Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation · 2009. 4....

26
Laboratory of Thermal Turbomachines National Technical University of Athens Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation A. Alexiou & K. Mathioudakis

Transcript of Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation · 2009. 4....

  • 1Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Laboratory of Thermal TurbomachinesNational Technical University of Athens

    Direct-Transfer Pre-Swirl System:Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

  • 2Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Paper Objectives

    Ø Construct a model of a gas turbine direct-transfer pre-swirl air system using models of its individual components

    Ø Validate the modelling against experimental results from 3 different publicly available test cases

    Ø Optimise the design of such a system on its own and as part of a complete engine performance model

  • 3Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    qMODELLING PHILOSOPHY

    qMODEL VALIDATION

    o Test Case 1

    o Test Case 2

    o Test Case 3

    q DESIGN OPTIMISATION

    o System Level

    o Engine Level

    q CONCLUSION

    Contents

  • 4Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Direct Transfer Pre-Swirl Air System

    Pre-swirlNozzle

    ReceiverHole

    InnerLabyrinth

    Seal

    OuterLabyrinth

    Seal

    Cover-plate

    Pre-swirlChamber

    To BladeCooling Passage

    Pre-swirlNozzle

    ReceiverHole

    InnerLabyrinth

    Seal

    OuterLabyrinth

    Seal

    Cover-plate

    Pre-swirlChamber

    To BladeCooling Passage

    Important ParametersRelative Total Temperature

    Tt,rel,RH

    Discharge Coefficient

    CD,RH

    Swirl Ratio

    β = Vφ / Ω rΩ

    (RH)

    (PN)

  • 5Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Modelling Philosophy

    1 2 3 4

    5

    8

    6

    7Pre-swirlNozzle

    ReceiverHole

    Pre-swirlChamber

    InnerLabyrinth

    Seal

    OuterLabyrinth

    Seal

    12

    3

    4

    5

    8

    6

    7

    Connected components communicate through their external interfaces by exchanging a pre-defined set of variables. For describing flow conditions, these variables are mass flow, total temperature, total pressure and swirl angle. The exit flow conditions of a component are linked to the corresponding inlet ones through the conservation equations for mass, energy, axial and angular momentum, the component characteristics and appropriate empirical correlations.

  • 6Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Cavity Component Model

    Ø Arbitrary geometry (discs, cones, cylinders)Ø J Input flows and N output flowsØ Fully mixed flowØWork and heat transfer from surrounding K surfacesØMixing pressure losses

    Ω

    rK, AKrm

    r

    zin outrN, AN

    rJ, AJ

    mixSTATOR

    ROTOR

    Q

  • 7Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Orifice Component Model

    α

    Ω

    L

    rf

    U

    V

    Vrel

    φ

    z1

    2

    d

    ir

    α

    Ω

    L

    rf

    U

    V

    Vrel

    φ

    z1

    2

    d

    ir

    Ø Axial & radial holesØ Rotating & stationary

    Discharge Coefficient CD corrected through correlations for:ü Hole Reynolds numberü Inlet corner radiusü Hole lengthü Pressure ratioü Incidence angle

    ( ) i:DRe:D3'dL,2dr,21D CC1ffff1C f ∆+−⋅⋅⋅⋅−=

    α−

    α⋅

    −= φ−

    cosVVU

    taniis

    1,1

    Incidence Angle Definition

  • 8Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Labyrinth Seal Component Model

    Ω

    1 2

    cp

    STATOR

    ROTOR

    FIN

    Ω

    1 2

    cp

    STATOR

    ROTOR

    FIN

    )PR1ln(nPR1

    TR

    PCAm

    t

    2t

    1,t

    1,tD +

    −⋅

    ⋅⋅Γ⋅⋅=&

    02.0pcpc

    n1n1

    1

    +⋅

    −−

    For flow through straight, staggered and stepped labyrinth seals

    CD = 0.71 for 1.3 < c/t < 2.3

  • 9Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    qMODELLING PHILOSOPHY

    qMODEL VALIDATION

    o Test Case 1

    o Test Case 2

    o Test Case 3

    q DESIGN OPTIMISATION

    o System Level

    o Engine Level

    q CONCLUSIONS

    Contents

  • 10Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Validation Test Case 1: Geis et al. (2004)

    0.98

    0.99

    1

    1.01

    1.02

    1.03

    0 0.5 1 1.5 2 2.5 3 3.5βmix

    T t,r

    el,R

    H /

    T t,P

    N

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    MR [N

    m]

    Geis et al. (2004) Measured Temparatures

    Present Work Predicted Temparatures

    Present Work Predicted Moments

    Tt,rel,RH

    Tt,PN

  • 11Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Validation Test Case 2: Lewis et al. (2006) - I

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    βin

    Θ

    Present WorkTheoreticalComputed

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamberPre-swirl

    Nozzles

    ReceiverHoles

    Pre-swirlChamber

    ( )2RH

    2RH,rel,tPN,tP

    rTTC2

    ⋅Ω

    −⋅⋅=Θ

    2RH

    S

    2

    RH

    PNin rm

    M21rr2

    ⋅Ω⋅⋅

    −−

    ⋅β⋅=Θ

    &

    Theoretical Value of Θ

  • 12Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Validation Test Case 2: Lewis et al. (2006) - II

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8βmix

    CD

    Present WorkCFDMeasured

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamberPre-swirl

    Nozzles

    ReceiverHoles

    Pre-swirlChamber

  • 13Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Validation Test Case 2: Lewis et al. (2006) - III

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0.0 0.5 1.0 1.5 2.0

    βmix

    Θ

    ( )

    ⋅⋅Ω−=Θ

    P

    2RH

    2

    RH,rel,tPN,t C2rTT

    1P

    2RH

    2

    P

    2RH

    2

    mixC2

    rC2

    r=β

    ⋅⋅Ω

    ⋅⋅Ω⋅Θ=Θ′

  • 14Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Validation Test Case 3: Chew et al. (2003)

    -0.5

    0

    0.5

    1

    1.5

    0 0.5 1 1.5

    βmix

    Θ

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Present WorkMeasured

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Inner Labyrinth

    Seal

    Outer Labyrinth

    Seal

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Inner Labyrinth

    Seal

    Outer Labyrinth

    Seal

    CD

    Θ'

    CD

  • 15Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    qMODELLING PHILOSOPHY

    qMODEL VALIDATION

    o Test Case 1

    o Test Case 2

    o Test Case 3

    q DESIGN OPTIMISATION

    o System Level

    o Engine Level

    q CONCLUSIONS

    Contents

  • 16Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Optimisation: System Level

    0

    1

    2

    3

    4

    5

    6

    7

    0 0.5 1 1.5 2 2.5 3 3.5 4βin,RH

    Θ

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    CD,RH

    CD Θ

  • 17Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Optimisation: Engine Level - I

    H.P. CompressorBurner

    H.P.Turbine

    Pre-SwirlSystem

    H.P.Compressor

    Pre-SwirlSystem

    H.P.Turbine

    Burner

  • 18Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Optimisation: Engine Level - II

    0.9

    0.95

    1

    1.05

    -5 0 5 10Change in Pre-swirl Nozzle Angle (deg)

    β mix

    -2

    -1

    0

    1

    2

    3

    4

    Inci

    denc

    e A

    ngle

    i (d

    eg)

  • 19Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Optimisation: Engine Level - III

    0.87

    0.92

    0.97

    1.02

    Fuel Flow

    Θ

    βmix=1 at design

    βmix=1.01 at design

  • 20Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    qMODELLING PHILOSOPHY

    qMODEL VALIDATION

    o Test Case 1

    o Test Case 2

    o Test Case 3

    q DESIGN OPTIMISATION

    o System Level

    o Engine Level

    q CONCLUSIONS

    Contents

  • 21Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Conclusions

    Ø A generic approach for modelling direct-transfer pre-swirl air systems using object-oriented simulation principles is presented. Ø Three components (orifice, cavity and labyrinth seal) are combined together to simulate different experimental pre-swirl systems found in the open literature. The predicted results are consistent with the experimental data and computational results reported in the relevant references. Ø The ease with which the proposed approach allows different pre-swirl system configurations to be constructed and evaluated, both on their own and as part of a complete engine performance model is demonstrated. Ø Since the approach presented allows components to be represented in varied levels of detail, it is possible to create more realistic models early in the engine design process.

  • 22Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

  • 23Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Cavity Component Equations (I)

    ( )∑ ∑= =

    φφ =⋅⋅−⋅⋅J

    1j

    K

    1kkj,in,j,inj,inmix,mmix MVrmVrm &&

    ( )mix,kmix,kmixkkk,mk VrVrArC5.0M φφ −⋅Ω⋅−⋅Ω⋅ρ⋅⋅⋅⋅=

    ( )∑ ∑= =

    ⋅Ω+=⋅⋅−⋅⋅J

    1j

    K

    1kkj,in,tj,pj,inmix,tmix,pmix MQTCmTCm &&

    Angular Momentum Conservation Equation → Vφ,mix

    Energy Conservation Equation → Tt,mix

    Moment exerted by fluid on each surrounding surface, Mk (from drag force equation):

  • 24Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Friction Coefficients

    ( ) 2.05

    o

    i8.0m Rer

    r1sin07288.0C −ϕ− ⋅

    −⋅θ⋅=

    fm CrL2C ⋅⋅π⋅=

    ( )[ ] 2f10f 6.0CRelog07.4C −ϕ −⋅⋅=

    For free disks or cones with non-zero inner radius and half angle θ:

    For a smooth cylinder of length L:

    where

  • 25Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Cavity Component Equations (II)

    Mixing total pressure, Pt,mix

    ( )refSSav TTAhQ −⋅⋅=

    Axial momentum equation → Ps,mix:

    Convective heat transfer, Q:

    ( ) ( )( )

    ζ+

    ⋅−⋅ζ−⋅=

    −γγ

    1

    mix,s

    Pmixmix,tmix,smix,t T

    CmQT1PP

    &

    ( )( )mix,tis,mix,t

    mix

    mix,zmix

    J

    1jj,inj,in,sj,in,zj,in

    mix,s PPA

    VmAPVmP −−

    ⋅−⋅+⋅=

    ∑=

    &&

  • 26Direct-Transfer Pre-Swirl System: Performance Modelling, Validation and Optimisation

    A. Alexiou & K. Mathioudakis

    Orifice Component Equations

    ( )

    21

    22,1,12,2

    1

    1,t

    2,s

    1,t

    1,t1

    1,t

    2,s1,this

    VVrVr2

    PP

    1P

    12

    PP

    Am

    −⋅−⋅⋅Ω⋅+

    −⋅

    ρ⋅

    −γ

    γ⋅⋅

    ⋅ρ⋅=

    φφφ

    γ−γ

    γ

    &

    1-D, isentropic, compressible expansion of a perfect gas from the upstream total pressure to the downstream static pressure and considering the work transfer to the fluid: