assuming a required channel evolution error of -30 to -25dBc, our results suggest that accurate DL MU-MIMO performance can be supported with a channel state feedback interval on the order of 15ms.

Summary-2

Page 13: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/0087r0 January 2010 R. Kudo, K. Ishihara and Y. Takatori (NTT) Slide 1 Measured Channel Variation.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/0087r0January 2010

R. Kudo, K. Ishihara and Y. Takatori (NTT)Slide 13

References

[1] Greg Breit et al., TGac Channel Model Addendum Document, IEEE802.11-09/308r5, May , 2009.

[2] W. Yamada, K. Nishimori, and Y. Takatori, Measured Doppler Frequency in Indoor Office Environment , IEEE 802.11-09/537r0, May 11, 2009.

[3] Greg Breit, Coherence Time Measurement for TGac Channel Model, IEEE 802.11-09/1173r1, Nov., 2009.

[4] Erceg, V. et al., TGn Channel Models, IEEE 802.11-03/940r4, May 10, 2004.