DIP Chapter 2 Part2 Dft Dct Conv

download DIP Chapter 2 Part2 Dft Dct Conv

of 19

Transcript of DIP Chapter 2 Part2 Dft Dct Conv

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    1/19

    1/21/20

    Chapter 2 :Enhancement

    Part 2 : Fourier Transform & Filters

    Dr. Hojeij youssef

    Digital image processing

    1

    Chapter 2 : Part 2

    Fourierandimage:

    Fourier transformFT

    AnalogFT :

    AnalogFT 1Dcase

    AnalogFT 2Dcase

    Digital FT:

    Digital FT 1Dcase

    Digital FT 2Dcase

    Propertiesof DFT

    DFT applicationsDiscretecosinetransformation(DCT)

    Maskandconvolution

    Dr. Hojeij youssef2

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    2/19

    1/21/20

    Fourier and image

    Dr. Hojeij youssef3

    What is a frequency in an image ? Low frequencies : homogeneous, regions, blurHigh frequency : Edges, sudden change of intensity, noise

    High Frequency

    Low frequency

    Rem: The largest energy of the any picture is located in the low frequencies

    Fourier

    T, T-1 exist

    Good properties in transformdomain : using the transformdomain is a

    better way to solve problemsFind bases : exp, sin, cos, wavelets (choose your family of functions)

    Dr. Hojeij youssef4

    Spatial domain Transformdomain

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    3/19

    1/21/20

    Fourier

    Function function

    FT is an easy tool. It was sometimes difficult to compute, calculate the coefficients.Now it s easy with computers.

    Gives properties of spectrum: frequencies.

    Ex : If large number of low frequencies means smoothed signal, low varying signal.

    Dr. Hojeij youssef5

    Used to filterSysteminterpretation :spatial domainconvolution

    frequency domainmultiplication

    FT : analog1D case

    Let f(x)be a continuous function of a real variable x. The Fouriertransformisdefinedby:

    GivenF(u), f(x)can be obtained using the inverse Fourier transform:

    Conditions :

    - f(x)continuous & integrable

    - F(u)integrable

    Dr. Hojeij youssef6

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    4/19

    1/21/20

    FT analog1D case

    If we are concerned with real valued functionsf(x)

    Dr. Hojeij youssef7

    Fourier or frequency domain

    complex

    Direct domain

    real

    -| F(u) |Fourier spectrum (magnitude function)-| F(u)| Power spectrum(spectral density)

    -(u)phase angle

    -ufrequency

    FT : example

    Dr. Hojeij youssef8

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    5/19

    1/21/20

    FT analog 2D case

    TheFT caneasilyextendedtoafunction f(x,y)of 2variables:

    GivenF(u,v), f(x,y)canbeobtainedusingtheinverseFourier transform:

    Dr. Hojeij youssef9

    Conditions :-f(x,y)continuous & integrable

    -F(u,v)integrable

    FT analog 2D Case

    If we are concerned with real valued functionsf(x,y)

    Dr. Hojeij youssef10

    -| F(u,v) |Fourier spectrum (magnitude function)-| F(u,v)| Power spectrum(spectral density)

    -(u,v)phase angle

    -u,vfrequency variable

    Direct domain

    real

    Fourier or frequency domain

    complex

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    6/19

    1/21/20

    FT 2D Example

    Dr. Hojeij youssef11

    FT 2D Example

    Dr. Hojeij youssef12

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    7/19

    1/21/20

    FT 2D Example

    Dr. Hojeij youssef13

    DiscreteFourier transform (DFT)

    Let f(x)isdiscretizedintoasequencebytakingN samplesxunitsapart :

    If we set f(x)=f(x0+ xx)where x now assumes discrete values :0,1,2,3,,N-1

    - This sequence denotes any uniform spaced samples froma correspondingcontinuous

    - RememberShannonstheorembeforesamplingasignal. fe>2fmaxDr. Hojeij youssef

    14

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    8/19

    1/21/20

    DFT : 1D case

    The DFT is defined by :

    Rem:

    - the values of u=1,2,,N -1in the DFT correspond to samples of the

    continuoustransformsatvalues0, u, 2u,, (N-1)u

    - F(u)representsF(uu)

    Dr. Hojeij youssef15

    DFT : 2D case

    TheDFT 2D isdefinedby:

    Dr. Hojeij youssef16

    Rem:-The sampling is on a 2D grid

    - Sampling increments in spatial and frequency domain

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    9/19

    1/21/20

    DFT : 2D case

    Normalizationcoefficient:

    Dr. Hojeij youssef17

    Properties of DFT

    Most 2D DFT proprietiesarestraightforwardextend fromthe1 D DFTproperties

    1.Separability:

    The2D Fourier transformcanbeperformedasseriesof 1D DFT(complexexponential isseparable)

    Rem:performthe1D DFTonyvariable(axis) first F(x,v), andthenperformthe1DDFTonxvariable F(u,v)

    Dr. Hojeij youssef18

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    10/19

    1/21/20

    Properties of DFT

    2.Scaling:

    Foranyconstantsaandb:

    3.Shifting:

    Shiftingthefunction f(x,y)resultsinaphaseshift intheFT :

    4.Modulation:

    The complement of the previous property-multiplying by a complex exponential. iemodulationresultsinashiftof theFT

    5.Convolution:

    Convolutionof twofunctioncorrespondsto amultiplicationof their FTs

    Dr. Hojeij youssef19

    )bv,au(Fab

    1

    )by,ax(f

    )v,u(Fe)yy,xx(f)vyux(2j

    0000

    )vv,uu(F)y,x(fe 00)yvxu(2j 00

    )v,u(H)v,u(H)v,u(G

    dydx)y,x(f)yy,xx(h)y,x(h)y,x(f)y,x(g ''''''

    Properties of DFT

    6. Multiplication:

    MultiplyingtwofunctioncorrespondstoconvolvingtheirsFts:

    7.Rotation:

    Usingthepolarcoordinates:

    Rotatinganimagef(r,)byanangle rotatestheFT F(u,v)bythesameangle

    8. Averagevalue:

    Tofindaveragenumberscaleof anMNimage f(x,y)

    Dr. Hojeij youssef20

    )v,u(H)v,u(F

    )y,x(h)y,x(f)y,x(g

    sinwv&coswu

    sinry&cosrx

    ),w(F),r(f 00 0

    )0,0(FMN

    1)y,x(f

    MN

    1)y,x(f

    1M

    1M

    1N

    1N

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    11/19

    1/21/20

    Properties of DFT

    Dr. Hojeij youssef21

    Properties of DFT

    9.Periodicity:

    Moving the zero-frequency component to the center of the array. It is useful forvisualizingaFourier transformwith thezero-frequencycomponent in themiddleof thespectrum.

    Dr. Hojeij youssef22

    )n,mM(f)n,m(f

    )vN,u(F)v,u(F

    )nN,m(f)n,m(f

    )v,uM(F)v,u(F

    )v,u(F)vbN,uaM(F )n,m(f)nbN,maM(f

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    12/19

    1/21/20

    Examples of DFT

    Dr. Hojeij youssef23

    Examples of DFT

    Dr. Hojeij youssef24

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    13/19

    1/21/20

    DFT applications

    Dr. Hojeij youssef25

    Filtering:

    Spacefilteringisdonebyconvolution. In thefield spectral (frequency), it isdonebymultiplication(hidingtheimage).

    original image Image transformed

    Filtered imageImage transformed

    Filtered

    Spectral filtering

    (multiplication)

    Filtering Spatial

    (convolution)

    DFT applications

    Dr. Hojeij youssef26

    spectral

    filtering

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    14/19

    1/21/20

    DFT applications

    Dr. Hojeij youssef27

    Information percentage of the image included in the circles (smallest to largest) :90% 95% 98% 99% 99.5% 99.9%

    DFT applications

    Dr. Hojeij youssef28

    High-passfilter : Low-passfilter :

    Removes the high frequencies by putting thepixelsawayfromthecentertozero

    Removes thebass frequencies by putting thepixels in thecenter to zero

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    15/19

    1/21/20

    DFT applications

    Dr. Hojeij youssef29

    De-noisingimage:

    Noisy image

    Fourier spectrum Filtered image

    DFT applications

    Dr. Hojeij youssef30

    Contrastmodification(Enhancement):

    Original image

    High-pass filtering

    Imageenhanced

    Filtered image(High Pass)Original image

    Imageenhanced Enhanced +Equalization Histogram

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    16/19

    1/21/20

    DCT isdefinedby:

    DCT(Discrete Cosine transformation)

    Dr. Hojeij youssef31

    Example DCT

    Dr. Hojeij youssef32

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    17/19

    1/21/20

    Example DCT

    Dr. Hojeij youssef33

    Example DCT

    Dr. Hojeij youssef34

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    18/19

    1/21/20

    Numerical convolution

    Dr. Hojeij youssef35

    The discrete convolution is a tool to use filters or linear filter travel

    invariants .The general equation of convolution, notedg(x), original function f(x)with a functionh(x)is :

    f(x)is the original function and g(x) is the convoluted function (resultof convolution).

    In our case, an image is seen as a mathematical function

    h(x)is calledconvolution mask, convolution kernel, filter, kernel, ...

    k )k(f)kx(h)x(h)x(f)x(g

    Numerical convolution

    Dr. Hojeij youssef36

    In practice, the convolution of a digital image made by a summonsmultiplication

    A convolution filter is usually a matrix (image), his size is not always oddand symmetrical

    3x3, 5x5, 7x7, ...

    Convolution of an image through a filter (kernel) 2D :

    u v

    '

    '

    )v,u(filter)vj,ui(I)j,i(I

    )j,i(filtre)j,i(I)j,i(I

  • 7/30/2019 DIP Chapter 2 Part2 Dft Dct Conv

    19/19

    1/21/20

    Numerical convolution

    Dr. Hojeij youssef37

    Kernel

    Image

    Result of

    convolution, I by

    the kernel K

    Numerical convolution

    Dr. Hojeij youssef38

    Image

    Solution : No miraclesolution1. edges(0)2. Mirror effect : f (-x, y) = f (x, y)

    Problem: What to do with theedges of theimage?