Dissertation - Study of sprinkler spray characteristics in domestic premises

92
Faculty of Science, Engineering and Computing School of Mechanical and Automotive Engineering MEng (Hons) Degree in Mechanical Engineering Module Code: ME6014 Name: Damien Omar Mason KU Number: K1110597 Project Title: Study of sprinkler spray characteristics in domestic premises Date: 22 nd April 2016 Supervisor: Dr. Siaka Dembele WARRANTY STATEMENT This is a student project. Therefore, neither the student nor Kingston University makes any warranty, express or implied, as to the accuracy of the data nor conclusion of the work performed in the project and will not be held responsible for any consequences arising out of any inaccuracies or omissions therein.

Transcript of Dissertation - Study of sprinkler spray characteristics in domestic premises

Faculty  of  Science,  Engineering  and  Computing  

School  of  Mechanical  and  Automotive  Engineering  

MEng  (Hons)  Degree  in  Mechanical  Engineering  

Module  Code:  ME6014  

Name:  Damien  Omar  Mason  

KU  Number:  K1110597  

Project  Title:  Study  of  sprinkler  spray  characteristics  in  

domestic  premises  

Date:    22nd  April  2016  

Supervisor:  Dr.  Siaka  Dembele  

 

 

WARRANTY  STATEMENT  

This  is  a  student  project.  Therefore,  neither  the  student  nor  Kingston  University  

makes  any  warranty,  express  or  implied,  as  to  the  accuracy  of  the  data  nor  

conclusion  of  the  work  performed  in  the  project  and  will  not  be  held  responsible  

for  any  consequences  arising  out  of  any  inaccuracies  or  omissions  therein.  

 

 

 

  ii  

 

Acknowledgements    

I  would  like  to  thank  Kingston  University  for  giving  me  the  opportunity  to  study  

a  MEng  in  Mechanical  Engineering.  

 

I  would  like  to  thank  my  supervisor,  Dr.  Siaka  Dembele,  for  his  continued  

support  and  guidance  throughout  my  project.  He  ensured  that  I  had  a  thorough  

understanding  of  the  requirements  of  the  project  and  allowed  me  to  expand  my  

knowledge  on  fires,  fire  suppression  and  fire  sprinklers.  

 

I  would  like  to  thank  my  mother,  father  and  little  brother  for  their  support.  

 

I  would  like  to  thank  my  friend  Hugh  Jones,  who  has  been  a  great  classmate  ever  

since  we  met  in  foundation  year.  We  have  a  great  friendship  and  have  always  

supported  each  other;  he  has  made  my  university  experience  very  enjoyable.      

 

Finally,  I  would  like  to  thank  my  partner  Kalifa  Coleman-­‐Best  who  has  

continually  supported  me  through  out  my  entire  degree,  has  always  encouraged  

me  to  be  the  best  I  can  be  and  thrive  in  Engineering.  I  would  not  have  got  this  

far  without  her  being  by  my  side.    

 

 

 

  iii  

Abstract    On  completion  of  this  dissertation,  research  was  carried  out  on  the  classification  

of  fires,  types  of  fire  sprinkler  systems,  fire  statistics  in  United  Kingdom  and  

characteristics  of  fire  sprinklers.  This  research  is  important  as  it  helped  to  

determine  what  are  the  key  characteristics  of  a  fire  sprinkler,  how  those  

characteristics  affected  the  fire  extinguishing  process  and  demonstrated  the  

importance  of  their  implementation  in  domestic  premises.  This  research  was  

completed  with  both  the  analysis  of  research  papers  and  the  use  of  fire  statistics  

published  by  the  UK  government.    

 

Once  the  optimum  characteristics  were  determined,  a  real  life  scenario  was  

created  using  the  Fire  Dynamic  Simulator  software.  Simulations  were  then  

carried  out  and  the  results  were  analyzed;  the  Fire  Dynamic  Software  was  used  

as  it  provides  detailed  analyses  of  fire  behaviour.  

 

The  research  indicated  that  the  optimum  characteristics  were  small-­‐scale  

droplet  sizes  with  low  to  medium  velocities  and  flow  rates.  With  these  

characteristics  a  variety  of  fires  could  be  extinguished  in  seconds,  which  then  

prevent  fire  growth  and  fire  spread.  These  results  are  very  important  as  they  

demonstrate  and  reiterate  the  effectiveness  of  fire  sprinklers  in  domestic  

premises,  the  implementation  of  fire  sprinklers  in  domestic  premises  can  save  

hundreds  of  lives  on  a  yearly  basis  

 

 

  iv  

Glossary  

Term   Definition  

Frangible  

bulb   Heat  sensitive  bulb  element  

Water  flux   The  rate  of  flow  of  water  per  unit  area  

Momentum   Force  of  a  body  or  object  when  it  is  moving  

Atomization   The  reduction  or  separation  into  small  particles  or  fine  spray  

Inertia   The  inability  of  a  body  to  change  its  state  of  rest  or  motion  

Buoyant   The  ability  to  rise  to  the  top  of  a  liquid  or  gas  

Flashover  

The  temperature  at  which  the  heat  generated  is  high  enough  to  

ignite  an  object  simultaneously    

E  coefficient  

A  parameter  that  is  obtained  experimentally  and  is  used  in  Fire  

Dynamic  Simulator  when  complicated  fuels  are  being  used  

Over  

engineered  

 

Designing  a  product  more  complicated  than  it  needs  to  be  for  

its  application.  

 

 

 

 

  v  

 

List  of  symbols  

Symbol   Description  

μm   Micrometer  or  Micron  (Measurement  of  length)  

m   Meter  (Measurement  of  length)  

m.s  1/2  

Meter  seconds  to  the  power  of  0.5  (Heat  response  of  element  in  

seconds)  

oC   Degree  Celsius  (Measurement  of  temperature)  

K   Degree  Kelvin  (Measurement  of  temperature)  

L/min   Litres  per  minute  (Measurement  of  volume  flow  over  time)  

m/s   Meters  per  second  (Measurement  of  length  over  time)  

J/s   Joules  per  second  (Measurement  of  power  over  time)  

W   Watts  (Measurement  of  power)  

S   Seconds  (Measurement  of  time)  

m3/s   Cubic  meters  per  second  (Measurement  of  volume  over  time)  

Kg/m3   Kilograms  per  cubic  meters  (Weight  over  volume)  

KJ/Kg  -­‐  K   Kilo  Joules  per  kilogram  Kelvin  (Power  per  mass  in  temperature)  

 

 

 

 

  vi  

List  of  figures  

Figure  1  Modern  fire  sprinkler  head,  (Dr.  Jhun,  2015)  .....................................................  3  

Figure  2  Henry.  S.  Parmelee,  Automatic  fire  extinguisher,  (Woodford,  C.  2014)  ..  4  

Figure  3  Fire  structure  and  regions,  (2015)  ..........................................................................  8  

Figure  4  Differences  in  surface  area,  (2007-­‐2009)  ..........................................................  10  

Figure  5  Spectrum  of  droplet  diameters,  (G.  Grant  et  al.  2000)  .................................  16  

Figure  6  Water  flux,  (2015)  .......................................................................................................  18  

Figure  7  Sprinkler  spray  shapes,  (Sheppard,  2002)  ........................................................  19  

Figure  8  Sidewall  sprinkler  head,  (Archtoolbox,  2016)  ................................................  19  

Figure  9  Outer  spray  angle,  (Rein,  2008)  .............................................................................  20  

Figure  10  Process  of  atomization,  (Marshall,  2004)  .......................................................  20  

Figure  11  Starting  FDS  using  command  prompt,  (2016)  ..............................................  22  

Figure  12  FDS  input  file  for  burning  couch,  (2016)  ........................................................  24  

Figure  13  Smokeview  visual  of  burning  couch  &  temperature  slice  file,  (2016)  25  

Figure  14  Smokeview  visual  of  fire  suppression  using  a  fire  sprinkler,  (2016)  .  26  

Figure  15  Typical  heat  releases  vs.  time  in  t2-­‐fire  characterization,  (Kim,  2000)

 ......................................................................................................................................................  30  

Figure  16  International  Sprinkler  Sensitivity  Ranges,  Response  Time  Index  

(RTI)  versus  Conductivity  (C).  For  SI  units:  1ft  =  0.305m,  (Madrzykowski,  

2002)  ..........................................................................................................................................  32  

Figure  17  Distance  travelled  when  droplets  achieve  95%  of  terminal  velocity  

(m),  (Sheppard,  2002)  ........................................................................................................  38  

Figure  18  Simulation  domain,  (2016)  ...................................................................................  52  

Figure  19  Simulation  #5  -­‐  Simulation  after  33.3  seconds,  (2016)  ............................  53  

  vii  

Figure  20  Simulation  #5  -­‐  Slice  file  temperature  at  34.4  seconds,  (2016)  ............  53  

Figure  21  Simulation  #5  -­‐  Activated  fire  sprinkler  after  39.2  seconds,  (2016)  ..  54  

Figure  22  Simulation  #5  -­‐  1  second  after  activated  fire  sprinkler,  (2016)  ...........  55  

Figure  23  Simulation  #5  -­‐  Fully  extinguished  fire  after  5  second  after  fire  

sprinkler  activation,  (2016)  .............................................................................................  55  

Figure  24  Simulation  #49  -­‐  Spray  angle,  (2016)  ..............................................................  57  

Figure  25  Droplet  size  vs.  Time  to  extinguish  (Constant  velocity  and  flow  rate  

11.4  and  40  respectively),  (2016)  .................................................................................  60  

Figure  26  Simulation  7  with  optimized  spray  angle,  (2016)  .......................................  63  

Figure  27  Velocity  vs.  Time  to  extinguish  (droplet  size  of  100μm),  (2016)  .........  78  

Figure  28  Velocity  vs.  Time  to  extinguish  (droplet  size  200μm),  (2016)  ..............  78  

Figure  29  Velocity  vs.  Time  to  extinguish  (droplet  size  400μm),  (2016)  ..............  79  

Figure  30  Velocity  vs  Time  to  extinguish  (droplet  size  500μm),  (2016)  ...............  79  

Figure  31  Velocity  vs.  Time  to  extinguish  (droplet  size  600μm),  (2016)  ..............  80  

Figure  32  Velocity  vs.  Time  to  extinguish  (droplet  size  800μm),  (2016)  ..............  80  

Figure  33  Velocity  vs.  Time  to  extinguish  (droplet  size  1000μm),  (2016)  ...........  81  

Figure  34  Navier-­‐Stokes  equations  (NASA,  2016)  ...........................................................  81  

 

List  of  tables  

Table  1  Simulations  1-­‐49  results,  (2016)  ............................................................................  58  

Table  2  Optimized  results  -­‐  Spray  angle  20,70,  (2016)  .................................................  62  

Table  3  Refined  mesh  results  -­‐  grid  size  0.05m,  (2016)  ................................................  64  

  viii  

Abbreviations  

• NIST  –  National  Institute  of  Standards  and  Technology  

• USFA  –  U.S  Fire  Administration  

• BFRS  –  Bedfordshire  Fire  and  Rescue  Service  

• HRR  –  Heat  release  rate  

• RTI  –  Response  time  index  

• FDS  –  Fire  Dynamic  Simulator  

• SMV  –  SmokeView  

• ADD  –  Actual  density  delivered  

 

 

 

 

 

 

 

 

 

 

 

  ix  

Table  of  Contents  

Acknowledgements  .........................................................................................................  ii  

Abstract  .............................................................................................................................  iii  

Glossary  ..............................................................................................................................  iv  

Over  engineered  ..............................................................................................................  iv  

List  of  symbols  ...................................................................................................................  v  

List  of  figures  ....................................................................................................................  vi  

List  of  tables  ....................................................................................................................  vii  

Abbreviations  ................................................................................................................  viii  

1.0  Introduction  ................................................................................................................  1  

1.1  Background  ..........................................................................................................................  3  

1.2  Aims  of  study  .......................................................................................................................  5  

1.3  Deliverables  .........................................................................................................................  5  

2.0  Fires  and  Fire  sprinklers  ........................................................................................  6  

2.1  Fires  ........................................................................................................................................  6  

2.2  Fire  Sprinklers  .................................................................................................................  11  

2.3  Fire  suppression  method  using  water  .....................................................................  13  

2.4  Spray  Characteristics  .....................................................................................................  15  

3.0  Fire  Dynamics  Simulator  6  (FDS)  &  SmokeView  (SMV)  ............................  21  

3.1  Introduction  to  FDS  &  SMV  ..........................................................................................  21  

3.2  Integration  &  application  of  software  ......................................................................  22  

3.3  Case  study  ..........................................................................................................................  23  

4.0  Literature  review  ...................................................................................................  26  

  x  

4.1  Fire  suppression  by  water  sprays  .............................................................................  26  

4.2  Heat  release  rate  of  burning  items  ...........................................................................  28  

4.3  Residential  sprinkler  systems  ....................................................................................  31  

4.4  Overview  of  sprinkler  technology  research  ..........................................................  33  

4.5  Characteristics  of  pool  fire  burning  ..........................................................................  34  

4.6  Computational  modeling  of  fire  sprinkler  spray  characteristics  using  the  

fire  dynamics  simulator  .......................................................................................................  36  

4.7  Spray  characteristics  of  fire  sprinklers  ...................................................................  37  

4.8  Modeling  aspects  of  sprinkler  spray  dynamics  ....................................................  38  

5.0  Selected  fire  scenario  ............................................................................................  40  

6.0  Selected  Fire  Sprinkler  System  ..........................................................................  41  

6.1  Sprinkler  system  /  piping  ............................................................................................  41  

6.2  Sprinkler  spray  /  nozzle  ...............................................................................................  41  

6.3  Trigger  system  .................................................................................................................  41  

6.4  Fluid  .....................................................................................................................................  41  

7.0  Calculations  and  specifications  .........................................................................  42  

7.1  Flow  rate  ............................................................................................................................  42  

7.2  Orifice  diameter  ..............................................................................................................  42  

7.3  Droplet  diameter  ............................................................................................................  43  

7.4  Velocity  ...............................................................................................................................  43  

7.5  Heat  release  rate  .............................................................................................................  44  

8.0  Writing  FDS  Input  File  ..........................................................................................  45  

8.1  Specifications  ...................................................................................................................  45  

8.2  Starting  input  file  ............................................................................................................  45  

8.3  Computational  mesh  ......................................................................................................  46  

8.4  Miscellaneous  parameters  ...........................................................................................  48  

  xi  

8.5  Creating  obstruction  ......................................................................................................  48  

8.6  Pyrolysis  model  and  Fuel  .............................................................................................  49  

8.7  Particles,  droplets  and  size  distribution  .................................................................  50  

8.8  Introduction  of  sprinkler  &  Fire  suppression  by  water  ....................................  50  

9.0  Running  FDS  Simulation  ......................................................................................  52  

10.0  Analysis  of  FDS  results  .......................................................................................  56  

10.1  Results  ..............................................................................................................................  56  

10.2  Optimization  ..................................................................................................................  61  

10.3  Accuracy  ..........................................................................................................................  63  

10.4  Discussion  .......................................................................................................................  65  

11.0  Conclusion  ..............................................................................................................  67  

12.0  Bibliography  ..........................................................................................................  69  

13.0  References  .............................................................................................................  70  

14.0  Appendices  ............................................................................................................  75  

14.1  FDS  simulation  input  file  ...........................................................................................  75  

14.2  Graphical  results  ..........................................................................................................  78  

14.3  Navier-­‐Stokes  equations  ............................................................................................  81  

  1  

1.0  Introduction  

The  United  Kingdom  public  sector  information  website  collected  fire  statistics  

in  2013-­‐14  which  provided  a  detailed  analysis  of  location  of  fires,  causes  of  fires,  

casualties  and  other  important  fire  related  statistics.  In  2013-­‐14  there  were  322  

fire  related  deaths  recorded  in  the  United  Kingdom,  this  is  the  lowest  recording  

in  the  last  50  years.  Out  of  the  322  fire  related  deaths,  258  of  them  were  in  

domestic  premises,  making  80%  of  fire  related  deaths  within  the  United  

Kingdom  domestic  based.  Almost  one  fifth  of  total  fires  in  the  United  Kingdom  in  

2013-­‐14  were  in  domestic  premises,  this  was  a  total  of  39,600.  88%  of  fires  in  

domestic  premises  were  caused  by  the  misuse  of  equipment  or  house  hold  

appliances  with  the  main  source  of  ignition  being  cooking  appliances,  faulty  

appliances,  careless  handling  of  hot  substances  and/or  fire,  chip  pan  fires  and  

incidences  of  placing  fabrics  to  close  to  heat  or  fire  (Department  of  Communities  

and  Local  Government,  2015).  

 

It  is  an  obvious  sign  that  the  efforts  and  research  gone  into  fire  suppression  and  

fire  behaviour  have  improved  in  the  United  Kingdom  in  the  last  50  years.  New  

standards  have  been  incorporated  and  previous  ones  have  been  revised  in  

order  to  see  a  reduction  in  fatalities  and  time  taken  to  extinguish  fires  before  

they  intensify  and  spread.  However  with  more  than  three  quarters  of  fire  

related  deaths  occurring  in  domestic  premises,  there  is  still  much  needed  room  

for  improvement  in  this  area  in  particular.    

 

  2  

At  the  moment  fire  suppression  systems  are  not  integral  in  domestic  premises  

and  although  most  domestic  premises  have  and  are  advised  to  have  smoke  

alarms,  the  law  does  not  require  you  to  have  one  installed.  Smoke  alarms  alone  

are  not  an  adequate  source  to  reduce  the  amount  of  deaths  caused  by  fires  and  

it  is  not  advised  that  an  individual  is  to  store  a  fire  extinguisher  in  their  home  

with  the  intention  of  fighting  a  fire.  Smoke  alarms  are  reliant  on  having  fully  

charged  batteries  and  fire  extinguishers  are  reliant  on  an  individual  locating  

them  and  using  the  correct  one  for  a  specific  type  of  fire.  Automatic  fire  

sprinklers  provide  an  alternative  fire  suppression  system,  as  the  name  states,  

this  type  of  fire  sprinkler  will  trigger  automatically  to  deliver  an  effective  and  

efficient  method  of  fire  suppression.      

 

Fire  sprinkler  systems  are  fire  suppression  systems  mainly  used  in  industrial  

buildings,  offices,  shops,  schools  and  other  important  buildings  that  require  fire  

protection.  These  systems  are  a  network  of  water  pipes  that  run  through  the  

ceiling  rooms  of  buildings,  and  at  targeted  locations  in  the  building  a  hole  will  

be  placed  in  the  pipe  as  a  means  of  escape  for  the  water  into  the  room  below.  

These  holes  will  be  fitted  with  sprinkler  heads  similar  in  mechanism  to  water  

valves  but  in  place  of  a  hand  operated  component,  a  heat  sensitive  element  such  

as  a  frangible  bulb  or  two  spring  metal  arms  held  together  by  a  metal  with  a  

relatively  low  melting  point  is  used.  The  water  in  the  fire  sprinkler  system  is  

either  supplied  from  a  water  mains  or  a  water  tank  located  close  by  (Woodward,  

2016).  Fire  sprinkler  systems  are  automatic  and  are  active  fire  protection  

systems,  which  make  them  the  single  most  effective  fire  suppression  method  for  

this  application.  Having  fire  sprinkler  systems  installed  can  extinguish  a  fire  

  3  

before  it  spreads,  significantly  reducing  fatalities,  and  reducing  property  loss  

and  insurance  costs.    

 

Figure  1  Modern  fire  sprinkler  head,  (Dr.  Jhun,  2015)    

 

A  fire  related  death  in  a  building  protected  by  a  fire  sprinkler  system  is  a  rare  

occurrence  anywhere  in  the  world  (Davies,  2013).  Currently  fire  sprinkler  

systems  are  not  commonly  seen  installed  in  domestic  premises  in  the  United  

Kingdom,  as  the  benefits  and  potential  of  domestic  sprinklers  are  still  not  fully  

realized.  With  such  a  large  number  of  fire  related  deaths  occurring  in  domestic  

premises,  the  installation  of  fire  sprinkler  systems  would  be  the  most  effective  

fire  suppression  method,  making  a  significant  reduction  in  deaths.    

1.1  Background  

Fire  sprinkler  systems  have  been  in  use  for  over  100  years  with  the  recording  of  

the  first  automatic  fire  sprinkler  being  made  in  the  1870’s  by  Henry.  S.  Parmelee  

in  the  United  States.  This  sprinkler  system  was  based  on  previous  manual  

systems  that  had  been  developed.  In  Parmelee’s  system  the  hole  which  water  

would  escape  was  covered  with  a  simple  metal  cap  fixed  with  a  solder  that  was  

specifically  designed  to  melt  in  a  fire,  releasing  the  water  (Woodford,  2014).  

  4  

Although  this  simple  design  was  not  perfect,  it  has  been  the  foundation  that  

current  fire  sprinklers  are  based  on.    

 

Figure  2  Henry.  S.  Parmelee,  Automatic  fire  extinguisher,  (Woodford,  C.  2014)  

 

With  current  codes  and  regulations  now  requiring  the  use  of  these  systems  in  

public  buildings,  it  is  of  the  utmost  importance  that  they  are  optimally  designed.  

Current  fire  sprinkler  systems  are  split  into  various  different  types  dependent  

on  the  application  such  as  pipe  system,  nozzles/sprinkler  head  and  water  

supply.  Sprinkler  systems  also  have  key  characteristics  to  be  considered  such  as  

velocity,  droplet  size,  flow  rate  and  spray  angle.  

 

Fire  sprinkler  systems  have  developed  over  time  due  to  the  fact  that  the  

knowledge  on  fires  has  grown.  It  is  important  to  recognize  that  there  are  

different  classes  of  fires;  fires  can  behave  differently  under  different  

circumstances  and  in  different  environments  and  there  are  key  characteristics  

required  for  a  fire  to  be  maintained.    

  5  

1.2  Aims  of  study  

The  purpose  of  this  study  is  to  select  a  common  house  fire  scenario  and  

determine  the  optimum  characteristics  required  for  a  fire  sprinkler  system  to  

extinguish  that  fire  effectively  and  efficiently.    

In  order  to  do  this,  research  was  completed  on:    

• Fire  behaviour  

• Fire  suppression  systems  

• House  fire  statistics    

• Fire  sprinkler  systems  

• Fire  dynamics  simulator  (FDS)  and  Smoke  view  (SMV)  

These  will  help  make  an  informed  decision  concerning  what  the  optimum  

characteristics  should  be.  Once  the  key  characteristics  have  been  selected,  a  

simplified  real  life  fire  scenario  will  be  simulated  in  the  CFD  software  FDS;  a  

detailed  analysis  of  the  results  will  be  made.  

1.3  Deliverables    

By  the  end  this  study,  the  following  material  will  be  delivered:  

• Description  of  different  types  of  fires  and  fire  sprinkler  systems  

• Literature  review  relating  to  the  optimum  characteristics  of  fire  

sprinklers  and  parameters  affecting  those  characteristics  

• Selected  fire  scenario  and  fire  sprinkler  system  

• Calculations  to  select  fire  sprinkler  system  characteristics  

• FDS  &  SMV  simulation  images  

• Analysis  of  results  

  6  

2.0  Fires  and  Fire  sprinklers  

2.1  Fires  

A  fire  is  the  visible  result  of  a  chemical  reaction  between  fuel,  oxygen  and  heat.  

This  chemical  reaction  is  called  the  process  of  combustion.  The  temperature  of  

the  fuel  must  be  high  enough  for  combustion  to  begin,  also  known  as  the  

ignition  temperature,  the  fuel  will  react  with  oxygen  to  release  heat  energy  

causing  a  fire  (Science  learn,  2009).    

Types  of  fires  

Fires  are  not  all  the  same;  they  are  categorized  into  different  classes,  which  are  

defined  by  different  fuels  and  different  methods  of  extinguishing:  

• Class  A  –fires  that  are  ordinary  combustibles  and  consist  of  fuels  such  as  

wood,  paper,  fabric,  plastic  and  trash.  A  simple  stream  of  water  can  be  

used  for  such  fires.  

• Class  B  –fires  that  are  flammable  liquids  such  as  gasoline,  petroleum,  oil  

and  paraffin.  Water  should  not  be  used  for  such  fires,  to  extinguish  these  

fires  a  Halon  extinguishing  agent  or  a  foam  extinguishing  method  must  

be  used.  

• Class  C  –  fires  that  are  combustible  gasses  such  as  propane,  butane,  

methane,  etc.    

• Class  D  –  fires  that  are  combustible  metals  such  as  magnesium,  

potassium,  etc.    

• Class  E  –  fires  that  involve  electrical  equipment  such  as  motors  or  

appliances.  Water  should  not  be  used  for  such  fires  as  this  can  causes  a  

greater  hazard.  

  7  

• Class  F  –  fires  which  involve  cooking  oils  in  well-­‐insulated  cooking  

appliances  located  in  commercial  kitchens.  These  fires  are  characterized  

by  high  flash  points.  Water  mist  is  the  most  effective  way  of  

extinguishing  such  fires.  

(Fire  equipment  manufacturer’s  associate,  2015)  

 

A  class  A  fire  is  a  typical  type  of  fire  that  occurs  in  domestic  premises,  therefore  

this  study  focused  on  this  category  (Department  of  Communities  and  Local  

Government,  2015).  

 

Fire  structure  

The  structure  of  a  turbulent  fire  can  be  divided  into  four  separate  regions  for  

analysis:  

• Fuel  rich  core  –  This  region  is  considered  as  a  non-­‐reacting  region,  this  is  

because  the  generation  of  heat  release  mostly  appears  in  the  region  

above,  the  intermittent  region.  This  region  is  approximately  20%  of  the  

average  flame  height  and  is  above  the  surface  of  the  fuel.  

• Intermittent  region  –  Above  the  fuel  rich  core  lays  this  region,  which  is  a  

reacting  region,  heat  is  released  as  decomposition  particles  caused  by  the  

fire,  react  with  the  air  that  is  brought  into  the  fire.  Products  are  then  

produced  from  the  combustion  such  as  water  vapor,  carbon  monoxide,  

soot  particles  and  carbon  dioxide.    

• Plume  region  –  This  region  is  also  considered  as  a  non-­‐reacting  region,  

this  is  due  to  the  rapid  decrease  in  chemical  reactions,  the  temperature  

drops  in  this  region  as  air  is  brought  in.  There  will  be  some  traces  of  

  8  

combustion  products  such  as  soot  or  carbon  monoxide  but  due  to  the  

low  temperature  reactions  do  not  fully  take  place.    

• Ceiling  jet  –  This  region  appears  inside  or  in  confined  areas,  this  region  is  

a  non-­‐reacting  region.  It  consists  of  gases  and  products  from  the  fire  

rising  to  the  ceiling  and  spreading  outwards.  

The  structure  and  shape  of  fires  are  very  important  in  understanding  fire  

behaviour  and  fire  suppression.  It  is  known  that  the  shapes  of  fires  will  

change  with  time  and  the  circumstances  surrounding  it.  Typically  the  shape  

of  a  turbulent  fire  can  be  described  as  a  cylindrical  or  cone  link  with  the  

bottom  taken  as  the  pool  diameter  and  the  top  given  by  the  visible  flame  

height.  Figure  3  shows  a  typical  structure  and  the  different  regions  of  a  fire  

(Hamins  et  al.,  1995).  

 

Figure  3  Fire  structure  and  regions,  (2015)  

Fire  behaviour  

Another  important  characteristic  of  fires  is  their  behaviour;  fires  do  not  all  

behave  in  the  same  way  with  external  factors  dictating  this.  Fires  can  burn  

differently,  range  in  different  temperatures,  have  different  color  flames  and  

initiate  differently.    All  fires  produce  gases  but  some  fires  produce  deadlier  

  9  

gasses  than  others.  The  way  in  which  a  fire  behaves  can  depend  on  the  fuel  and  

other  factors  that  affect  the  fuel,  such  as  initial  conditions,  surface  area,  heat  

produced,  and  availability  of  fuel  and  oxygen  (Science  learn,  2009).  

 

The  temperature  at  which  fuels  begin  combustion  varies  with  different  fuels.  

For  every  fuel  there  is  a  certain  amount  of  heat  energy  required  to  change  that  

fuel  into  a  gas,  if  it  is  not  already.  After  that,  more  heat  energy  is  required  to  

create  the  chemical  reaction  with  oxygen,  causing  the  production  of  a  fire  

(Science  learn,  2009).  

 

The  ambient  conditions  that  affect  the  fuel  relate  to  the  humidity  of  the  

atmosphere;  if  the  air  is  dry  it  will  contribute  in  drying  the  fuel,  making  ignition  

quick  and  easy  alternatively  if  the  air  is  moist  ignition  will  become  difficult  

(Science  learn,  2009).  

 

The  rate  at  which  a  fire  initiates  and  burns  is  dependent  on  the  surface  area  of  

the  fuel.  Fuels  with  larger  surface  areas  have  faster  combustion  reactions;  this  is  

due  to  the  fact  that  more  oxygen  molecules  can  collide  with  the  surface  of  the  

fuel  per  second.  You  can  increase  the  surface  area  of  a  solid  by  breaking  it  up  

into  smaller  pieces,  this  can  be  seen  with  wood,  small  pieces  will  catch  fire  

quickly  and  more  easily  than  larger  pieces  (Science  learn,  2009).  

  10  

 

Figure  4  Differences  in  surface  area,  (2007-­‐2009)  

 

The  amount  of  heat  energy  release  varies  in  different  fuels;  some  fuels  retain  a  

lot  of  energy  while  others  do  not.  The  amount  of  energy  release  dictates  how  

quickly  the  fuel  burns;  more  heat  energy  will  allow  the  reaction  with  oxygen  to  

occur  very  quickly  (Science  learn,  2009).  

 

The  amount  of  fuel  available  will  dictate  the  intensity  and  duration  that  the  fire  

will  burn  at  in  terms  of  heat  energy  output  or  heat  release  rate.  The  more  fuel  

available  the  more  intense  and  longer  the  fire  will  burn  for.  The  amount  of  fuel  

available  is  also  known  as  the  ‘fuel  load’  (Science  learn,  2009).  

 

Similarly  to  the  amount  of  heat  energy  available,  the  amount  of  oxygen  available  

will  depend  on  how  quickly  the  reaction  will  occur  and  the  rate  of  burning.  A  

low  concentration  of  oxygen  also  known  as  the  ‘back  draught’  will  slow  down  

burning  and  cause  smoldering,  if  there  is  then  an  increase  in  oxygen  the  fire  will  

immediately  grow  (Science  learn,  2009).  

 

 

  11  

Pool  fires  &  Jet  fires  

When  fires  begin  they  can  start  as  one  of  the  following:  

• A  pool  fire  -­‐  a  turbulent  diffusion  fire  resulting  from  the  combustion  of  a  

fuel,  where  the  fuel  has  zero  or  low  initial  momentum.  

• A  jet  fire  -­‐  a  turbulent  diffusion  fire  resulting  from  the  combustion  of  a  

fuel  continuously  released  with  some  significantly  high  initial  

momentum.    

(Health  and  safety  executive,  2016)  

2.2  Fire  Sprinklers  

Fire  sprinkler  systems  are  fire  suppression  systems  that  are  commonly  used  in  

industrial  buildings,  offices,  residential  buildings  and  other  buildings  that  are  

deemed  important.  Due  to  the  frangible  bulb  component  in  fire  sprinklers,  they  

are  classified  as  active  fire  protection  measures.  

 

Types  of  fire  sprinklers  systems  

There  are  several  different  types  of  fire  sprinklers  with  different  functionality  

between  them;  this  is  because  they  have  different  applications.    

 

Wet  pipe  

The  wet  pipe  system  is  the  quickest  responding  system,  as  per  the  name  this  

system  always  has  water  within  the  pipes  of  the  system;  this  water  is  also  under  

a  considerable  amount  of  pressure.  The  combination  of  these  two  factors  allow  

for  a  rapid  response  when  the  sprinkler  head  is  activated.  The  wet  pipe  system  

is  commonly  used  in  buildings  such  as  offices,  it  is  cost  effective,  easy  to  

  12  

maintain,  easy  to  install  and  reliable.  The  risks  with  this  system  is  that  if  the  

pipes  are  damaged  there  is  the  possibility  of  leaks  and  if  the  system  is  installed  

in  an  environment  with  extremely  cold  weather,  the  water  is  at  risk  of  freezing  

(Tyco,  2016).    

 

Dry  pipe  

In  contrast  to  the  wet  pipe  system,  this  system  does  not  have  water  readily  

available  within  the  pipes  of  the  system,  instead  of  water  the  pipes  are  filled  

with  pressurized  air;  this  pressurized  air  keeps  a  valve  closed  that  retains  the  

water.  When  the  sprinkler  head  is  activated,  the  air  is  released,  which  allows  the  

water  to  flow  through  the  pipes  and  then  out  through  the  sprinkler  head.  The  

obvious  downside  to  this  is  that  there  is  a  delay  before  the  water  actually  exits  

the  sprinkler  head  however  the  advantage  of  this  system  is  that  it  releases  a  

large  amount  of  pressurized  water.  The  dry  pipe  system  is  a  very  expensive  and  

complicated  system  to  install  and  maintain.  These  systems  are  used  in  buildings  

such  as  warehouses  where  there  is  exposure  to  extremely  cold  temperatures  

that  will  cause  a  risk  of  the  water  freezing  in  the  pipes  (Tyco,  2016).  

 

Alternate  pipe  

This  system  is  a  combination  of  the  wet  pipe  system  and  dry  pipe  system;  this  

alternation  happens  between  different  times  of  the  year;  during  the  summer  

time  when  there  is  no  risk  of  the  water  freezing,  the  system  is  filled  with  

pressurized  water,  achieving  a  wet  pipe  system.  During  the  wintertime  when  

there  is  a  risk  of  the  water  freezing  the  pipes  are  instead  filled  with  pressurized  

air.  Of  course  this  system  is  extremely  costly  and  difficult  to  install  and  maintain  

  13  

but  can  be  used  across  various  types  of  buildings  where  there  is  a  risk  of  the  

water  freezing  only  during  winter  (Tyco,  2016).  

 

Pre-­‐action  pipe  

This  system  is  similar  to  the  dry  pipe  system  in  which  it  initially  does  not  have  

the  system  pipes  filled  with  water  but  with  compressed  air.  What  differentiates  

this  system  from  a  dry  pipe  system  is  that  this  system  requires  two  triggers.  The  

first  trigger  being  a  device  such  as  a  smoke  detector,  once  this  trigger  is  

activated,  water  is  then  released  into  the  pipe  system.  The  second  trigger  will  be  

the  fire  sprinkler  head,  once  activated  will  release  the  water  out  of  the  sprinkler  

head  (Tyco,  2016).  

 

Deluge  pipe  

Similar  in  functionality  to  the  pre-­‐action  pipe  system,  the  deluge  pipe  system  

requires  two  trigger  activations.  The  difference  between  the  pre-­‐action  system  

and  this  system  is  that  there  is  a  manual  component  for  the  first  trigger,  such  as  

a  button,  a  lever  or  a  device  that  is  similar.  These  systems  are  commonly  seen  in  

chemical  plants  or  hazardous  areas  (Tyco,  2016).  

2.3  Fire  suppression  method  using  water  

Water  spray  

Water  spray  is  the  commonly  seen  mode  of  spray;  which  is  defined  by  the  size  

of  droplets  released  from  the  sprinkler  head.  The  range  is  typically  between  

100-­‐1000µm  (Grant  et  al.,  2000).  Water  spray  systems  can  be  categorized  in  

either  medium  or  high  velocity.    

  14  

 

High  velocity  water  sprays  provide  coverage  in  wide  areas  over  a  short  amount  

of  time.  To  create  this  high  velocity  the  system  would  have  an  increased  flow  

rate  and  pressure.  

 

Medium  velocity  sprays  provide  better  coverage  on  a  smaller  area  than  high  

velocity  sprays  but  are  used  in  different  applications  where  the  size  and  type  of  

fire  risk  is  not  as  great  (Tyco,  2016).  

 

Water  mist  

Water  mist  is  defined  by  the  droplet  sizes  being  in  the  range  of  10-­‐100  µm.  This  

mode  of  spray  is  highly  efficient  and  effective  way  of  fire  suppression,  this  is  due  

to  the  size  of  the  water  droplets;  the  smaller  droplets  allow  coverage  of  a  larger  

surface  area,  this  in  turn  increases  the  heat  absorption  of  the  droplets,  

extinguishing  the  fire  quickly.  The  heat  of  the  fire  converts  the  water  mist  into  

steam,  which  then  covers  the  fire  and  prevents  oxygen  from  reaching  it;  the  

steam  also  reduces  the  heat  output.  

 

Not  all  types  of  fires  can  be  easily  extinguished  with  smaller  droplets  alone,  

other  characteristics  of  the  fire  sprinkler  are  key  to  ensure  that  the  droplets  get  

to  the  fire  core;  even  then,  an  increase  in  droplet  size  may  be  necessary  (Tyco,  

2016).  

  15  

2.4  Spray  Characteristics    

When  designing  or  selecting  a  fire  sprinkler  system  it  is  very  important  to  

consider  the  characteristics  of  the  spray,  all  equally  as  important  as  the  other  

contributing  to  the  extinguishment  of  a  fire.  The  spray  characteristics  are  

dependent  on  the  type  of  fire,  heat  release  rate  and  size  of  the  fire  that  could  

possibly  grow  and  the  dimensions  of  the  room.    

 

Flow  rate  (Volumetric)  

The  flow  rate  of  a  fire  sprinkler  is  the  rate  at  which  a  volumetric  measure  of  

water  is  released  over  a  given  amount  of  time  and  is  defined  by:  

Q =V × A (m3 / s) or (l / s)  

Where :Q = Flow rateV =VelocityA =Cross− sec tional area

 

 

The  flow  rate  is  determined  by  analyzing  the  type  of  fire  then  finding  how  much  

water  is  required  to  be  stored  to  extinguish  a  fire.    

 

Droplet  size  

The  droplet  size  is  defined  by:  

d = 6×Vtoti×π

3 (mm) or (µm)  

  16  

Where :i = Droplet of equal volumed = Droplet diamaterπ= piVtot = Total volume

 

(Grant  et  al.,  2000)  

 

This  parameter  is  important  as  it  dictates  whether  or  not  the  droplets  can  

efficiently  penetrate  through  the  various  regions  of  a  fire  and  reach  the  fire  core  

without  completely  evaporating.  It  must  be  noted  that  increasing  droplet  size  

has  an  adverse  effect  on  the  pressure  within  the  pipe  system.  However  

increasing  the  droplet  size  increases  the  probability  of  the  droplets  penetrating  

the  fire  and  also  increases  the  velocity  (Grant  et  al.,  2000).  

 

Figure  5  Spectrum  of  droplet  diameters,  (G.  Grant  et  al.  2000)  

 

The  range  of  droplet  sizes  for  fire  sprinklers  should  be  ideally  between  fine  and  

average  (Grant  et  al.,  2000).  

  17  

 

Velocity  

 The  velocity  of  the  particles  are  defined  by  rearranging  the  volumetric  flow  rate  

equation:  

V =4×Qπ × d 2

(m / s)  

Where;Q = Flow rated =Orifice diameterπ = pi

 

 

This  characteristic  plays  an  important  part  in  whether  or  not  the  droplets  are  

able  to  reach  the  core  of  the  fire.  Due  to  gases  and  products  from  the  fire  flowing  

upwards,  which  can  be  seen  in  Figure  3,  the  velocity  of  the  droplets  must  be  

high  enough  to  counteract  this  upwards  movement  and  penetrate  through  the  

gases.    The  height  of  the  room  must  also  be  considered;  higher  rooms  will  have  

higher  plume  regions,  which  will  require  higher  velocities  (Bourque,  2013).    

 

Water  flux  

The  water  flux  is  defined  as:  

J = QA(l / s /m2 )  

Where :J =Water fluxQ = Flow rateA=Cross-sectional area

 

 

  18  

The  water  flux  is  a  measure  of  volumetric  flow  rate  over  cross-­‐sectional  area  

and  is  the  amount  of  water  that  is  released  under  the  sprinkler  (Bourque,  2013).  

It  is  dependent  on  the  intensity  of  the  fire,  if  you  have  a  fire  with  a  high  power  

output,  a  large  amount  of  water  will  be  required  to  cover  that  area  and  

extinguish  the  fire.  

 

 

Figure  6  Water  flux,  (2015)  

 

Shape  of  spray  (Spray  angle)  

The  shape  of  spray  dictates  the  spray  coverage  on  the  fire.  As  per  Figure  7  and  8  

there  are  different  types  of  spray  patterns.  The  traditional  and  modern  upright  

sprinkler  head  project  the  spray  upwards  and  have  deflectors  that  spray  the  

water  below,  the  traditional  upright  provides  ceiling  protection  by  wetting  and  

cooling  the  ceiling,  opposed  to  the  modern  upright.  Commonly  seen  pendant  

sprinkler  heads  hang  down  from  the  ceiling  and  spray  the  water  in  a  circular  

  19  

pattern,  early  suppression  fast  response  sprinkler  heads  provide  optimum  

water  delivery  and  water  flow  by  spraying  water  over  a  small  area  and  direct  

the  spray  downwards  (Sheppard,  2002).    

 

 

Figure  7  Sprinkler  spray  shapes,  (Sheppard,  2002)  

 

Sidewall  sprinkler  heads  are  attached  to  walls;  they  spray  water  away  from  the  

wall  in  a  semi-­‐circular  pattern  and  wet  and  cool  the  wall  below  using  a  

secondary  deflector  (Archtoolbox,  2016).  

 

Figure  8  Sidewall  sprinkler  head,  (Archtoolbox,  2016)  

 

One  way  to  define  the  shape  of  spray  is  the  spray  angle;  in  every  shape  of  spray  

there  are  two  different  spray  angles  that  exist.  These  spray  angles  are  the  inner  

and  outer  spray  angle.  The  area  inside  of  the  spray  where  there  is  no  water  

  20  

defines  the  inner  spray  angle  and  the  outer  area  of  the  spray  defines  the  outer  

spray  angle  (Bourque,  2013).  

 

 

Figure  9  Outer  spray  angle,  (Rein,  2008)  

 Spray  offset  

The  distance  from  the  sprinkler  head  in  which  water  droplets  are  fully  formed  is  

called  the  spray  offset  (Bourque,  2013).  The  process  of  which  the  droplets  are  

produced  is  called  atomization;  the  stages  of  atomization  are  described  in  figure  

10  (Marshall,  2004).    

 

Figure  10  Process  of  atomization,  (Marshall,  2004)  

  21  

3.0  Fire  Dynamics  Simulator  6  (FDS)  &  SmokeView  

(SMV)  

3.1  Introduction  to  FDS  &  SMV  

Fire  Dynamic  Simulator  (FDS),  is  a  computational  fluid  dynamics  model  of  fire-­‐

driven  fluid  flow.  FDS  solves  numerically  a  form  of  the  Navier-­‐Stokes  equations  

(shown  in  appendix  14.3)  appropriate  for  low  speed,  thermally  driven  flow  

(Pool  fires)  with  an  emphasis  on  smoke  and  heat  transfer.  

 

FDS  was  publicly  released  in  February  2000.  To  date,  roughly  half  of  the  

applications  of  the  software  have  been  used  for  the  design  of  smoke  handling  

systems  and  sprinkler/detector  activation  studies.  The  other  half  consists  of  

residential  and  industrial  fire  reconstruction.  Throughout  the  years  of  

development,  FDS  has  been  aimed  at  solving  practical  fire  problems  in  fire  

suppression,  while  at  the  same  time  providing  a  tool  to  study  fundamental  fire  

dynamics  and  combustion  

 

Smokeview  is  a  scientific  software  that  comes  packaged  with  FDS.    It  is  tool  

designed  for  visualizing  numerical  prediction  generated  by  fire  models  such  as  

FDS.  FDS  and  Smokeview  are  primarily  used  to  model  and  visualize  time-­‐

varying  fire  phenomena.  Smokeview  performs  visualizations  by  displaying  time  

dependent  tracer  particle  flow,  animated  contour  slices  of  computed  gas  

variables  and  surface  data.  Smokeview  also  presents  contours  and  vector  plots  

of  static  data  anywhere  within  a  simulation  scene  at  a  fixed  time  (NIST  Special  

Publication  1019,  2015).  

  22  

 

FDS  &  Smokeview  must  be  discussed  as  the  selected  simulations  are  to  be  

carried  out  on  this  software  to  evaluate  the  optimum  sprinkler  spray  

characteristics  for  fire  suppression.  It  is  also  important  to  discuss  why  this  

software  is  being  used  for  this  project.  

 

3.2  Integration  &  application  of  software  

A  single  text-­‐based  input  file  that  ends  with  the  file  extension  is  required  to  start  

an  FDS  simulation.  The  input  file  can  be  written  using  a  text  editor  such  as  

Microsoft  word  or  more  commonly  used  notepad.  The  simulation  is  started  

directly  via  the  command  prompt  i.e.  job_name.fds.  

 

Figure  11  Starting  FDS  using  command  prompt,  (2016)  

 

Once  the  simulation  has  been  completed,  output  files  will  be  produced  and  

Smokeview  will  provide  a  visual  aid  for  the  simulation  over  a  specified  time,  

these  output  files  and  visual  aid  describe  the  performance  of  the  simulation.  

  23  

In  order  to  create  a  FDS  input  file  there  are  certain  steps  that  are  required  to  be  

completed,  these  are  described  in  greater  detail  in  8.0.    

 

FDS  and  Smokeview  was  used  in  this  project  as  it  has  ideal  applications;  these  

include  fire  sprinkler  activation  study  and  fire  suppression.  When  using  this  

software  for  such  applications,  it  will  take  the  following  key  characteristics  into  

consideration  that  are  crucial  for  this  project.  

• Sprinkler  head  

• Droplet  diameter  

• Activation  temperature  

• Response  time  index  

• Flow  rate  

• Spray  offset  

• Particle  velocity  

• Spray  angle  

• Heat  release  rate  

The  purpose  of  the  simulation  was  to  create  a  typical  fire  scenario  in  a  domestic  

premise  with  real  life  values  and  demonstrate  how  to  extinguish  that  fire  with  

pre-­‐determined  characteristics  for  the  fire  sprinkler  system.    

3.3  Case  study  

To  provide  a  better  understanding  of  FDS  and  Smokeview  and  how  it  relates  to  

this  project,  an  analysis  of  two  of  the  existing  input  files  took  place.    

 

  24  

The  first  example  is  of  a  couch  situated  in  a  living  room  that  is  burning  over  a  

period  of  600  seconds.  This  is  a  very  useful  example,  which  is  relative  to  this  

study  as  it  demonstrates  a  fire  scenario  that  could  occur  in  a  domestic  premise  

and  provides  output  values.  The  Input  file  for  the  burning  couch  can  be  seen  in  

figure  13  where  all  boundaries  and  parameters  about  the  scenario  are  defined.  

 

 

Figure  12  FDS  input  file  for  burning  couch,  (2016)  

  25  

 

Once  the  simulation  is  completed,  the  Smokeview  visual  can  be  viewed,  this  is  

shown  in  figure  13;  where  the  couch  has  been  burning  for  a  period  of  500  

seconds.  Everything  that  can  be  seen  in  the  Smokeview  file  has  been  specified  

within  the  input  file.    

 

 

Figure  13  Smokeview  visual  of  burning  couch  &  temperature  slice  file,  (2016)  

 

Flow  patterns  can  be  seen  and  slices  of  data  can  be  shown,  either  in  the  gas  or  

solid  phase  by  including  the  slice  file  and  or  boundary  file  name  list  group  in  the  

input  file.  A  slice  file  of  the  burning  couch  can  be  seen  in  figure  14,  which  

displays  the  temperature  on  a  specified  plane;  this  can  also  be  on  a  line  or  

volume  depending  on  the  boundaries  set.  Other  quantities  such  as  conductivity,  

enthalpy  and  heat  release  rate  can  also  be  specified  using  the  slice  file.  

 

The  second  example  is  of  a  fire,  which  is  then  suppressed  using  a  fire  sprinkler  

after  a  specified  amount  of  time;  if  required  the  fire  sprinkler  can  also  be  

activated  when  the  sprinkler  head  reaches  a  temperature  that  is  specified  

  26  

within  the  input  file.  This  example  is  relative  to  this  study  as  it  demonstrates  

fire  suppression  with  the  use  of  a  fire  sprinkler.  Similarly  to  the  previous  

example,  all  parameters  and  boundaries  of  the  fire  scenario  that  are  seen  in  the  

Smokeview  file  must  be  specified  within  the  input  file.    

 

 

Figure  14  Smokeview  visual  of  fire  suppression  using  a  fire  sprinkler,  (2016)  

4.0  Literature  review  

4.1  Fire  suppression  by  water  sprays  

One  of  the  first  key  topics  researched  include  fire  suppression.  Grant  et  al.  

explored  the  classification  of  fire  types,  fire  suppression  of  class  A  fires,  class  A  

fire  characteristics  and  water  spray  qualities.  This  research  paper  is  applicable  

  27  

to  my  project  as  it  directly  relates  to  fire  suppression  using  water  sprays;  water  

sprays  being  an  integral  part  of  fire  sprinkler  systems.      

 

A  major  point  that  was  discussed  in  this  paper  was  the  extinguishment  of  class  

A  fires  by  water;  it  is  important  to  note  that  the  following  are  key  components  

to  extinguishing  these  fires:  

• Cooling  the  fuel  surface  –  This  reduces  the  burning  rate  and  the  rate  of  

fuel  available  to  the  fire;  this  in  turn  has  a  reduction  on  the  heat  release  

rate.  This  method  allows  easier  extinguishment  of  the  fire.    

• Cooling  the  flame  zone  directly  –  This  reduces  the  rate  of  chemical  

reactions  for  combustion,  some  of  the  heat  normally  used  to  support  the  

reaction  is  transferred  into  heating  and  evaporating  the  water  droplets,  

and  this  will  provide  an  insufficient  amount  of  heat  needed  to  aid  the  

reaction  for  combustion.    

• Volumetric  displacement  of  oxygen  –  As  the  fire  sprinkler  provides  water  

vapor  within  the  area  that  the  fire  exists,  it  displaces  the  oxygen  away  

from  the  fire,  which  reduces  the  rate  of  chemical  reactions  for  

combustion.  This  has  a  similarly  result  to  cooling  the  flame  zone  directly.  

• Wetting  combustible  surface  to  control  fire  spread  –  Once  the  fire  

sprinkler  has  activated,  the  water  sprays  distributed  can  pre-­‐wet  

combustible  surfaces  within  the  immediate  range  of  the  fire;  this  

provides  a  heat-­‐sink  which  effectively  delays  ignition.  

(Grant  et  al.,  2000)  

 

  28  

The  information  provided  on  class  A  fires  are  applicable  to  this  project  because  

they  are  a  common  type  of  fire  that  occurs  in  domestic  premises  and  is  the  type  

of  fire  that  will  be  used  for  the  analysis.  

 

The  second  major  point  discussed  was  the  water  spray  characteristics,  which  

are  required  when  considering  the  properties  of  fire  sprinkler  sprays.  This  

journal  provides  a  quantitative  way  of  calculating,  number  of  droplets,  droplet  

diameter,  total  volume  and  total  surface  area  per  litre  volume  of  the  resulting  

spray,  which  is  defined  below  (Grant  et  al.,  2000).    

 

Vtot = i×π × d3

6(mm3)

d = 6×Vtoti×π

3 (mm) or (µm)

Stot = i×π × d2 (mm2 )

 

 

Where :i = Droplet of equal volumed = Droplet diamaterπ= piVtot = Total volumeStot = Total surface area per litre volume of resulting spray

 

(Grant  et  al.,  2000)  

4.2  Heat  release  rate  of  burning  items  

Another  key  topic  researched  was  heat  release  rate.  The  heat  release  rate  is  a  

critical  parameter  for  the  analysis  of  fire  growth  and  is  typically  described  as  

the  heat  energy  evolving  on  a  per  unit  time  basis.  The  heat  release  rate  is  

defined  by:    

  29  

 

Q.=αg × t

2

or

Q.=m

.×ΔHc

 

 

Where :

Q.= Heat release rate

t = Timeαg = Fire growth

m.=Mass− burning rate

Hc = Heat of combustion

 

The  heat  release  rate  is  important  as  it  has  a  major  influence  on  the  values  

selected  for  the  characteristics  of  the  fire  sprinkler  systems.  If  a  burning  item  

has  a  high  heat  release  rate  value,  the  sprinkler  spray  characteristics  such  as  the  

velocity  and  droplet  size  need  to  be  able  to  accommodate  it,  otherwise  the  spray  

will  not  be  able  to  reach  the  base  of  the  fire  (Kim,  2000).    

 

Kim  et  al.  explored  heat  release  rate  by  examining  what  it  is,  how  it  can  be  

calculated  and  providing  experimental  data  on  burning  rates  of  typical  furniture  

in  a  room.  This  paper  was  selected  due  to  the  information  provided,  it  was  

deemed  reliable  due  to  the  experimental  method  and  applicability  to  my  project  

because  of  the  burning  materials  used.  

 

  30  

 

Figure  15  Typical  heat  releases  vs.  time  in  t2-­‐fire  characterization,  (Kim,  2000)  

 

When  finding  experimental  values  for  the  heat  release  rate,  the  value  of  Q.

m  

(Maximum  heat  release  rate)  is  given.  If  this  value  is  used  as  the  basis  for  

designing  a  fire  sprinkler  system,  the  fire  sprinkler  system  will  be  over  

engineered.  As  previously  mentioned  heat  release  rate  is  energy  evolving  on  a  

per  unit  time  basis,  which  means  that  as  time  goes  on,  the  heat  release  rate  will  

grow.  From  the  experimental  data  (Table  A,  Kim  et  al.,  2000)  from  this  paper  it  

can  be  seen  that  the  time  it  takes  to  reach  this  maximum  value  ranges  from  90-­‐

1000  seconds;  it  is  not  ideal  for  a  fire  to  be  burning  for  this  length  of  time  before  

the  fire  sprinkler  system  reacts.  This  paper  states  that:    

Q.=αg × t

2  

Where :αg = Fire growth = 1000/(t1mw -t0 )2

t = timet 1mw= time to reach 1MWt0 = time to the onset of ignition

 

  31  

(Kim,  2000)  

 

If  values  for  t1MW  and  tO  are  provided  then  αg  can  be  calculated.  The  value  for  t  

will  then  be  the  ideal  time  for  a  sprinkler  to  activate  after  a  fire  has  started;  this  

is  typically  between  30-­‐50  seconds.  Inserting  these  values  into  the  heat  release  

rate  equation  will  provide  the  heat  release  rate  for  the  specified  time,  t.  

 

4.3  Residential  sprinkler  systems  

Madrzykowski  et  al.  discussed  the  importance  of  automatic  sprinkler  systems  

being  incorporated  in  residential  premise.  This  paper  is  relevant  to  this  project  

as  it  discusses  the  research  and  development  for  a  solution  to  fires  in  homes;  it  

also  contains  statistics  on  fires  in  homes.  

 

A  very  important  topic  discussed  by  Madrzykowski  et  al.  is  the  measuring  of  

sprinkler  sensitivity.  The  research  and  testing  for  sprinkler  sensitivity  was  done  

by  several  fire  research  institutes,  which  include  FM  Global  Research,  USFA,  

BFRS  and  NIST.    

In  1990  an  agreement  was  reached  within  the  International  Standards  

organization  –  sprinkler  and  water  spray  equipment  group,  to  create  a  standard  

for  sprinkler  sensitivity  requirements  and  testing;  this  produced  the  standard  

“Requirements  and  methods  for  sprinklers”.  The  standard  was  created  by  using  

tests  completed  in  labs  that  established  ranges  of  sprinkler  sensitivity  

characteristics.  These  ranges  of  sensitivity  are  based  both  on  the  response  time  

index  (RTI)  of  the  device  and  on  its  conductivity  (C).  RTI  is  a  measure  of  pure  

  32  

thermal  sensitivity,  which  indicates  how  fast  the  sprinkler  can  absorb  heat  from  

its  surroundings  to  cause  activation.  The  conductivity  factor  is  important  in  

measuring  how  much  of  the  heat  picked  up  from  the  surrounding  air  will  be  lost  

to  the  sprinkler  fittings  and  waterway.  Figure  17  shows  the  ranges  of  sprinkler  

sensitivity,  which  include  standard,  special,  and  fast  response  (Madrzykowski  et  

al,  2008).  

Figure  16  International  Sprinkler  Sensitivity  Ranges,  Response  Time  Index  (RTI)  versus  

Conductivity  (C).  For  SI  units:  1ft  =  0.305m,  (Madrzykowski,  2002)  

Standard  response  sprinklers  are  the  traditional  sprinklers  used  in  common  

applications  such  as  warehouses  and  offices;  fast  response  sprinklers  are  the  

newer  type  of  sprinklers,  which  are  used  for  very  important  and  emergency  

  33  

situations.  Special  response  sprinklers  are  bespoke  sprinklers  that  conform  to  

appropriate  installation  standards.  

Sprinkler  response  time  as  a  function  of  the  temperature  rating  of  the  heat  

sensitive  element  is  well  understood;  that  is,  a  74°C  rated  sprinkler  will  operate  

when  its  temperature  reaches  74°C,  plus  or  minus  a  few  degrees.  

The  Response  Time  Index  (RTI)  gives  a  good  measure  of  sprinklers  sensitivity.  

The  smaller  the  RTI  is  the  faster  the  sprinkler  operation  will  be.  Standard-­‐

response  sprinklers  have  an  RTI  range  of  180  to  650  sec1⁄2ft1⁄2  (100  to  350  

sec1⁄2m1⁄2),  but  the  RTI  range  for  residential  sprinkler  systems  is  around  50  

to  90  sec1⁄2ft1⁄2  (28  to  50  sec1⁄2m1⁄2).  

The  conductivity  describes  the  loss  of  heat  from  the  sprinkler  heat  sensitive  

element  to  the  sprinkler  frame;  it’s  mounting,  and  even  the  water  within  the  

system  (Madrzykowski  et  al,  2008).  

It  is  important  to  understand  the  RTI  as  it  is  a  parameter  that  can  be  adjusted  in  

the  FDS  input  file.    

4.4  Overview  of  sprinkler  technology  research    

Yao  examined  an  overview  of  continuing  sprinkler  technology  research  and  

practical  applications.  The  aforementioned  research  consists  of  the  controlling  

of  variables  of  a  fire  sprinkler  and  development  of  tools  and  deterministic  

computer  models  to  predict  fire  protection  performance.  Similarly  to  the  

previous  paper  on  residential  fire  sprinklers,  this  paper  discusses  and  explains  

the  response  time  index    (RTI).  Most  importantly  this  paper  provides  a  

  34  

quantifiable  method  of  calculating  the  Response  Time  Index  This  is  important  to  

the  project  as  the  response  time  index  is  a  characteristic  for  fire  sprinklers  and  

is  a  considered  variable  in  the  FDS  software.  

 

The  response  time  index  can  be  calculated  as:  

 

RTI =U12 ×m× ch× A

Wherem =mass of the elementc = specific heat of the elementh = convective heat transfer coefficient of the elementA = surface area of the element

 

(Yao,  2015)  

 

The  response  time  index  is  a  given  value  on  stock  heat  sensitive  elements  such  

as  frangible  bulbs,  but  if  it  was  necessary  to  improve  the  sprinkler  system  by  

using  a  new  or  custom  heat  sensitive  element,  it  may  be  required  to  calculate  

this.  

4.5  Characteristics  of  pool  fire  burning  

In  order  for  a  fire  sprinkler  system  to  be  designed  and  optimized  it  is  important  

to  know  the  potential  type  of  fire  risk.  Most  common  fires  are  pool  fires,  more  so  

in  domestic  premises  therefore  it  is  important  to  research  the  characteristics  of  

pool  fire  burning.  Hamins  et  al.  reviewed  the  characteristics,  structure  and  

behaviour  of  pool  fires  with  special  regard  to  the  flame  shape,  flame  pulsation  

frequency,  flame  height  and  detailed  flame  structure  (Hamins  et  al.,  1995).  

  35  

 

Pool  fires  are  fires  resulting  from  the  combustion  of  a  fuel,  where  the  fuel  has  

zero  or  low  initial  momentum  and  are  configured  horizontally.  The  fuel  in  pool  

fires  can  be  a  liquid,  gas  or  solid;  the  base  of  the  fuel  may  be  of  non-­‐uniform  

geometry.  Pool  fires  can  be  characterized  by  several  parameters,  which  include  

heat  release  rate  and  power  radiated  to  the  surroundings,  pool  fires  can  also  be  

affected  by  ambient  conditions  such  as  humidity  and  surrounding  temperature.  

The  conditions  affecting  the  fire  influence  the  structure  and  potential  risk  of  a  

fire  (Hamins  et  al.,  1995).  

 

Hamins  et  al.  provided  a  detailed  explanation  on  the  flame  shape  and  height.  It  

is  commonly  accepted  that  the  more  fuel  available  to  the  fire,  the  larger  the  heat  

release  rate  will  be  and  the  higher  the  flame  will  be.  Pool  fire  Froude  modeling  

suggest  that  the  ratio  of  inertia  to  buoyant  forces  are  the  key  in  simulating  the  

fluid  dynamic  aspects  of  pool  fires.  Four  regions  can  describe  the  structure  of  a  

buoyant  fire;  a  fuel  rich  core,  the  intermittent  region,  the  plume  region  and  the  

ceiling  jet;  these  regions  are  further  explained  in  section  4.2.  The  shape  and  

height  of  a  fire  have  important  implications  in  terms  of  fire  hazard.  If  a  fire  is  in  

an  enclosed  area,  direct  heat  transfer  to  a  ceiling  may  have  dramatic  

consequences  in  terms  of  time  to  flashover  (NIST,  1995).    

 

Knowledge  of  these  factors  is  essential  to  understanding  the  structure  and  

behaviour  of  fires,  this  knowledge  will  aid  in  understanding  how  the  fire  

sprinkler  characteristics  has  an  affect  on  extinguishing  a  fire.    

  36  

4.6  Computational  modeling  of  fire  sprinkler  spray  characteristics  

using  the  fire  dynamics  simulator  

Bourque  et  al.  focused  on  the  necessity  for  a  fire  sprinkler’s  performance  to  be  

tested  and  assessed  before  it  can  become  a  listed  and  approved  fire  sprinkler.  In  

reality  when  a  fire  sprinkler  is  produced,  it  will  under  go  an  actual  density  

delivered  (ADD)  test.  An  ADD  test  requires  the  use  of  large  labs,  many  staff  and  

expensive  equipment;  to  perform  these  tests  can  be  time  consuming  and  costly.  

In  order  to  reduce  costs  and  time  spent,  computational  fluid  dynamics  software,  

namely  fire  dynamic  simulator  is  used  to  simulate  the  fire  sprinklers  

performance.  Bourque  and  Svirsky’s  aim  was  to  determine  the  accuracy  of  the  

fire  dynamic  simulators  prediction  of  water  distribution  of  a  fire  sprinkler,  and  

compare  these  results  to  a  test  conducted  in  real  life  (Bourque  et  al.  2013).    

 

Bourque  et  al.  discussed  the  characteristics  of  a  fire  sprinkler  and  their  

importance  which  directly  relate  to  the  project,  it  describes  and  acknowledges  

that  the  major  characteristics  for  characterizing  a  spray  were  shape  of  spray  

(spray  angle),  velocity,  droplet  size,  water  flux  and  spray  offset;  these  

characteristics  are  further  described  in  section  5.2.  It  is  also  important  to  know  

how  accurate  the  fire  dynamic  software  is,  as  this  will  support  the  use  of  the  

software  and  the  final  results  of  the  project.  

 

Bourque  et  al.  concluded  that  after  the  simulations  and  tests  were  conducted  to  

receive  an  accurate  result  from  FDS  for  comparison,  better  approximations  

must  then  be  selected  to  have  a  better  replication  of  the  real  scenario  (Bourque  

  37  

et  al.  2013).  Therefore  to  receive  accurate  results,  the  simulation  must  be  as  

close  to  the  real  life  scenario  as  possible.    

4.7  Spray  characteristics  of  fire  sprinklers  

Sheppard  discussed  the  lack  of  progression  towards  developing  analytical  

methods  of  calculating  fire  sprinkler  effectiveness;  this  paper  acknowledged  

that  this  is  mainly  due  to  the  lack  of  available  information  about  initial  spray  

characteristics  of  fire  sprinklers.  Sheppard  chose  a  wide  selection  of  sprinklers  

and  conducts  experiments  on  these,  analyzing  the  results.  Sheppard  

acknowledged  and  discussed  the  key  initial  spray  characteristics  as  the  spray  

velocity,  droplet  size  and  water  flux  (Sheppard,  2002).  

 

Sheppard  found  that  the  average  radial  droplet  velocity  at  a  distance  0.2m  from  

the  sprinkler  orifice  is  53%  of  the  water  velocity;  the  maximum  spray  velocities  

ranged  from  62%  to  120%  of  the  orifice  water  velocity  with  a  statistically  

significant  trend  for  higher  maximum  velocities  from  pendant  sprinklers  .The  

median  droplet  diameter  increases  with  elevation  angle  and  decreases  with  

increasing  pressure.  The  water  flux  distribution  varies  with  pressure  and  

sprinkler  type  that  it  is  impossible  to  determine  a  universal  flux  distribution  

(Sheppard,  2002).    

 

Another  useful  topic  discussed  included  the  distance  the  droplets  travelled  

before  it  reached  its  highest  attainable  velocity.  Figure  shows  that  droplets  

smaller  than  0.001m  reach  their  terminal  velocity  very  close  to  the  sprinkler,  

  38  

where  as  droplets  larger  than  0.001m  may  travel  a  significant  distance  before  

reaching  their  terminal  velocity  (Sheppard,  2002).    

 

Figure  17  Distance  travelled  when  droplets  achieve  95%  of  terminal  velocity  (m),  

(Sheppard,  2002)  

 

This  was  important  to  know  because  if  the  droplet  sizes  do  not  have  high  

enough  velocity,  it  will  prove  to  be  more  difficult  when  extinguishing  the  fire;  

the  size  of  the  droplets  needed  are  dependent  on  the  height  of  the  room.  

 

This  research  project  acknowledges  this  project  as  it  provides  detailed  

information  about  the  sprinkler  spray  characteristics,  including  its  behaviour  of  

these  characteristics  and  the  variety  of  factors,  which  may  affect  this.  This  is  

very  useful  to  know  when  designing  a  fire  sprinkler  and  will  prove  to  be  useful  

when  extinguishing  house  fire.  

4.8  Modeling  aspects  of  sprinkler  spray  dynamics    

Marshall  et  al.  analyses  the  sprinkler  spray  performance,  which  depends  on  the  

initiation,  formation,  dispersion  and  surface  cooling  characteristics  of  the  sprays  

created  by  fire  sprinklers.  While  these  mechanisms  are  clearly  understood,  

physical  models  detailing  their  behaviour  are  only  now  becoming  available.  

Marshal  et  al.  characterizes  sprinkler  spray  behaviour  in  a  fire  and  presents  

  39  

mathematical  models  describing  the  important  physical  processes  for  sprinkler  

fire  suppression  (Marshall  et  al.,  2014)  

 

One  of  the  key  topics  that  are  discussed  within  by  Marshall  et  al.  was  how  

sprinkler  spray  is  formed.  In  order  to  have  a  good  understanding  of  the  key  

characteristics  of  a  fire  sprinkler,  the  formation  of  the  sprinkler  sprays  must  be  

understood  (Marshall  et  al.,  2014).  

 

Atomization  is  the  process  that  produces  the  formation  of  sprinkler  sprays,  this  

is  done  by  breaking  up  a  stream  of  liquid  into  droplets  (Marshall  et  al.,  2014).  

 

The  process  of  atomization  can  be  split  into  three  different  phases:  

• Phase  1  -­‐  The  jet  of  liquid  exiting  the  sprinkler  will  impact  the  deflection,  

which  creates  a  thin  sheet  of  liquid  and  guides  the  liquid  away  from  the  

sprinkler  towards  the  fire.  The  purpose  of  the  thin  sheet  being  produced  

is  due  to  the  fact  that  the  thin  sheet  will  break  up  more  easily  than  the  

liquid  jet.    

• Phase  2  -­‐  As  the  thin  sheet  is  in  the  air,  it  becomes  subject  to  small  

disturbances,  the  disturbances  grow  until  they  reach  a  critical  and  

unstable  state,  which  creates  ligament  waves  from  the  liquid  sheet,  and  

the  ligament  waves  are  also  subject  to  disturbances  as  it  is  in  the  air.  

• Phases  3  -­‐  The  disturbances  on  the  ligament  waves  then  grow  to  a  critical  

and  unstable  state,  which  causes  the  ligament  waves  to  break  up  into  

small  spherical  droplets.    

(Marshall  et  al.,  2014)  

  40  

5.0  Selected  fire  scenario    

In  order  to  provide  an  effective  study  of  fire  sprinkler  spray  characteristics  in  

domestic  premises,  it  was  necessary  to  analyze  the  performance  of  the  fire  

sprinkler  within  a  fire  scenario  situated  in  a  domestic  premise.  For  this  study  a  

living  room  was  used  as  the  setting  for  the  fire  scenario;  typically  within  this  

space  there  would  be  several  combustible  items  such  as  sofas,  televisions,  

carpet,  curtains,  etc.  To  simplify  this  study,  it  focused  on  a  single  sofa  burning  in  

the  center  of  a  room  to  remove  the  possibilities  of  fire  spread,  the  dimensions  of  

the  room  are  4.0  x  4.0  x  2.5  m  to  replicate  a  typical  room  size  and  the  room  will  

not  have  any  doors  or  windows  to  remove  any  external  heat  transfer.  

 

The  selected  fire  type  will  be  a  class  A  fire  for  this  fire  scenario  as  these  types  of  

fires  are  the  commonly  seen  in  domestic  premises  and  correspond  to  a  typical  

living  room  fire  with  ordinary  combustibles.  

 

The  specifications  of  the  sofa  selected  aimed  to  replicate  a  wood  frame,  

polyurethane  foam  with  olefin  fabric;  which  was  experimentally  tested  by  Kim,  

H  &  Lilley,  D  (heat  release  rate  of  burning  items,  2000).  However  the  dimensions  

of  the  sofa  have  been  fabricated  for  this  study  and  are  1.2  x  1.0  x  0.8  m  to  

replicate  a  real  life  sofa  size.  

  41  

6.0  Selected  Fire  Sprinkler  System  

6.1  Sprinkler  system  /  piping  

For  the  purpose  of  this  study  and  to  replicate  an  ideal  scenario,  a  dry  pipe  

sprinkler  system  was  used,  this  is  because  there  will  be  no  risk  of  leaking  and  

there  will  be  a  large  amount  of  pressurized  water  released  when  the  sprinkler  is  

activated.  However,  there  will  be  a  slight  delay  before  the  water  is  released,  as  

the  water  has  to  travel  from  its  supply,  through  the  system  and  out  of  the  

sprinkler  head,  the  delay  is  usually  30  seconds.    

6.2  Sprinkler  spray  /  nozzle  

The  sprinkler  head  used  in  this  study  will  be  a  K-­‐11  pendant  sprinkler  head;  this  

sprinkler  head  is  commonly  seen  and  is  the  default  sprinkler  head  in  the  FDS  

and  Smokeview  software.  

6.3  Trigger  system  

The  trigger  system  was  a  frangible  bulb  with  an  activate  temperature  of  79oC  

and  a  RTI  of  50  (m.s)  1/2.  This  replicates  readily  available  frangible  bulbs  to  help  

the  study  replicate  a  real  life  scenario.  

6.4  Fluid  

The  suppression  fluid  was  water.  Water  is  commonly  used  for  fire  suppression  

but  in  extremely  hazardous  areas  such  as  chemical  plants  where  water  cannot  

be  used  foam  is  often  seen  as  a  replacement  but  in  the  case  of  a  domestic  

premise  fire,  water  is  appropriate.    

  42  

7.0  Calculations  and  specifications  

7.1  Flow  rate  

The  British  Standard  BS9251:  2005  5.2.5.1  System  flow  rates  dictates  that  a  

sprinkler  system  should  be  capable  of  providing  flow  rates  at  the  sprinkler  head  

of  no  less  than:  

a) For  domestic  premises  

1. 60  litres/min  through  any  single  sprinkler;  or  

2. 43  litres/min  through  each  of  two  sprinklers  operating  

simultaneously  in  a  single  room  

Therefore  for  this  study  the  range  of  flow  rates  that  was  simulated  are;  

Q = 60 L /minQ = 80 L /minQ =100 L /minQ =120 L /minQ =140 L /minQ =160 L /minQ =180 L /min

 

7.2  Orifice  diameter  

Specifications  from  Victaulic  K11  fire  sprinkler  standard  spray  pendant  

specifies  that  the  nominal  orifice  diameter  is  16mm,  this  remained  constant  

throughout  all  simulations  as  FDS  only  has  this  model  of  fire  sprinkler  head.  

 

do =16mm  

(Victaulic,  2014)  

  43  

7.3  Droplet  diameter  

The  range  of  droplet  sizes  for  fire  sprinklers  should  be  ideally  between  fine  and  

average  (100-­‐1000μm)  (Grant  et  al.,  2000).    Several  different  droplet  sizes  were  

selected  between  these  values  to  see  what  is  the  ideal  droplet  diameter.  

1. 100μm  

2. 200μm  

3. 400μm  

4. 500μm  

5. 600μm  

6. 800μm  

7. 1000μm  

7.4  Velocity  

Velocity  is  related  to  flow  rate,  therefore  as  flow  rate  changes,  velocity  changes.  

The  equation  for  velocity  is:    

V =4×Qπ × d 2 (m / s)

Where :Q = Flow rate (L /min)d =Orifice diameter = 16mm =16×10−3mπ = pi = 3.14

 

 

The  range  of  velocities  that  were  simulated  are:  

1. 5  m/s  

2. 6.5  m/s  

3. 8.5  m/s  

  44  

4. 10  m/s  

5. 11.4  m/s  

6. 13.4  m/s  

7. 15  m/s  

7.5  Heat  release  rate  

The  heat  release  value  can  be  calculated  with  the  following  equation:  

Q.=αg × t

2  

Where :αg = Fire growth = 1000/(t1mw -t0 )2  

(Kim,  2000)  

To  replicate  a  real  life  scenario  data  was  used  from  Hyeong-­‐Jin  Kim’s  (2000)  

paper  on  heat  release  rates  of  burning  items.  The  sofa  used  was  the  F32  sofa,  

wood  frame  with  polyurethane  foam,  which  had  a  time  to  the  onset  of  ignition,  

t0  of  75  and  a  time  to  reach  1  MW,  t1  MW  of  150.  

 

Therefore :

αg = Fire growth = 1000/(150-75)2 = 0.17•

or 845  

(Kim,  2000)  

The  ideal  time  for  a  sprinkler  to  activate  after  a  fire  has  started  is  between  40-­‐

50  seconds.  The  lower  value  was  selected;  therefore  the  heat  release  rate  after  

40  seconds  would  be  calculated.    

 

Q.=

845× 402 = 284.4 kW or j

s  

  45  

(Kim,  2000)  

 

FDS  requires  the  heat  release  rate  per  unit  area,  this  can  be  found  by  dividing  

the  heat  release  rate  by  the  area  the  fire  is  covering.    

 

Area, a = 0.5×1m2 = 0.5m2

HRRPUA = 284.4÷ 0.5= 568.8kW /m2  

(Kim,  2000)  

8.0  Writing  FDS  Input  File    

8.1  Specifications  

To  help  reproduce  a  real  life  fire  scenario,  it  is  important  to  ensure  that  all  

aspects  were  as  close  to  a  real  life  as  possible.      

Scenario  –  A  fire  on  a  sofa  in  the  center  of  a  living  room  

Room  dimensions  –  4.0  x  4.0  x  2.5  m    

Resolution  –10  cm  grid  cells  

Simulation  time  –  60  seconds    

Boundary  conditions  –  Open  boundary  on  one  side  and  ambient  temperature  of  

20oc  

Quantities  –  Wall  temperature,  net  heat  flux,  radiative  heat  flux  and  slice  

temperatures.    

8.2  Starting  input  file  

The  FDS  input  file  must  be  named,  this  is  defined  by  ‘&HEAD  CHID’  and  was  

called  ‘living_room’.  It  is  also  convenient  to  have  a  description  of  the  input  file  so  

  46  

other  users  to  know  what  the  input  file  consists  off;  this  is  defined  by  ‘TITLE’  

and  was  described  as  ‘Domain  Creation’.  

 

&HEAD  CHID='living_room',  TITLE='Domain  Creation'/  

 

It  is  important  to  set  a  run  time,  ‘TIME  T_END’,  for  the  simulation,  for  this  

simulation  the  run  time  was  60  seconds.    Setting  the  simulation  time  to  zero  will  

only  perform  initial  set  up;  this  will  allow  the  checking  of  the  geometry  of  the  

domain  in  Smokeview.  

 

&TIME  T_END=60.0  /  

8.3  Computational  mesh  

All  FDS  calculations  are  completed  within  the  created  domain  that  is  

constructed  from  rectilinear  volumes  called  meshes.  Each  individual  mesh  is  

divided  into  rectangular  cells;  the  quality  of  the  results  is  dependent  on  the  size  

of  the  mesh.  The  mesh  can  be  coarse,  medium  or  fine.    

 

A  measure  of  the  quality  of  results  is  given  by  the  non-­‐dimensional  expression  

D*/δx,  where  D*  is  the  characteristic  fire  diameter  and  δx  is  the  nominal  size  of  

the  mesh  cell  in  meters.  The  cell  size  is  dependent  on  the  value  of  the  

characteristic  fire  diameter,  if  this  value  is  small  then  the  cell  size  should  also  be  

small  in  order  to  sufficiently  resolve  the  fluid  flow  and  fire  dynamics.  A  

reference  within  the  FDS  user  guide  suggest  a  D*/δx  ratio  between  4  and  16  to  

accurately  resolve  fires  in  several  different  situations.    

 

  47  

For  this  study  the  mesh  cell  size  was  10cm  or  0.1m.  This  value  was  taken  from  

one  of  the  inbuilt  examples  with  similar  geometry  to  what  I  require.  Therefore  

δx  =  0.1m.  

 

D*  is  calculated  by  the  following  equation:  

D*= Qp∞ × cp ×T∞ × g

#

$%%

&

'((

Where :Q = Heat release rate = 284.4kWp∞ = density of air =1.225kg /m3

cp = Specific heat of air =1.005kJ / kg− kT∞ = Ambient temperature = 293Kg = acceleration due to gravity = 9.81D*= 0.58

 

 (NIST,  2015)  

 

Therefore,   D*∂x

=0.580.1

= 5.8    

This  value  is  between  4  and  16  and  means  my  selected  cell  size  is  adequate.    

The  code  written  to  define  this  mesh  is:  

 

&MESH  IJK=40,40,25  XB=0.0,4.0,0.0,4.0,0.0,2.5  /      

 

The  number  of  cells  within  the  domain  can  be  calculated:  

 

40  x  40  x  25  =  40,000  

  48  

8.4  Miscellaneous  parameters  

There  are  miscellaneous  parameters  that  can  be  included  in  the  input  file  these  

parameters  include  ambient  temperature.  For  this  simulation  the  ambient  

temperature  was  20oC  /  293oK,  the  code  for  this  was:    

 

&MISC  TMPA=20.0/  

 

8.5  Creating  obstruction  

The  sofa  has  been  situated  in  the  centre  of  the  room.  The  sofa  must  be  of  the  

dimensions  1.2  x  1.0  x  0.8  m;  these  dimensions  have  been  taken  from  a  real  life  

sofa  to  help  replicate  a  real  life  scenario.  To  have  this  inserted  the  following  

code  has  been  built  into  the  input  file.    

 

&OBST  XB=1.5,2.5,2.0,2.5,0.0,0.8,  SURF_ID='SOFA'/  

&OBST  XB=1.5,2.5,1.5,2.0,0.0,0.4,  SURF_ID='SOFA'/  

&OBST  XB=2.5,2.6,1.5,2.5,0.0,0.6,  SURF_ID='SOFA'/  

&OBST  XB=1.5,1.4,1.5,2.5,0.0,0.6,  SURF_ID='SOFA'/  

 

It  is  also  necessary  to  assign  properties  of  the  sofa,  these  properties  are  

necessary  for  FDS  to  calculate  the  combustion  and  determine  how  the  sofa  

burns;  the  properties  selected  were  taken  from  an  FDS  example  with  a  sofa.  

 

&MATL  ID='FABRIC',  CONDUCTIVITY=0.1,  SPECIFIC_HEAT=1.0,  DENSITY=100.0  

/  

  49  

&SURF  ID='SOFA',  MATL_ID='FABRIC',  COLOR='BROWN',  THICKNESS=1.0,  

BURN_AWAY=.TRUE.  /  

 

8.6  Pyrolysis  model  and  Fuel  

To  create  a  fire  a  heat  release  rate  must  be  inserted  into  the  input  file,  to  have  

this  heat  release  rate  it  is  necessary  to  specify  material  properties,  (which  was  

previously  mentioned  in  section  8.5).  A  specified  fire  is  modeled  as  the  injection  

of  a  gaseous  fuel  from  a  solid  surface.  This  is  essentially  a  burner,  with  a  

specified  heat  release  rate  per  unit  area.  For  this  study  the  heat  release  rate  per  

unit  area  has  been  calculated  to  be  568.8  kW/m2.  

 

To  input  the  fire,  the  location  of  the  fire,  heat  release  rate  and  e  coefficient  must  

be  inserted;  the  location  of  the  fire  is  on  top  of  the  sofa.  

 

&SURF  ID='FIRE',  HRRPUA=570,  E_COEFFICIENT=4.0  /  

&VENT  XB=1.5,2.5,1.5,2.0,0.4,0.4  SURF_ID='FIRE'/  

 

Specifying  fuel  is  required;  this  will  cause  FDS  to  use  the  built-­‐in  thermo  

physical  properties  for  that  species  when  computing  quantities.  The  fuel  that  

was  used  is  butane;  because  this  is  a  fuel  that  can  cause  fires  in  a  domestic  

premise.    

 

  50  

It  is  also  necessary  to  insert  ‘SOOT_YIELD’,  this  is  the  fraction  of  fuel  mass  

converted  into  smoke  particles,  and  this  helps  to  provide  a  good  visual  analysis  

of  the  fire.  The  code  for  this  was  below:  

 

&REAC  SOOT_YIELD=0.01,  FUEL='BUTANE'  /  

8.7  Particles,  droplets  and  size  distribution    

To  define  an  evaporating  liquid  droplet,  the  gaseous  species  must  be  explicitly  

specified  via  the  ‘SPEC’  name  list  group  and  then  the  appropriate  ‘SPEC_ID’  

designated  on  the  part  line.    The  ‘SPEC_ID’  specifies  a  water  vapor,  which  is  a  

predetermined  species  in  FDS;  the  particle  will  be  assigned  the  thermal  

properties  of  water,  the  radiation  absorption  of  water  and  will  be  colored  blue  

in  SmokeView.    

 

The  ideal  droplet  size  for  fire  suppression  is  between  100-­‐1000μm.  Testing  will  

determine  the  optimum  droplet  size  but  this  study  began  with  an  initial  value  of  

100μm;  the  ‘DIAMETER’  name  list  specifies  the  droplet  size.  

 

&SPEC  ID='WATER  VAPOR'  /  

&PART  ID='water  drops',  SPEC_ID='WATER  VAPOR',DIAMETER=100  /  

 

8.8  Introduction  of  sprinkler  &  Fire  suppression  by  water  

 To  insert  a  sprinkler  into  the  simulation,  it  must  be  inserted  into  the  input  file.  

The  default  sprinkler  type  is  a  ‘K  11’  sprinkler;  the  location  and  properties  of  the  

sprinkler  must  be  specified.  

  51  

 

&PROP  ID='K-­‐11',  QUANTITY='SPRINKLER  LINK  TEMPERATURE',  RTI=100,  

ACTIVATION_TEMPERATURE=79,  OFFSET=0.10,  PART_ID='water  drops',  

PARTICLE_VELOCITY=10.,  SPRAY_ANGLE=30.,80.,  FLOW_RATE=180  /  

&DEVC  XYZ=2.0,2.0,2.5,  PROP_ID='K-­‐11',  ID='Spr_1'  /  

 

The  complete  input  file  can  be  seen  in  appendix  14.1.    

  52  

9.0  Running  FDS  Simulation  

In  total  49  simulations  were  ran,  which  varied  in  different  characteristics  which  

include  volumetric  flow  rate,  velocity  and  droplet  diameter.  To  keep  the  

simulation  close  to  a  real  life  scenario  a  dry  pipe  system  was  replicated,  as  this  

is  an  ideal  system  to  have  in  a  domestic  premise;  the  fire  sprinkler  did  not  

activate  until  roughly  around  35-­‐39  seconds  after  the  fire  had  started.    

 

Figure  18  shows  the  domain  that  the  simulation  was  in;  this  is  a  room  with  a  

sofa  in  the  centre  of  it.  To  simplify  the  study,  heat  transfer  from  the  walls  was  

not  allowed,  only  one  item  was  selected  to  prevent  fire  spread  and  the  fire  was  

not  permitted  to  increase  in  heat  release  rate  over  time.    

 

Figure  18  Simulation  domain,  (2016)  

  53  

 

Figure  19  Simulation  #5  -­‐  Simulation  after  33.3  seconds,  (2016)  

 

 

Figure  20  Simulation  #5  -­‐  Slice  file  temperature  at  34.4  seconds,  (2016)    

  54  

Figure  19  and  20  shows  the  fire  on  the  sofa  and  the  max  temperature  reached  

by  the  fire,  these  images  were  taken  from  simulation  #5  using  a  temperature  

slice  file.    

 

Figure  21  Simulation  #5  -­‐  Activated  fire  sprinkler  after  39.2  seconds,  (2016)  

 

  55  

 

Figure  22  Simulation  #5  -­‐  1  second  after  activated  fire  sprinkler,  (2016)  

 

Figure  23  Simulation  #5  -­‐  Fully  extinguished  fire  after  5  second  after  fire  sprinkler  

activation,  (2016)  

  56  

   

Figure  21,  22  and  23  shows  the  point  at  which  the  fire  sprinkler  was  activated  

and  how  the  water  droplets  are  suppressing  the  fire  over  time  until  the  fire  has  

been  completely  extinguished.  

10.0  Analysis  of  FDS  results  

10.1  Results  

The  simulations  carried  out  went  positively,  this  is  because  various  different  

simulations  were  carried  out  with  different  characteristics,  which  provided  a  

range  of  results  to  give  an  adequate  analysis.  It  can  be  seen  from  the  tabulated  

results  (shown  below)  and  the  graphical  results  (shown  in  appendix  14.2)  that  

during  the  simulations  as  the  droplet  size  increases,  the  time  to  extinguish  the  

fire  becomes  longer;  which  replicates  real  life.  This  is  because  a  reduced  droplet  

size  provides  an  improved  cooling  effect  on  the  fire;  this  is  due  to  the  small  

droplets  covering  a  larger  surface  area.  This  in  turn  gave  an  increased  rate  of  

evaporation.    

The  study  indicated  that  an  increase  in  velocity  and  flow  rate  led  to  prolonged  

fire  extinguishment.  Increasing  the  flow  rate  and  the  velocity  will  directly  

increase  the  amount  of  water  being  used  to  extinguish  the  fire  and  in  normal  

cases  it  would  be  expected  that  the  fire  would  extinguish  quicker.  During  the  

simulations  it  can  be  seen  that  due  to  the  spray  angle  a  large  amount  of  water  is  

not  being  sprayed  on  the  fire  directly  and  this  water  is  being  distributed  on  the  

surrounding  area  (shown  in  figure  24).  Although  a  certain  amount  of  the  water  

spread  to  the  surrounding  area  is  considered  positive,  as  it  prevents  fire  spread,  

  57  

the  goal  here  is  to  extinguish  the  fire  as  soon  as  possible  before  an  opportunity  

for  the  fire  to  spread  arises.  

If  the  spray  angle  were  changed  so  that  a  large  majority  of  the  water  coming  out  

of  the  fire  sprinkler  went  directly  on  the  fire,  a  decrease  in  the  time  to  

extinguish  the  fire  would  be  seen.    

 

 

Figure  24  Simulation  #49  -­‐  Spray  angle,  (2016)  

 

As  anticipated  the  fastest  set  of  results  are  when  the  droplet  size  is  between  

100-­‐200μm  with  times  to  extinguish  ranging  from  5-­‐8  seconds.  This  range  of  

times  is  suitable  as  any  time  longer  than  10  seconds  would  allow  the  heat  

release  rate  to  increase,  which  would  in  turn  make  the  fire  harder  to  extinguish  

in  a  real  life  scenario.    

 

 

  58  

Table  1  Simulations  1-­‐49  results,  (2016)  

Simulation  No.  

Droplet  

diameter

,  d  (μm)  

Velocity,  

v  (m/s)  

Flow  rate,  

Q  (L/min)  

Time  to  

extinguish  

fire  (s)  

Total  water  

used  

(Litres)  

Simulation  #1   100   5   60   7   7.00  

Simulation  #2   100   6.5   80   6   8.00  

Simulation  #3   100   8.5   100   6   10.00  

Simulation  #4   100   10   120   6   12.00  

Simulation  #5   100   11.4   140   5   11.67  

Simulation  #6   100   13.4   160   6   16.00  

Simulation  #7   100   15   180   6   18.00  

Simulation  #8   200   5   60   6   6.00  

Simulation  #9   200   6.5   80   6   8.00  

Simulation  #10   200   8.5   100   6   10.00  

Simulation  #11   200   10   120   6   12.00  

Simulation  #12   200   11.4   140   6   14.00  

Simulation  #13   200   13.4   160   7   18.67  

Simulation  #14   200   15   180   8   24.00  

Simulation  #15   400   5   60   10   10.00  

Simulation  #16   400   6.5   80   8   10.67  

Simulation  #17   400   8.5   100   8   13.33  

Simulation  #18   400   10   120   9   18.00  

Simulation  #19   400   11.4   140   12   28.00  

 

  59  

Simulation  #20   400   13.4   160   13   34.67  

Simulation  #21   400   15   180   13   39.00  

Simulation  #22   500   5   60   10   10.00  

Simulation  #23   500   6.5   80   10   13.33  

Simulation  #24   500   8.5   100   10   16.67  

Simulation  #25   500   10   120   11   22.00  

Simulation  #26   500   11.4   140   16   37.33  

Simulation  #27   500   13.4   160   16   42.67  

Simulation  #28   500   15   180   19   57.00  

Simulation  #29   600   5   60   13   13.00  

Simulation  #30   600   6.5   80   13   17.33  

Simulation  #31   600   8.5   100   16   26.67  

Simulation  #32   600   10   120   17   34.00  

Simulation  #33   600   11.4   140   19   44.33  

Simulation  #34   600   13.4   160   22   58.67  

Simulation  #35   600   15   180   29   87.00  

Simulation  #36   800   5   60   28   28.00  

Simulation  #37   800   6.5   80   23   30.67  

Simulation  #38   800   8.5   100   35   58.33  

Simulation  #39   800   10   120   40   80.00  

Simulation  #40   800   11.4   140   53   123.67  

Simulation  #41   800   13.4   160   61   162.67  

Simulation  #42   800   15   180   76   228.00  

 

  60  

Simulation  #43   1000   5   60   71   71.00  

Simulation  #44   1000   6.5   80   72   96.00  

Simulation  #45   1000   8.5   100   119   198.33  

Simulation  #46   1000   10   120   151   302.00  

Simulation  #47   1000   11.4   140   173   403.67  

Simulation  #48   1000   13.4   160   208   554.67  

Simulation  #49   1000   15   180   256   768.00  

 

The  speed  in  which  the  fire  is  extinguished  has  a  direct  impact  on  the  amount  of  

water  used  to  extinguish  the  fire.    As  expected  the  results  that  provided  the  

fastest  extinguishing  time  used  the  least  amount  of  water  used,  ranging  between  

6-­‐24  litres,  this  is  ideal  information  and  determines  whether  or  not  the  

optimum  characteristics  of  the  fire  sprinkler  has  been  found.    

 

Figure  25  Droplet  size  vs.  Time  to  extinguish  (Constant  velocity  and  flow  rate  11.4  and  40  respectively),  (2016)  

  61  

10.2  Optimization  

The  fastest  time  to  extinguish  the  fire  was  simulation  #5  with  a  droplet  

diameter  of  100μm,  velocity  of  11.4  m/s  and  a  flow  rate  of  140  L/min  but  the  

simulation  that  used  the  least  amount  of  water  was  simulation  #8  with  6  litres  

of  water.  Despite  results  showing  a  relatively  quick  time  to  extinguish  the  fire  

and  a  low  amount  of  water  used,  there  is  room  for  optimization.  Ideally  the  best  

characteristics  would  use  the  least  amount  of  water  and  have  the  fastest  time  to  

extinguish.  To  achieve  this  the  simulations  that  had  the  fastest  time  to  

extinguish  and  used  the  least  amount  of  water  (simulations  #1-­‐8)  will  be  

optimized.      

 

To  optimize  the  simulations  with  the  intention  on  receiving  improved  results  a  

tighter  spray  angle  will  be  selected  to  ensure  that  the  there  is  an  adequate  spray  

coverage  over  the  fire  and  to  prevent  a  large  amount  of  water  being  distributed  

on  the  surroundings.  Previously  the  spray  angle  was  30,  80  but  now  will  be  

20,70.  

 

The  results  of  the  optimized  simulations  are  shown  below.  

 

 

 

 

 

 

  62  

Table  2  Optimized  results  -­‐  Spray  angle  20,70,  (2016)  Optimized  results  -­‐  Spray  angle  20,70  

Simulation  

No.  

Droplet  

diameter,  

d  (μm)  

Velocity,  v  

(m/s)  

Flow  rate,  

Q  (L/min)  

New  time  

to  

extinguish  

fire  (s)  

New  total  

water  

used  

(Litres)  

Simulation  #1   100   5   60   6     6.00  

Simulation  #2   100   6.5   80   5     6.67  

Simulation  #3   100   8.5   100   5     8.33  

Simulation  #4   100   10   120   5     10.00  

Simulation  #5   100   11.4   140   5     11.67  

Simulation  #6   100   13.4   160   5     13.33  

Simulation  #7   100   15   180   5     15.00  

Simulation  #8   200   5   60   6     6.00  

 

  63  

 

Figure  26  Simulation  7  with  optimized  spray  angle,  (2016)  

 

As  expected  we  can  see  a  reduction  in  the  time  to  extinguish  the  fire,  which  in  

turn  causes  a  less  amount  of  water  to  be  used.  As  shown  in  figure  26  the  spray  

angle  is  tighter  but  still  maintaining  some  coverage  to  the  surroundings;  this  

means  more  water  is  being  concentrated  on  the  fire  than  previously.  

10.3  Accuracy  

To  improve  the  accuracy  of  the  results  a  finer  mesh  could  be  used.  Refinement  is  

important  as  it  allows  the  software  to  more  accurately  analyze  smaller  sections  

of  the  domain,  which  in  turn  provides  more  accurate  results  regarding  the  

simulation.  Though  more  accurate  results  will  be  produced  this  will  come  at  a  

computational  cost,  because  of  this  only  simulation  #2  will  be  selected  as  this  

  64  

had  a  fast  time  to  extinguish  (5  seconds)  and  used  the  second  least  amount  of  

water  (6.67  litres).  

 

The  number  of  divisions  can  be  seen  in  the  new  input  code  below:  

 

&MESH  IJK=80,80,50  XB=0.0,4.0,0.0,4.0,0.0,2.5  /      

 

The  cell  size  is  now:  

0.05m  

 

The  number  of  cells  is  now:  

80  x  80  x  50  =  320,000  

 

Table  3  Refined  mesh  results  -­‐  grid  size  0.05m,  (2016)  Mesh  refined  results  -­‐  grid  size  0.05m  

Simulation  

No.  

Droplet  

diameter,  

d  (μm)  

Velocity,  v  

(m/s)  

Flow  rate,  

Q  (L/min)  

New  time  

to  

extinguish  

fire  (s)  

New  total  

water  

used  

(Litres)  

Simulation  #2   100   6.5   80   7   9.33  

 

We  can  see  from  the  results  that  with  a  refined  mesh,  that  it  has  8  times  more  

grid  cells  than  the  initial  simulation,  the  time  to  extinguish  the  fire  has  increased  

slightly  to  7  seconds  but  is  still  within  an  acceptable  time.  Considering  that  the  

mesh  has  been  refined  significantly  but  the  results  have  changed  marginally,  it  

  65  

can  be  said  that  mesh  independency  has  been  achieved;  therefore  the  results  

will  not  change  anymore  with  a  finer  mesh.      

 

Due  to  the  fact  that  a  finer  mesh  is  used,  more  accurate  results  are  provided  

these  results  can  be  deemed  as  reliable.  The  results  from  the  initial  simulations  

to  the  simulations  with  a  finer  mesh  all  show  that  the  optimum  sprinkler  spray  

characteristics  are  sprinklers  with  small  droplet  diameters  and  with  a  low  to  

medium  velocity  and  flow  rate  in  domestic  premises.    

10.4  Discussion  

All  simulations  ran  show  that  having  small  droplet  sizes  and  having  a  low  to  

medium  velocity  and  flow  rate  is  key  in  extinguishing  a  fire.  The  spray  angle  was  

critical  in  this  scenario  as  the  study  focused  on  a  sofa  in  the  centre  of  a  room;  in  

a  real  life  scenario  combustible  items  may  be  spread  in  any  particular  way  

around  a  room  and  it  may  become  more  essential  to  have  a  wider  spray  angle.    

 

As  demonstrated  in  table  1  the  selection  of  increasing  droplet  sizes  (with  flow  

rate  and  velocity  remaining  constant),  ranging  from  100  to  1000μm,  showed  a  

large  increase  in  time  to  extinguish  the  fire  between  the  minimum  and  

maximum  sizes.  In  comparison,  when  the  droplet  size  is  kept  at  a  constant,  with  

flow  rate  and  velocity  increasing,  the  change  in  time  to  extinguish  the  fire  is  not  

as  large.  This  shows  that  droplet  size  was  the  dominant  characteristic  as  it  made  

the  biggest  difference.  

 

To  further  support  the  results  from  this  study  a  wide  range  of  simulations  

would  have  been  run  which  would  include  a  variety  of  different  characteristics,  

  66  

that  are  not  limited  to  a  maximum  velocity  of  15m/s  and  a  maximum  flow  rate  

of  180  L/min  (minimum  velocity  and  flow  rate  cannot  be  below  5m/s  and  

60L/min  respectively  as  British  Standard  BS9251:  2005  5.2.5.1  dictate).  

Additionally  these  simulations  could  be  run  with  fires  that  have  a  variety  of  

different  heat  release  rate  values,  these  values  would  be  taken  from  objects  

within  a  domestic  premise.    

 

To  further  improve  the  accuracy  of  the  results  all  the  simulations  could  have  

been  run  with  a  fine  mesh  opposed  to  a  coarse  or  medium  mesh  although  this  

will  result  in  an  increase  in  computational  cost.  

 

Another  way  to  provide  improved  results  is  to  create  a  more  realistic  fire  

scenario  that  is  a  true  representation  of  an  average  UK  room  at  risk  of  fire  

including  more  combustible  items,  such  as  several  sofas,  carpet,  curtain  etc.  This  

would  complicate  the  study  as  several  separate  heat  release  rates  will  have  to  

be  included  as  well  as  a  fire  spread  phenomena  and  different  fire  behaviours  to  

be  considered.  In  turn  this  will  have  an  effect  on  what  the  optimum  sprinkler  

spray  characteristics  should  be  and  several  fire  sprinklers  may  have  to  be  

involved  opposed  to  just  one.    

 

Another  way  to  support  the  results  of  this  study  is  to  compare  them  with  

experimental  data.  This  experimental  data  would  consist  of  a  real  life  fire  

scenario,  which  replicates  the  simulations  i.e.  a  room  with  a  single  burning  sofa.  

The  optimum  characteristics  of  the  fire  sprinkler  would  be  tested  in  this  setting.  

It  should  be  noted  that  this  method  would  only  be  used  to  support  already  

  67  

gathered  data  and  it  would  be  unrealistic  to  calculate  the  optimum  

characteristics  for  every  domestic  premise  as  there  would  be  a  range  of  

circumstances  that  would  affect  the  characteristics  i.e.  different  orientation  and  

different  combustible  items  which  result  in  different  heat  release  rates.  

 

Finally  another  way  to  support  and  improve  the  accuracy  of  results  gathered  is  

to  investigate  how  adjusting  other  characteristics  and  parameters  of  the  fire  

sprinkler  system  can  affect  the  time  to  extinguish  i.e.  RTI,  frangible  bulb  

activation  temperatures,  sprinkler  head,  sprinkler  offset  and  allowing  FDS  to  

increase  the  heat  release  rate  over  time,  which  replicates  real  life.  Although  

individually  these  characteristics  may  not  be  deemed  as  key  characteristics,  

combined  they  would  provide  important  information  and  improved  results.  In  

addition  to  this  altering  the  ambient  conditions  may  have  an  affect  on  the  

results.  

 

It  should  be  noted  that  the  results  of  this  study  do  not  reflect  what  the  key  

sprinkler  spray  characteristics  should  be  in  all  living  rooms  within  the  UK,  in  

order  to  gather  very  accurate  results,  the  domain  and  conditions  should  

replicate  the  real  life  scenario  as  much  as  possible.    

11.0  Conclusion  

Although  there  has  been  a  significant  reduction  in  fire  related  deaths  in  Britain  

over  the  last  50  years,  there  is  still  a  large  amount  of  fire  related  deaths  

occurring  on  a  yearly  basis.  This  study  shows  the  importance  of  implementing  a  

fire  sprinkler  system  in  a  domestic  premise  and  how  the  implementation  can  

  68  

occur  by  analyzing  rooms  within  a  domestic  premise  that  are  at  most  risk  of  

having  a  fire.  After  the  analysis  the  key  characteristics  the  fire  sprinkler  needed  

to  extinguish  such  fires  would  need  to  be  determined.    By  doing  this  there  can  

be  an  even  larger  reduction  in  fire  related  deaths  with  the  possibility  of  

eliminating  them  completely.      

 

This  project  shows  that  fires  in  domestic  premises  could  be  extinguished  within  

seconds  if  the  key  characteristics  of  a  fire  sprinkler  system,  namely  droplet  

sizes,  flow  rate,  velocity  and  spray  angle  are  appropriately  selected.  This  project  

shows  that  the  optimum  droplet  sizes  should  be  on  the  small  end  of  the  water  

spray  scale,  100-­‐200μm  and  the  velocity  and  corresponding  flow  rate  is  

dependent  on  the  spray  angle,  a  tight  spray  angle  (slightly  larger  than  fire  area)  

on  the  fire  would  perform  better  with  a  high  flow  rate  and  a  wider  spray  angle  

(considerably  larger  than  fire  area)  would  perform  better  with  a  low  to  medium  

flow  rate.  With  the  optimum  values  selected  it  will  be  seen  that  a  fire  can  be  

extinguished  before  the  maximum  heat  release  rate  is  achieved  and  can  also  

prevent  fire  spread  and  fire  growth  from  occurring.    

 

Hopefully  in  the  future  we  can  see  progression  for  the  implementation  of  fire  

sprinklers  in  homes,  this  would  save  hundreds  of  lives  and  in  the  long  term  

would  be  cost  effective.    

 

 

 

 

  69  

12.0  Bibliography  

Bete.  (2014).  Spray  Nozzles  for  Fire  Extinguishing  Systems.  Available:  

http://www.bete.co.uk/spray-­‐nozzle-­‐applications/fire-­‐protection/droplet-­‐size-­‐

and-­‐variation.  Last  accessed  18th  March  2016  

 

Day-­‐Impex  Ltd.  (2015).  Sprinkler  bulbs.  Available:  http://www.day-­‐

impex.co.uk/sprinkler-­‐bulbs.html.  Last  accessed  18th  March  2016.  

Emmons,  H.W..  (1992).  The  Ceiling  Jet  In  Fires.  Available:  

http://www.iafss.org/publications/fss/3/249.  Last  accessed  18th  March  2016.  

 

Henry,  G.  (2014).  Housing  Minister  Carl  Sargeant  backs  controversial  sprinkler  

regulations  in  homes  after  Quebec  care  home  tragedy.  Available:  

http://www.walesonline.co.uk/news/wales-­‐news/housing-­‐minister-­‐carl-­‐

sargeant-­‐backs-­‐6645433  .  Last  accessed  18th  March  2016.  

 

Ochshorn,  J.  (2014).  Fire  safety  overview,  sprinklers.  Available:  

https://courses.cit.cornell.edu/arch262/notes/02b.html.  Last  accessed  18th  

March  2016.  

 

Sze,  C.K.  (2009).  International  journal  of  engineering  performance-­‐based  fire  

codes.  Response  time  index  of  sprinklers.  1  (1),  p1-­‐5.  

Victaulic.  (2014).  FireLock  K11.1.  Available:  

http://static.victaulic.com/assets/uploads/literature/40.20.pdf.  Last  accessed  

18th  March  2016.  

  70  

13.0  References  

Bourque,  M.  J  &  Svirsky,  T.A.  (2013).  Computational  modeling  of  fire  sprinkler  

spray  characteristics  using  the  fire  dynamics  simulator.  Available:  

https://m.wpi.edu/Pubs/E-­‐project/Available/E-­‐project-­‐042213-­‐

113716/unrestricted/Final_Report_4-­‐24.pdf.  Last  accessed  18th  March  2016.  

British  Standard.  (2005).  Sprinkler  systems  for  residential  and  domestic  

occupancies  -­‐  code  of  practice.  Available:  http://www.fire-­‐sprinkler.co.uk/wp-­‐

content/uploads/2011/09/BS%209251-­‐2005.pdf.  Last  accessed  18th  March  

2016.  

 

Davies,  C.  (2013).  Why  don't  homes  have  sprinkler  systems?  Available:  

http://www.bbc.co.uk/news/uk-­‐politics-­‐22271677.  Last  accessed  29th  March  

2016.  

 

Department  for  Communities  and  Local  Government.  (2015).  Fire  statistics  

Great  Britain.  Available:  https://www.gov.uk/government/collections/fire-­‐

statistics-­‐great-­‐britain.  Last  accessed  21st  November  2015.    

 

Dr.  Kam  Kenn  Jhun.  (2015).  Building  Services.  Available:  

http://www.slideshare.net/ZIyeeTan/building-­‐servicesreport.  Last  accessed  

21st  November  2015.  

 

  71  

Elite  fire  team.  (2013).  Back  to  Basics  with  the  Fire  Triangle.  Available:  

http://www.elitefire.co.uk/news/basics-­‐fire-­‐triangle/.  Last  accessed  21st  

November  2015.  

 

Fire  equipment  manufacturer's  association.  (2015).  Types  of  fires.  Available:  

http://www.femalifesafety.org/types-­‐of-­‐fires.html.  Last  accessed  21st  

November  2015.  

 

Fisher,  D.  (2010).  How  fire  sprinklers  work.  Available:  

http://home.howstuffworks.com/home-­‐improvement/household-­‐

safety/fire/fire-­‐sprinker-­‐system4.htm.  Last  accessed  21st  November  2015.  

 

Forney,  G.  P  (2015).  Smokeview,  a  tool  for  visualizing  Fire  Dynamics  Simulation  

Data.  6th  ed.  U.S.A:  NIST  Special  publication  1017-­‐1.  p25-­‐26.  

Grant,  G.,  Brenton,  J.,  Drysdale,  D.  “Fire  Suppression  by  Water  Sprays”,  Progress  

in  Energy  and  Combustion  Science,  Vol  26,  p.  83,  85-­‐89,  2000.    

Hamins,  A.  (1992).  Characteristics  of  pool  fire  burning.  Building  and  fire  

research  laboratory  .  1  (1),  p1-­‐6,  15.  

Health  and  safety  executive.  (2016).  Jet  fires.  Available:  

http://www.hse.gov.uk/offshore/strategy/jet.htm.  Last  accessed  5th  Dec  2015.  

 

  72  

Health  and  safety  executive.  (2016).  Pool  fires.  Available:  

http://www.hse.gov.uk/offshore/strategy/pool.htm.  Last  accessed  5th  Dec  

2015.  

 

Incendia  Consulting.  (2016).  A  history  of  sprinkler  development.  Available:  

http://incendiaconsulting.com/History%20of%20Sprinkler%20Development.p

df.  Last  accessed  21st  November  2015.  

 

Kim,  Hyeong-­‐Jin  and  David  G.  Lilley.  "Heat  Release  Rates  of  Burning  Items  in  

Fires."  AIAA  2000-­‐0722.  38th  Aerospace  Sciences  Meeting  &  Exhibit.  P1-­‐6  &  15.  

Reno,  NV.  January  2000.  

 

Madrzykowski,  D  Fleming,  R.P.  (2008).  Residential  Sprinkler  Systems.  Fire  

Protection  Handbook.  20th  (1),  p91-­‐106.  

 

Marshall,  A.W  &  Di  Marzo,  M.  (2014).  Modelling  aspects  of  sprinkler  spray  

dynamics  in  fires.  Process  safety  and  environmental  protection.  1  (1),  p97-­‐104.  

McGratten,  K  (2015).  Fire  Dynamics  Simulator  User's  Guide.  6th  ed.  U.S.A:  NIST  

Special  Publication  1019.  p3-­‐6.  

 

NASA.  (2015).  Navier-­‐Stokes  Equations.  Available:  

https://www.grc.nasa.gov/www/k-­‐12/airplane/nseqs.html.  Last  accessed  7th  

April  2016.  

 

  73  

NIST.  (2015).  Fire  on  the  web.  Available:  

http://fire.nist.gov/bfrlpubs/fire08/PDF/f08007.pdf.  Last  accessed  18th  March  

2016.  

 

Rodriguez,  J.  (2015  ).  Types  of  fires  and  how  to  recognize  them.  Available:  

http://blog.sdfirealarms.co.uk/fire-­‐safety/types-­‐fires/.  Last  accessed  5th  Dec  

2015.  

 

Science  learn.  (2009).  Fire  behaviour.  Available:  

http://sciencelearn.org.nz/Contexts/Fire/Science-­‐Ideas-­‐and-­‐Concepts/Fire-­‐

behaviour.  Last  accessed  5th  Dec  2015.  

 

Science  learn.  (2009).  What  is  fire?.  Available:  

http://sciencelearn.org.nz/Contexts/Fire/Science-­‐Ideas-­‐and-­‐Concepts/What-­‐

is-­‐fire.  Last  accessed  5th  Dec  2015.  

 

Sheppard,  D.  (2002).  Spray  characteristics  of  fire  sprinklers.  Building  and  fire  

research  laboratory  .  1  (1),  p6-­‐201.  

 

Tyco  Fire  and  Integrated  Solutions.  (2016).  Fire  Sprinklers.  Available:  

http://www.tycofis.co.uk/products/Fire-­‐Sprinklers/fire-­‐sprinklers.  Last  

accessed  18th  March  2016.  

 

Tyco  Fire  and  Integrated  Solutions.  (2016).  Water  Spray.  Available:  

http://www.tycofis.co.uk/products/Water-­‐Spray/water-­‐spray.  Last  accessed  

  74  

18th  March  2016.  

Tyco  Fire  and  Integrated  Solutions.  (2016).  Watermist.  Available:  

http://www.tycofis.co.uk/products/WaterMist/watermist.  Last  accessed  18th  

March  2016.  

 

Woodford,  C.  (2016).  Fire  sprinklers  .  Available:  

http://www.explainthatstuff.com/firesprinklers.html.  Last  accessed  21st  

November  2015.  

 

Yao,  C.  (2015).  Fire  safety  science.  Overview  of  sprinkler  technology  research.  1  

(1),  93-­‐108.  

 

 

 

 

 

 

 

 

 

 

  75  

14.0  Appendices    

14.1  FDS  simulation  input  file  

FDS  code  for  living    

Study  of  sprinkler  spray  characteristics  in  domestic  premises.  

 

&HEAD  CHID='living_room',  TITLE='Domain  Creation'/  

 

*Domain  dimension,  4  x  4  x  2.5  m,  cell  dimensions,  0.1  x  0.1  x  0.1  m,  40,000  cells  

&MESH  IJK=40,40,25  XB=0.0,4.0,0.0,4.0,0.0,2.5  /      

 

*Run  time  of  simulation  is  set  to  zero  to  allow  quick  checking  of  geometry  

&TIME  T_END=60.0  /  

 

*Defines  evaporating  liquid  droplets  as  water,  providing  the  thermal  properties,  

radiation  absorption  and  coloured  blue  in  smokeview  

&SPEC  ID='WATER  VAPOR'  /  

&PART  ID='water  drops',  SPEC_ID='WATER  VAPOR',  DIAMETER=<value>  /  

 

*Adds  a  sprinkler  within  the  computational  domain  and  specifies  characteristics  

of  the  sprinkler  

&PROP  ID='K-­‐11',  QUANTITY='SPRINKLER  LINK  TEMPERATURE',  RTI=100,  

ACTIVATION_TEMPERATURE=79,  OFFSET=0.10,  PART_ID='water  drops',  

PARTICLE_VELOCITY=<value>,  SPRAY_ANGLE=30.,80.,  FLOW_RATE=<value>  /  

&DEVC  XYZ=2.0,2.0,2.5,  PROP_ID='K-­‐11',  ID='Spr_1'  /  

  76  

*&RAMP  ID='spray',  T=30.0,  F=0.  /  

*&RAMP  ID='spray',  T=40.0,  F=1.  /  

*&RAMP  ID='spray',  T=50.0,  F=0.  /  

 

*Fire  located  on  top  of  sofa  with  a  heat  release  rate  per  unit  area  (285/0.5)  of  

570kW/m^2  and  allow  a  parameter  to  allow  the  reduction  of  the  burning  rate  

&SURF  ID='FIRE',  HRRPUA=570,  E_COEFFICIENT=4.  /  

&VENT  XB=1.5,2.5,1.5,2.0,0.4,0.4  SURF_ID='FIRE'/  

 

*Fuel  for  fire  is  butane,  with  fraction  of  fuel  mass  converted  into  smoke  

particulate  

&REAC  SOOT_YIELD=0.01,  FUEL='BUTANE'  /  

 

*The  ambient  temperature  is  required  to  be  20  degrees  C/293  degrees  K  

&MISC  TMPA=20./  

   

*Assign  properties  of  sofa  

&MATL  ID='FABRIC',  CONDUCTIVITY=0.1,  SPECIFIC_HEAT=1.0,  DENSITY=100.0  

/  

&SURF  ID='SOFA',  MATL_ID='FABRIC',  COLOR='BROWN',  THICKNESS=1.0,  

BURN_AWAY=.TRUE.  /  

 

*A  sofa  in  the  centre  of  a  room  with  the  dimensions  1.2  x  1.0  x  0.8  m  

&OBST  XB=1.5,2.5,2.0,2.5,0.0,0.8,  SURF_ID='SOFA'  /  

&OBST  XB=1.5,2.5,1.5,2.0,0.0,0.4,  SURF_ID='SOFA'/  

  77  

&OBST  XB=2.5,2.6,1.5,2.5,0.0,0.6,  SURF_ID='SOFA'/  

&OBST  XB=1.5,1.4,1.5,2.5,0.0,0.6,  SURF_ID='SOFA'/  

 

*Defines  boundaries  on  all  four  sides  (left,  right,  front  and  back)  

*&VENT  MB='XMIN',  SURF_ID='OPEN'/    

*&VENT  MB='XMAX',  SURF_ID='OPEN'/  

&VENT  MB='YMIN',  SURF_ID='OPEN'/  

*&VENT  MB='YMAX',  SURF_ID='OPEN'/  

 

&SLCF  PBX=2.0,  QUANTITY='TEMPERATURE'  /  

&SLCF  PBY=2.0,  QUANTITY='TEMPERATURE'  /  

 

&BNDF  QUANTITY  ='WALL  TEMPERATURE'  /  

&BNDF  QUANTITY  ='NET  HEAT  FLUX'  /  

&BNDF  QUANTITY  ='RADIATIVE  HEAT  FLUX'  /  

 

&TAIL  /  

                           

  78  

14.2  Graphical  results        

 Figure  27  Velocity  vs.  Time  to  extinguish  (droplet  size  of  100μm),  (2016)  

   

 Figure  28  Velocity  vs.  Time  to  extinguish  (droplet  size  200μm),  (2016)  

 

  79  

 Figure  29  Velocity  vs.  Time  to  extinguish  (droplet  size  400μm),  (2016)  

   

 Figure  30  Velocity  vs  Time  to  extinguish  (droplet  size  500μm),  (2016)  

 

  80  

 Figure  31  Velocity  vs.  Time  to  extinguish  (droplet  size  600μm),  (2016)  

   

 Figure  32  Velocity  vs.  Time  to  extinguish  (droplet  size  800μm),  (2016)  

 

  81  

 Figure  33  Velocity  vs.  Time  to  extinguish  (droplet  size  1000μm),  (2016)  

   

14.3  Navier-­‐Stokes  equations      

 Figure  34  Navier-­‐Stokes  equations  (NASA,  2016)