Dimensional Formulae

download Dimensional Formulae

of 16

Transcript of Dimensional Formulae

  • 7/29/2019 Dimensional Formulae

    1/16

    Quantity Dimension Alternatives Definition/Notes

    A:

    Acceleration,

    angulars-2 rad.s-2 [AngularVelocity]/[Time]

    Abb number 1 Dimensionless Inverse ofrefractive index.

    Absorbed radiationdose

    m2.s-2 J.kg-1, Gy (gray) [Energy]/[Mass]

    Absorbed dose rate m2.s-3 Gy.s-1 [Absorbed dose]/[Time]

    Acceleration, linear m.s-2 [Velocity]/[Time]

    Action kg.m2.s-1 J.s [Energy]*[Time], [Moment ofmotion]*[Distance]

    Activity of

    radioactive sources-1 Bq (becquerel) [Events]/[Time]

    Admittance,

    inductivekg-1.m-2.s3.A2 S (siemens) 1/[Inductive impedance].

    Admittance, of acircuit kg-1

    .m-2

    .s3

    .A2

    S (siemens)

    1/[Circuit impedance].

    Angular

    acceleration s-2 rad.s-2 [AngularVelocity]/[Time]

    Angular moment of

    inertiakg.m2 [Mass]*[Distance2]

    Angular moment of

    motionkg.m2.s-1 J.s [Moment of

    motion]*[Distance]. Like[action].

    Angular velocity s-1 rad.s-1 [Plane angle]/[Time]

    Annealing point K Temperature at which

    viscosity drops below 1012Pa.s

    Area m2 [Distance]*[Distance]

    Attenuation m-1 dB/m [Ratio]/m. Applies topropagation.

    B:

    Bandwidth s-1 Hz [Frequency]

    Baud rate bit.s-1 baud [Information]/[Time]. Also:information flux.

    Bulk modulus kg-1.m.s2 Pa-1 [Pressure]/([Volume]/[Volume]). Same ascompressibility.

    C:

    Capacitance,

    electrickg-1.m-2.s4.A2 C.V-1, F (farad) [Charge]/[Potential]

    Capacitive

    reactancekg.m2.s-3.A-2 (ohm) 1/(i[Angular frequency].

    [Capacitance])

    Capacitive

    susceptancekg-1.m-2.s3.A2 S (siemens) 1/[Capacitive reactance].

    Circulation m2.s-1 J.s.kg-1 [Angular moment]/[Mass],[Velocity]*[Loop length]

    Characteristicimpedance

    kg.m2.s-3.A-2 V.A-1, , ohm ([Mag.Permeability]/[El.Permittivity])

  • 7/29/2019 Dimensional Formulae

    2/16

    Charge, electric s.A C (coulomb) [Current]*[Time]

    Charge, quantum 1 Dimensionless [Charge]/[Elementary chargequantum]

    Charge,

    molecular/ionic,

    quantum

    1 Dimensionless [Charge of a molecule or ion]/[Elementary charge quantum]

    Charge density m-3.s.A C.m-3 [Charge]/[Volume]

    Charge/mass ratio kg-1.s.A C.kg-1 [Charge]/[Mass]. Same asspecific charge

    Charge, molar s.A.mol-1 C.mol-1 [Charge]/[Quantity]

    Chemical potential,

    molarkg.m2.s-2.mol-1

    J.mol-1 [InternalEnergy]/[QuantityOfSubstance]

    Circuit admittance kg-1.m-2.s3.A2 S (siemens) 1/[Circuit impedance].

    Circuit impedance kg.m2.s-3.A-2 (ohm)

    Collision cross

    section

    m2 [Distance]*[Distance]. Same

    as cross section

    Compressibility kg-1.m.s2 Pa-1 [Pressure]/([Volume]/[Volume]). Same as bulkmodulus.

    Compression kg.m-1.s-2 N.m-2, Pa (pascal) [Force]/[Area]. ... same aspressure

    Compression

    moduluskg-1.m.s2 Pa-1 [Pressure]/([Volume]/

    [Volume]). Same ascompressibility.

    Compressive

    strengthkg.m-1.s-2 N.m-2, Pa [Force]/[Area]. Same

    dimension as pressure.

    Concentration,molar

    m-3.mol [Quantity]/[Volume]. Same asmolar density.

    Concentration, by

    mass1 Dimensionless [Mass of substance]/[Total

    mass]. Same as massconcentration

    Concentration, by

    volume1 Dimensionless [Volume of substance]/[Total

    volume]. Same as volumeconcentration.

    Concentration, by

    weight1 Dimensionless [Mass of substance]/[Total

    mass]. Same as massconcentration

    Conductance,

    electrickg-1.m-2.s3.A2 A.V-1, S (siemens) 1/[Resistance].

    Conductivity,

    electrickg-1.m-3.s3.A2 S.m-1 1/[Resistivity]

    Conductivity, molar kg-1.s3.A2.mol-1

    S.m2.mol-1 [El.conductivity]/[Concentration]

    Conductivity,

    thermalkg.m.s-3.K-1 W.m-1.K-1 [Heat flux]/

    ([Distance]*[Temperature])

    Constringence 1 Dimensionless [Transversal striction]/[Londitudinal elongation].

    Convergence

    m-1

    dioptry

    in optics, but not only ...

    Count of 1 This covers all kinds of

  • 7/29/2019 Dimensional Formulae

    3/16

    events/instances enumerations.

    Count rate s-1 [Events]/[Time]

    Couple kg.m2.s-2 N.m 2*[Force]*[Distance] for twonon-aligned opposing forces.

    Critical angle of

    repose

    rad or degree Steepest angle of a slope

    before a slideCross section m2 [Distance]*[Distance]

    Cryoscopic constant kg.mol-1.K K/(mol/kg) [Temperature]/[Molality]

    Current, electric A A (ampere)

    Current density

    (electric)m-2.A [Current]/[Area]. Same as

    current intensity.

    Current intensity

    (electric)m-2.A [Current]/[Area]. Same as

    current density.

    Current noise,

    variance nJ2

    s.A2 A2/Hz [Current]2/[Bandwidth]

    Curvature radius

    m

    of a line in plane/space orsurface in space

    D:

    Density of electric

    chargem-3.s.A C.m-3 [Charge]/[Volume]

    Density of electric

    currentm-2.A [Current]/[Area]. Same as

    current intensity.

    Density of energy kg.m-1.s-2 J.m-3 [Energy]/[Volume].

    Density of mass kg.m-3 [Mass]/[Volume]. Same asspecific density.

    Density of

    substance

    m-3.mol [Quantity]/[Volume]. Same asconcentration.

    Dielectric constant 1 Dimensionless [Permittivity]/[Permittivity ofvacuum]. Same as relativepermittivity

    Dielectric

    strength/rigiditykg.m.s-3.A-1 V.m-1 [Potential]/[Distance]. Same

    as electric strength

    Diffusion coefficient m2.s-1 [Distance2]/[Time].

    Diffusivity, thermal m2.s-1 ([Temperatute]/[Time])/[2Temperature].

    Dipole moment,

    electric

    m.s.A C.m [Charge]*[Distance]

    Dipole moment,

    magneticm2.A J.T-1 [Current]*[Area]

    Dispersive power 1 Dimensionless Ratio of differences ofrefractive indices.

    Dispersivity

    quotientm-1 [Refractive index]/

    [Wavelength]

    Distance m in all Euclidean n-dimensional spaces.

    Dose of absorbed

    radiationm2.s-2 J.kg-1, Gy (gray) [Energy]/[Mass].

    Dose rate m2.s-3 Gy.s-1 [Absorbed dose]/[Time].Drift speed m.s-1 Steady-state speed of an

  • 7/29/2019 Dimensional Formulae

    4/16

    object..Duration s s (second)

    Dynamic viscosity kg.m-1.s-1 Pa.s ([Force]/[Area])/[Velocity]

    E:

    Ebullioscopic

    constantkg.mol-1.K K/(mol/kg) [Temperature]/[Molality].

    Electric capacitance kg-1.m-2.s4.A2 C.V-1, F (farad) [Charge]/[Potential]

    Electric charge s.A C (coulomb) [Current]*[Time]

    Electric

    conductancekg-1.m-2.s3.A2 A.V-1, S (siemens) [Current]/[Potential].

    Inverse ofresistance.

    Electric

    conductivitykg-1.m-3.s3.A2 S.m-1 1/[Resistivity].

    Electric

    conductivity, molarkg-1.s3.A2.mol-1

    S.m2.mol-1 [El.conductivity]/[Concentration].

    Electric current A A (ampere)

    Electric dipolemoment m.s.A

    C.m

    [Charge]*[Distance]

    Electric field

    strengthkg.m.s-3.A-1 V.m-1 [Potential]/[Distance]. Also

    called electric intensity

    Electric field

    gradientkg.s-3.A-1 V.m-2 [El.field strength]/

    [Distance].

    Electric flux density m-2.s.A C.m-2 [Charge]/[Area]. Also calledelectric induction

    Electric inductance kg.m2.s-2.A-2 V.s.A-1, H (henry) [Potential]/[dCurrent/dt]

    Electric induction m-2.s.A C.m-2 [Charge]/[Area]. Moreproperly electric flux density

    Electric intensity kg.m.s-3.A-1 V.m-1 [Potential]/[Distance]. Moreproperly electric fieldstrength

    Electric

    permittivitykg-1.m-3.s4.A2 F.m-1 [El.flux density]/[El.field

    strength].

    Electric

    permittivity,

    relative

    1 Dimensionless [Permittivity]/[Permittivity ofvacuum]. Same as dielectricconstant

    Electric

    polarizationm-2.s.A C.m-2 [Charge]/[Area]. Like electric

    flux density

    Electric potential

    kg.m

    2

    .s

    -3

    .A

    -1

    W.A

    -1

    , J.C

    -1

    , V(volt) [Power]/[Current], [Energy]/[Charge]

    Electric quadrupole

    momentm2.s.A C.m2 [Electric dipole]*[Distance],

    [Electric charge]*[Distance2]

    Electric resistance kg.m2.s-3.A-2 V.A-1, (ohm) [Potential]/[Current]

    Electric resistivity kg.m3.s-3.A-2 .m ([Resistance]*[Length])/[Area].

    Electric strength kg.m.s-3.A-1 V.m-1 [Potential]/[Distance]. Alsocalled dielectric strength.

    Electromagnetic

    vector potentialkg.m.s-2.A-1 V.s.m-1, T.m [El.field strength]*[Time] or

    [Mag.flux

    density]*[Distance]Electromotive force kg.m2.s-3.A-1 V [Potential]

  • 7/29/2019 Dimensional Formulae

    5/16

    (emf)

    Electrostriction

    coefficientkg-2.m-2.s6.A2 m2.V-2 ([Volume]/[Volume])/

    [Electric field strength]2.

    Energy kg.m2.s-2 N.m, J (joule) [Force]*[Distance],[Power]*[Time].

    Energy, molar kg.m2.s-2.mol-1

    J.mol-1 [Energy]/[Quantity].

    Energy, specific m2.s-2 J.kg-1 [Energy]/[Mass].

    Energy density kg.m-1.s-2 J.m-3 [Energy]/[Volume].

    Energy flux kg.m2.s-3 J.s-1, W (watt) [Energy]/[Time]. Same aspower.

    Enthalpy kg.m2.s-2 J Like energy and heat.

    Enthalpy, molar kg.m2.s-2.mol-1

    J.mol-1 [Enthalpy]/[Quantity]. Likemolar heat.

    Enthalpy, specific m2.s-2 J.kg-1 [Enthalpy]/[Mass]. Like

    specific heat.

    Entropy kg.m2.s-2.K-1 J.K-1 [Heat]/[Temperature].

    Entropy, molar kg.m2.s-2.K-1.mol-1

    J.K-1.mol-1 [Entropy]/[Quantity].

    Entropy, specific m2.s-2.K-1 J.K-1.kg-1 [Entropy]/[Mass].

    Evolution rate on

    log-scales-1 d{ln(Q)}/dt = (dQ/dt)/Q. Also

    relative evolution rate

    Expansion

    coefficient, thermalK-1 ([Length]/[Length])/

    [Temperature].

    Exposure kg-1.s.A C.kg-1 [Charge]/[Mass]. Used forionising radiations.

    Extinctioncoefficient

    m-1 dB/m Used for propagation ofradiation.

    F:

    Fire point K Temperature at which ignitedvapour keeps burning

    Flash point K Temperature at which vapourcan be kept burning

    Force kg.m.s-2 N (newton) [Mass]*[Acceleration].

    Force,

    thermodynamickg.m.s-2.mol-1

    N/mol [Chemical potential]/[Distance].

    Free energy

    kg.m

    2

    .s

    -2

    J

    Also Helmholtz function.Like energy.

    Free energy, molar kg.m2.s-2.mol-1

    J.mol-1 [Free energy]/[Quantity].Also molarHelmholtzfunction

    Free energy,

    specificm2.s-2 J.kg-1 [Free energy]/[Mass]. Also

    specific Helmholtz function

    Free enthalpy kg.m2.s-2 J Also Gibbs function. Likeenergy.

    Free enthalpy,

    molarkg.m2.s-2.mol-1

    J.mol-1 [Free enthalpy]/[Quantity].Also molarGibbs function

    Free enthalpy,specific

    m2.s-2 J.kg-1 [Free enthalpy]/[Mass]. Alsospecific Gibbs function

  • 7/29/2019 Dimensional Formulae

    6/16

    Frequency of waves

    or eventss-1 Hz (hertz)

    Frequency drift

    rates-2 Hz.s-1 [Frequency]/[Time].

    Friction kg.m.s-2 N (newton) Tangential force between two

    moving surfaces.Friction coefficient 1 Dimensionless [Tangential force]/[Normal

    force].

    Fugacity kg.m-1.s-2 Pa Effective pressure in realgases.

    G:

    Gain of a device 1 Dimensionless [Output]/[Input], like-quantities ratio. Often in dB.

    g-factor of a

    particle1 Dimensionless [Magnetic moment]/([Spin].

    [Bohr magneton])

    Gradient, of electricfield kg.s

    -3

    .A

    -1

    V.m

    -2

    [El.field strength]/[Distance].

    Gradient, of

    magnetic fieldkg.m-1.s-2.A-1 T.m-1 [Mag.flux density]/

    [Distance].

    Gradient, thermal K.m-1 [Temperature]/[Distance].Same as temperaturegradient

    Gravitational field

    intensitym.s-2 [Force]/[Mass],

    [Acceleration]. Same asgravity

    Gravitational field

    potential

    m2.s-2 [Energy]/[Mass].

    Gravity m.s-2 [Force]/[Mass],[Acceleration]. Same as grav.field intensity

    Gyromagnetic ratio kg-1.s.A Hz.T-1 [Mag.moment]/[Angularmoment of motion].

    H:

    Half life s typically of a radioactivesubstance

    Hamiltonian kg.m2.s-2 J [Force]*[Distance],[Power]*[Time]. Like energy

    Hardness kg.m-1.s-2 N.m-2 [Force]/[Area]. Same aspressure.

    Heat kg.m2.s-2 J Like energy.

    Heat, molar kg.m2.s-2.mol-1

    J.mol-1 [Heat]/[Quantity].

    Heat, specific m2.s-2 J.kg-1 [Heat]/[Mass].

    Heat capacity kg.m2.s-2.K-1 J.K-1 [Heat]/[Temperature].

    Heat capacity,

    molarkg.m2.s-2.K-1.mol-1

    J.K-1.mol-1 [Heat capacity]/[Quantity].

    Heat capacity,

    specific

    m2.s-2.K-1 J.K-1.kg-1 [Heat capacity]/[Mass].

    Heat | Thermal kg.m.s-3.K-1 W.m-1.K-1 [Heat flux]/

  • 7/29/2019 Dimensional Formulae

    7/16

    conductivity ([Distance]*[Temperature]).

    Heat flux kg.m2.s-3 J.s, W [Heat]/[Time]. Likepower.

    Heat flux density kg.s-3 W.m-2 [Heat flux]/[Area]. Same asirradiance.

    I:Illuminance cd.sr.m-2 lm.m-2, lx (lux) [Luminous flux]/[Area].

    Impact resistance kg.s-2 J.m-2 [Energy]/[Area]

    Impedance,

    characteristickg.m2.s-3.A-2 V.A-1, , ohm ([Mag.Permeability]/

    [El.Permittivity]).

    Impedance,

    inductivekg.m2.s-3.A-2 (ohm) i[Angular frequency].

    [Inductance]

    Impedance, of a

    circuitkg.m2.s-3.A-2 (ohm)

    Impulse kg.m.s-1 [Moment of motion],

    [Force]*[Time],[Mass]*[Velocity].

    Inductance kg.m2.s-2.A-2 V.s.A-1, Wb.A-1, H(henry)

    [Potential]/[dCurrent/dt],[Mag.flux]/[Current]

    Induction, electric m-2.s.A C.m-2 [Charge]/[Area]. Same aselectric flux density

    Inductive

    admittancekg-1.m-2.s3.A2 S (siemens) 1/[Inductive impedance].

    Inductive

    impedancekg.m2.s-3.A-2 (ohm) i[Angular frequency].

    [Inductance]

    Information bit-1 bit One bit is the elementary

    information quantum.Information flux bit.s-1 baud [Information]/[Time]. Also

    called baud rate.

    Intensity of electric

    currentm-2.A [Current]/[Area]. Same as

    current density.

    Internal energy kg.m2.s-2 J Like energy and heat.

    Internal energy,

    molarkg.m2.s-2.mol-1

    J.mol-1 [Internal energy]/[Quantity].Like molar heat.

    Internal energy,

    specificm2.s-2 J.kg-1 [Internal energy]/[Mass]. Like

    specific heat.

    Ion mobility kg-1.m-1.s2.A m2.s-1.V-1 [Velocity]/[Electric fieldstrength].

    Ionic force

    (strength)m-3.mol Sum([Concentration]*[Ionic

    quantum charge]2).Ionic quantum

    charge1 Dimensionless [Ion charge]/[Elementary

    charge quantum]

    Ionic strength

    (force)m-3.mol Sum([Concentration]*[Ionic

    quantum charge]2).Irradiance kg.s-3 W.m-2 [Heat flux]/[Area]. Same as

    heat flux density

    J:

    Joule-Thomsoncoefficient

    kg-1.m.s2.K K.Pa-1 [Temperature]/[Pressure].

  • 7/29/2019 Dimensional Formulae

    8/16

    K:

    Katalytic activity mol.s-1 katal [Quantity]/[Time]. Same asmolar production rate

    Kinematic viscosity m2.s-1 [Dynamic viscosity]/[Density]

    K-space vector m-1 same as reciprocal spaceposition.

    L:

    Lagrangian kg.m2.s-2 J [Force]*[Distance],[Power]*[Time]. Like energy

    Length m m (meter)

    Linear stiffness kg.s-2 N.m-1 [Force]/[Displacement]. ... ofa structure

    Logarithmic ratio

    logb(A/A')

    1 log in any base b Applicable to any ratio of likequantities.

    Logarithmic ratioln(A/A') 1

    Np (neper)

    Uses natural logarithm.

    Logarithmic ratio

    Log(P/P')/101 dB (decibel) Uses base-10

    logarithm.Aplies only topower P.

    Logarithmic ratio

    Log(X/X')/201 dB (decibel) Aplies to voltages (X=V) and

    currents (X=I).

    Logarithmic scale

    differential1 Dimensionless dQ/Q, d{ln(Q)}, for any

    quantity Q. Also relativedifferential

    Luminance cd.m-2 [Luminosity]/[Area]

    Luminosity cd cd (candle) Same as luminous intensityLuminous

    coefficient1 Dimensionless [Luminous efficacy]/[683

    lm/W]. Same as luminousefficiency

    Luminous efficacy cd.sr.kg-1.m-1.s3

    lm/W [Luminous flux]/[Power]

    Luminous efficiency 1 Dimensionless [Luminous efficacy]/[683lm/W]. Same as luminouscoefficient

    Luminous

    emittancecd.sr.m-2 lm.m-2, lx (lux) Same as illuminance, but for

    sources

    Luminous energy cd.sr.s lm.s [Luminous flux]*[Time].Also known as talbot

    Luminous flux cd.sr lm (lumen) [Luminosity]*[Solid angle].Same as luminous power

    Luminous intensity cd cd (candle) Same as luminosity

    Luminous power cd.sr lm (lumen) [Luminosity]*[Solid angle].Same as luminous flux

    M:

    Magnetic dipole

    momentm2.A J.T-1 [Current]*[Area]. Like

    magnetic moment.

    Magnetic fieldgradient

    kg.m-1

    .s-2

    .A-1

    T.m-1

    [Mag.flux density]/[Distance].

  • 7/29/2019 Dimensional Formulae

    9/16

    Magnetic field

    strengthm-1.A [Current]/[Distance]. Also

    called magnetic intensity

    Magnetic flux kg.m2.s-2.A-1 V.s, W.s.A-1, Wb(weber)

    [Potential]*[Time], [Power]/[dCurrent/dt]

    Magnetic flux

    density

    kg.s-2.A-1 Wb.m-2, T (tesla) [Mag.flux]/[Area]. Also

    called magnetic inductionMagnetic induction kg.s-2.A-1 Wb.m-2, T (tesla) [Mag.flux]/[Area]. More

    properly magnetic fluxdensity

    Magnetic intensity m-1.A [Current]/[Distance]. Moreproperly magnetic fieldstrength

    Magnetic moment m2.A J.T-1 [Current]*[Area]

    Magnetic

    permeabilitykg.m.s-2.A-2 H.m-1 [Mag.flux density]/[Mag.field

    strength].

    Magneticpermeability,

    relative1

    Dimensionless

    [Permeability]/[Permeabilityof vacuum].

    Magnetic

    quadrupole

    moment

    m3.A m.J.T-1 [Mag.dipole]*[Distance]

    Magnetic

    susceptibility1 Dimensionless [Relative permeability]-1.

    Magnetization m-1.A [Mag.moment]/[Volume].Like magnetic field strength

    Magnetogyric ratio kg.s-1.A-1 T.Hz-1 [Angular moment of motion]/

    [Mag.moment].

    Magnetomotive

    force (mmf)A [Current]*[Number of turns]

    Magnitude of a star 1 Dimensionless m-m'=-100.4(S/S'), where S,S'are the luminous fluxes of twostars

    Mass kg kg (kilogram)

    Mass density kg.m-3 [Mass]/[Volume]. Same asspecific density.

    Mass concentration 1 Dimensionless [Mass of substance]/[Totalmass]. Also concentration byweight

    Mass flow kg.s-1 kg [Mass]/[Time]. Same asmass production rate

    Mass production

    ratekg.s-1 [Mass]/[Time]. Same as

    mass flow.

    Mass, molar kg.mol-1 [Mass]/[Quantity]

    Modulus of

    compressionkg-1.m.s2 Pa-1 [Pressure]/([Volume]/

    [Volume]). Same ascompressibility3

    Modulus of rigidity kg.m.s-2 N, N.rad-1 [Force]/[Angle]. Same as

    shear modulus.

    Mobility, ionic kg-1.m-1.s2.A m2.s-1.V-1 [Velocity]/[Electric field

  • 7/29/2019 Dimensional Formulae

    10/16

    strength].Molality kg-1.mol mol/kg [Quantity]/[Mass]. A way to

    specify concentration of asolution.

    Molar charge s.A.mol-1 C.mol-1 [Charge]/[Quantity]

    Molarconcentration

    m-3.mol [Quantity]/[Volume]. Same asconcentration

    Molar conductivity,

    electrickg-1.m-3.s3.A2.mol-1

    S.m-1.mol-1 [El.conductivity]/[Concentration].

    Molar density m-3.mol [Quantity]/[Volume]. Same asconcentration.

    Molar energy kg.m2.s-2.mol-1

    J.mol-1 [Energy]/[Quantity].

    Molar enthalpy kg.m2.s-2.mol-1

    J.mol-1 [Enthalpy]/[Quantity]. Likemolar heat.

    Molar entropy

    kg.m

    2

    .s

    -2

    .K

    -

    1.mol-1 J.K

    -1

    .mol

    -1

    [Entropy]/[Quantity].

    Molar free energy kg.m2.s-2.mol-1

    J.mol-1 [Free energy]/[Quantity].Also molarHelmholtzfunction

    Molar free enthalpy kg.m2.s-2.mol-1

    J.mol-1 [Free enthalpy]/[Quantity].Also molarGibbs function

    Molar heat kg.m2.s-2.mol-1

    J.mol-1 [Heat]/[Quantity].

    Molar heat capacity kg.m2.s-2.K-1.mol-1

    J.K-1.mol-1 [Heat capacity]/[Quantity].

    Molar internalenergy

    kg.m2.s-2.mol-1J.mol-1 [Internal energy]/[Quantity].

    Like molar heat.

    Molar mass kg.mol-1 [Mass]/[Quantity]

    Molar production

    ratemol.s-1 katal [Quantity]/[Time]. Like

    katalytic activity.

    Molar refractivity m3.mol-1 [(r2-1)/(r2+2)]/[Concentration], where r isthe refractive index

    Molar relaxivity m3.s-1.mol-1 [Relaxation rate]/[Concentration].

    Molar solubility m-3.mol [Quantity]/[Volume]. Same asconcentration

    Molar volume m3.mol-1 [Volume]/[Quantity].

    Molarity m-3.mol [Quantity]/[Volume]. Same asconcentration ormolardensity

    Molecular quantum

    charge1 Dimensionless [Charge of a molecule]/

    [Elementary charge quantum]

    Moment of force kg.m2.s-2 N.m [Force]*[Distance].

    Moment of motion kg.m.s-1 [Mass]*[Velocity], [Massflow]*[Distance].

    Mutual inductance

    kg.m2

    .s-2

    .A-2

    V.s.A-1

    , Wb.A-1

    , H(henry) [Potential]/[dCurrent/dt],[Mag.flux]/[Current]

  • 7/29/2019 Dimensional Formulae

    11/16

    N:

    Notch resistance kg.s-2 J.m-2 [Energy]/[Area]

    Number density m-3 [Particles]/[Volume].

    Number density,

    molarmol-1 [Particles]/[Mol]. The

    Avogadro constant.

    Number ofevents/instances

    1 This covers all kinds ofenumerations.

    Number of turns 1 Often used in electricengineering.

    O:

    Osmotic pressure kg.m-1.s-2 Pa

    P:

    Peltier coefficient kg.m2.s-3.A-1 W.A-1, V [Heat flux]/[Current].

    Permeability,

    magnetickg.m.s-2.A-2 H.m-1 [Mag.flux density]/[Mag.field

    strength].

    Permittivity,electric kg

    -1

    .m-3

    .s4

    .A2

    F.m-1

    [El.flux density]/[El.fieldstrength].

    Permittivity,

    relative1 Dimensionless [Permittivity]/[Permittivity of

    vacuum]. Dielectricconstant.

    Phase angle 1 rad in exp(i(t+))

    Phase drift rate s-1 rad.s-1 [Phase angle]/[Time].

    Pi coefficient, molar kg.m-1.s-2.mol-1

    J.m-3 [InternalEnergy]/[Volume].

    Piezzoelectric

    coefficientkg.m.s-3.A-1 V.m-1 [Electric field strength]/

    ([Length]/[Length]).

    Plane angle 1 radPolarization,

    electricm-2.s.A C.m-2 [Charge]/[Area]. Like electric

    flux density.

    Position vector m in all Euclidean n-dimensional spaces.

    Potential, electric kg.m2.s-3.A-1 W.A-1, J.C-1, V(volt)

    [Power]/[Current], [Energy]/[Charge]

    Power kg.m2.s-3 J.s-1, W (watt) [Energy]/[Time].Equivalent to energy flux.

    Prandtl number 1 Dimensionless [Kinematic viscosity]/

    [Thermal diffusivity].

    Propagation loss m-1 dB/m [Ratio]/m. Used for any otherquantity.

    Poynting vector kg.s-3 W.m-2 [El.field strength]/[Mag.fieldstrength]. Like irradiance

    Pressure kg.m-1.s-2 N.m-2, Pa (pascal) [Force]/[Area].

    Probability of an

    event1 Real number lying in the

    interval [0,1].

    Probability density

    on ln-scale1 Np-1 [Probability]/[Natural-

    logarithmic ratio]

    Q:

    Quadrupolemoment, electric

    m2.s.A C.m2 [Electric dipole]*[Distance],[Electric charge]*[Distance2]

  • 7/29/2019 Dimensional Formulae

    12/16

    Quadrupole

    moment, magneticm3.A m.J.T-1 [Mag.dipole]*[Distance]

    Quantity of

    substancemol mol

    Quantum charge 1 Dimensionless [Charge]/[Elementary charge

    quantum] Quantum charge,

    molecular or ionic1 Dimensionless [Molecule/ion charge]/

    [Charge quantum]

    Quotient of

    dispersivitym-1 [Refractive index]/

    [Wavelength]

    R:

    Radiance kg.s-3.sr-1 W.m-2.sr-1 ([Power]/[Area])/[Solidangle].

    Radiation dose m2.s-2 J.kg-1, Gy (gray) [Energy]/[Mass].

    Radiation dose rate m2.s-3 Gy.s-1 [Absorbed dose]/[Time].

    Radioactivity

    s-1

    Bq (becquerel)

    [Events]/[Time].

    Radius of curvature m of a line in plane/space orsurface in space

    Rotational stiffness kg.m2.s-2.rad-1

    N.m.rad-1 [Moment of force]/[Angle]. ...of a structure.

    Ratio of like

    quantities1 Dimensionless Q1/Q2, with Q1 and Q2

    having the same dimension

    Reactance,

    capacitivekg.m2.s-3.A-2 (ohm) 1/(i[Angular frequency].

    [Capacitance])

    Reciprocal space

    positionm-1 same as k-space vector.

    Redox potential kg.m2.s-3.A-1 V (volt) Same as reduction potential.Reduction potential kg.m2.s-3.A-1 V (volt) Same as redox potential.

    Refractive index 1 Dimensionless Light speeds ration (in amedium)/(in vacuum).

    Refractivity, molar m3.mol-1 [(r2-1)/(r2+2)]/[Concentration]

    Refractivity,

    specificm3.kg-1 [(r2-1)/(r2+2)]/[Specific

    density],

    Relative differential 1 Dimensionless dQ/Q, d{ln(Q)}, for anyquantity Q. Also log-scaledifferential

    Relative evolutionrate s

    -1

    d{ln(Q)}/dt = (dQ/dt)/Q. Alsoevolution rate on log-scale

    Relative

    permeability,

    magnetic

    1 Dimensionless [Permeability]/[Permeabilityof vacuum].

    Relative

    permittivity,

    electric

    1 Dimensionless [Permittivity]/[Permittivity ofvacuum]. Dielectricconstant.

    Relative variation 1 Dimensionless Q/Q, for any quantity Q.

    Relaxation rate s-1 1/[Relaxation time]. Used inall branches of Science.

    Relaxation time s Used in all branches ofScience.

  • 7/29/2019 Dimensional Formulae

    13/16

    Relaxivity, molar m3.s-1.mol-1 [Relaxation rate]/[Concentration].

    Reluctance,

    magnetickg-1.m-1.s2.A2 m.H-1 1/[Permeability].

    Resistance, electric kg.m2.s-3.A-2 V.A-1, (ohm) [Potential]/[Current]

    Resistance, thermal kg-1.m-2.s3K K/W of a device. [T]/[Power].Resistance to

    impactkg.s-2 J.m-2 [Energy]/[Area]. Same

    dimension as notchresistance

    Resistivity, electric kg.m3.s-3.A-2 .m ([Resistance]*[Length])/[Area].

    Reynolds number 1 Dimensionless [Velocity]*[length]/[Kinematic viscosity]

    RF attenuation m-1 dB/m [Ratio]/m. Applies topropagation.

    S:Seeback coefficient kg.m2.s-3.A-1.K-1

    V.K-1 [Potential]/[Temperature].Same as thermoelectricpower

    Self-diffusion

    coefficientm2.s-1 [Distance2]/[Time].

    Settling rate s-1 typically dB/s [Ratio]/[Time].

    Shear modulus kg.m.s-2 N, N.rad-1 [Force]/[Angle]. Same asmodulus of rigidity

    Softening point K Temperature at whichhardness drops below a level.

    Solid angle 1 sr (steradian)Solubility, molar m-3.mol [Quantity]/[Volume]. Same as

    concentration

    Sonic attenuation m-1 dB/m [Power ratio]/m. Applies topropagation.

    Specific charge kg-1.s.A C.kg-1 [Charge]/[Mass].Charge/mass ratio.

    Specific density kg.m-3 [Mass]/[Volume]. Same asdensity of mass

    Specific energy m2.s-2 J.kg-1 [Energy]/[Mass].

    Specific enthalpy m2.s-2 J.kg-1 [Enthalpy]/[Mass]. Likespecific heat.

    Specific entropy m2.s-2.K-1 J.K-1.kg-1 [Entropy]/[Mass].

    Specific free energy m2.s-2 J.kg-1 [Free energy]/[Mass]. Alsospecific Helmholtz function

    Specific free

    enthalpym2.s-2 J.kg-1 [Free enthalpy]/[Mass]. Also

    specific Gibbs function

    Specific heat m2.s-2 J.kg-1 [Heat]/[Mass].

    Specific heat

    capacitym2.s-2.K-1 J.K-1.kg-1 [Heat capacity]/[Mass].

    Specific internal

    energy

    m2.s-2 J.kg-1 [Internal energy]/[Mass]. Like

    specific heat.Specific refractivity m3.kg-1 [(r2-1)/(r2+2)]/[Specific

  • 7/29/2019 Dimensional Formulae

    14/16

    density]

    Specific volume m3.kg-1 [Volume]/[Mass].

    Speed m.s-1 [Distance]/[Time]. Same asvelocity.

    Spin 1 Dimensionless of a quantum particle

    Star magnitude 1 Dimensionless m-m' = -100.4(S/S'), where S,S'are luminous fluxes of twostars

    Stiffness, linear kg.s-2 N.m-1 [Force]/[Displacement]. ... ofa structure.

    Stiffness, rotational kg.m2.s-2.rad-1

    N.m.rad-1 [Moment of force]/[Angle]. ...of a structure.

    Strain point K Temperature at whichviscosity drops below 1013.5

    Pa.s

    Strength,compressive kg.m

    -1

    .s

    -2

    N.m

    -2

    , Pa [Force]/[Area]. Samedimension as pressure.

    Strength, dielectric kg.m.s-3.A-1 V.m-1 [Potential]/[Distance]. Sameas electric strength

    Strength, electric

    fieldkg.m.s-3.A-1 V.m-1 [Potential]/[Distance]. Also

    called electric intensity

    Strength, ionic m-3.mol Sum([Concentration]*[Ionicquantum charge]2).

    Strength, magnetic

    fieldm-1.A [Current]/[Distance]. Also

    called magnetic intensity

    Strength, tensile kg.m-1.s-2 N.m-2, Pa [Force]/[Area]. Same as

    pressure.Surface density of

    chargem-2.s.A C.m-2 [Charge]/[Area]

    Surface element m2 [Distance]*[Distance]. Sameas area

    Surface energy kg.s-2 J/m2 [Energy]/[Area]. Same assurface tension.

    Surface tension kg.s-2 N/m [Force]/[Length]. Same assurface energy.

    Susceptance,

    capacitivekg-1.m-2.s3.A2 S (siemens) 1/[Reactance].

    Susceptibility,

    magnetic1 Dimensionless [Relative permeability]-1.

    Stress kg.m-1.s-2 Pa, N.m-2 [Force]/[Area]. Same aspressure.

    T:

    Temperature K K(kelvin)

    Temperature

    gradientK.m-1 [Temperature]/[Distance].

    Same as thermal gradient

    Tensile strength kg.m-1.s-2 N.m-2, Pa [Force]/[Area]. Same aspressure.

    Tension

    kg.m-1

    .s-2

    Pa, N.m-2

    [Force]/[Area]. Likepressure.

  • 7/29/2019 Dimensional Formulae

    15/16

    Thermal

    conductivitykg.m.s-3.K-1 W.m-1.K-1 [Heat flux]/

    ([Distance]*[Temperature]).Same as heat conductivity

    Thermal diffusivity m2.s-1 ([Temperatute]/[Time])/[2Temperature].

    Thermal expansioncoefficient

    K-1 ([Length]/[Length])/[Temperature].

    Thermal gradient K.m-1 [Temperature]/[Distance].Same as temperaturegradient

    Thermal resistance kg-1.m-2.s3K K/W of a device. [T]/[Power].Thermodynamic

    forcekg.m.s-2.mol-1

    N/mol [Chemical potential]/[Distance].

    Thermoelectric

    power |

    Thermopower

    kg.m2.s-3.A-1.K-1

    V.K-1 [Potential]/[Temperature].Same as Seeback coefficient

    Thomson coefficient kg.m2.s-3.A-1.K-1

    W.K-1.A-1 [Heat flux]/([Temperature]*[Current]).

    Time s s (second)

    Torque kg.m2.s-2 N.m [Force]*[Distance]. Same asmoment of force

    Traction kg.m.s-2 N (newton) Maximum tangential forcebefore slipping.

    Traction coefficient 1 Dimensionless [Traction]/[Weight].

    Transmission loss m-1 dB/m [Ratio]/m. Used for any otherquantity.

    U:V:

    van der Waals

    constant: akg.m5.s-2 Pa.m6 a in (p+a/V2)(V-b)=RT.

    van der Waals

    constant: bm3 b in (p+a/V2)(V-b)=RT.

    van der Waals virial

    constant: Akg-1.m5.s-2.mol-2

    A in p=(n/V)RT+(n/V)2(RTB-A).

    van der Waals virial

    constant: Bkg-1.m3.mol-1 B in p=(n/V)RT+(n/V)2(RTB-

    A).Variance of current

    noise nJ2

    s.A2 A2/Hz [Current]2/[Bandwidth]

    Variance of voltage

    noise nV2

    kg2.m4.s-5.A-2 V2/Hz [Voltage]2/[Bandwidth]

    Vector potential,

    electromagnetickg.m.s-2.A-1 V.s.m-1, T.m [El.field strength]*[Time],

    [Mag.fluxdensity]*[Distance]

    Velocity m.s-1 [Distance]/[Time]. Same asspeed.

    Verdet constant kg-1.m-1.s2.A1 rad.m-1.T-1 ([Angle]/[Length])/[Magneticflux density]

    Virial coefficient:second kg.m

    5

    .s-

    2.mol-2 Pa.(mol.m-3

    )-2

    A inp=(n/V)RT+A(n/V)2+B(n/V)3

  • 7/29/2019 Dimensional Formulae

    16/16

    +C(n/V)4.Virial coefficient:

    thirdkg.m8.s-2.mol-3

    Pa.(mol.m-3)-3 B inp=(n/V)RT+A(n/V)2+B(n/V)3

    +C(n/V)4.Virial coefficient:

    fourth

    kg.m11.s-

    2.mol-4Pa.(mol.m-3)-4 C in

    p=(n/V)RT+A(n/V)2+B(n/V)3+C(n/V)4.

    Viscosity, dynamic kg.m-1.s-1 Pa.s ([Force]/[Area])/[Velocity]

    Viscosity, kinematic m2.s-1 [Dynamic viscosity]/[Density]

    Voltage kg.m2.s-3.A-1 V [Potential], same aselectromotive force

    Voltage noise,

    variance nV2

    kg2.m4.s-5.A-2 V2/Hz [Voltage]2/[Bandwidth]

    Volume m3 [Area]*[Distance]

    Volumeconcentration 1

    Dimensionless

    [Volume of substance]/[Totalvolume]

    W:

    Wavelength m [Wave velocity]/[Frequency].

    Wavenumber m-1 [Number of waves]/[Distance].

    Work function kg.m2.s-2 J, eV [Energy] needed to remove anelectron.

    X:

    Y:

    Young modulus kg.m-1.s-2 N.m-2, Pa [Stress]/([Length]/[Length]).

    Z: