Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf ·...

27
Dilepton Production at SIS Energies DLS Puzzle Part II: The Δ Crisis Janus Weil in collab. with U. Mosel, H. van Hees, K. Gallmeister, ... Transport Meeting FIAS, 07.02.2013 J. Weil Dilepton Production at SIS Energies

Transcript of Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf ·...

Page 1: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Dilepton Production at SIS EnergiesDLS Puzzle Part II: The ∆ Crisis

Janus Weil

in collab. with U. Mosel, H. van Hees, K. Gallmeister, ...

Transport MeetingFIAS, 07.02.2013

J. Weil Dilepton Production at SIS Energies

Page 2: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Outline

1 motivation:in-medium physics, “DLS puzzle”

2 the GiBUU transport model

3 dileptons from elementary reactions:pp, dp, pNb (at 1-4 GeV)

[arXiv:1203.3557, EPJ A48 (2012) 111]

4 dileptons from heavy-ion collisions:CC, ArKCl, AuAu[arXiv:1211.3761]

5 conclusions

J. Weil Dilepton Production at SIS Energies

Page 3: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Motivation: Hadrons in Medium

how do vector mesons behave inside ahadronic medium?

Brown/Rho, Hatsuda/Lee:mass shift (restoration of chiral sym.)m∗V (ρ)/mV ≈ 1− α(ρ/ρ0) ,α ≈ 0.16± 0.06

collisional broadening (LDA):Γcoll = ρ < vrelσVN >

QCD sum rules (Leupold, NPA 628, 1998)

coupling to resonances can introduceadditional structures in the spectralfunction (Post, 2003)

but: do we even know what the ρmeson looks like in vacuum?

J. Weil Dilepton Production at SIS Energies

Page 4: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

ρ-baryon coupling

coupling of ρ meson to baryon resonances known to be crucialfor in-medium self-energies at SPS energies (Hees/Rapp)

dominant source of collisional broadening

should be even more important at low energies

this coupling can even play a role in the vacuum: ρproduction through baryons at low energies

J. Weil Dilepton Production at SIS Energies

Page 5: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

The DLS Puzzle(s)

mid-90s: no one can fully explaindilepton data measured by DLS infew-GeV regime

data wrong? models incomplete?

today: DLS data fully confirmedby new HADES data (betteracceptance/resolution/statistics)

there are still two (theory) puzzles:

1 how to explain the elementary(N+N) dilepton spectra?

2 are there additional ’in-medium’effects in A+A?

UrQMD, Ernst et al., PRC 58 (1998)

HSD, Bratkovskaya et al., PLB 445 (1999)

J. Weil Dilepton Production at SIS Energies

Page 6: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Starting points for a solution

1 early observation (Winckelmann et al, PRC 51, 1995):“The ρ mass spectrum is strongly distorted due to phasespace effects, populating dominantly dilepton masses below770 MeV.” (already in pp, due to production via baryonresonances. Unfortunately mostly ignored in later works!)

2 later claim (Bratkovskaya et al, NPA 807, 2008):“We find that the DLS puzzle [...] may be solved whenincorporating a stronger bremsstrahlung contribution in linewith recent OBE calculations.” (and: a stronger ∆contribution)

J. Weil Dilepton Production at SIS Energies

Page 7: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Teaser: C + C @ 2 GeV

10-5

10-4

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dm

ee [

mb

/Ge

V]

dilepton mass mee [GeV]

C + C @ 2.0 GeV

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

pn Brems.πN Brems.D13(1520)S31(1620)

ππ

both HSD and GiBUU describe the data quite well

but: with a rather different cocktail composition!

∆ channel is very strong in HSD, but almost negligible inGiBUU

⇒ the “∆ crisis”!

J. Weil Dilepton Production at SIS Energies

Page 8: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

The GiBUU Transport Model

BUU-type hadronic transport modelunified framework for various types of reactions(γA, eA, νA, pA, πA, AA) and observablesBUU equ.: space-time evolution of phase space density(∂t + (∇~pHi )∇~r − (∇~rHi )∇~p

)fi (~r , t, ~p) = Icoll [fi , fj , ...]

Hamiltonian Hi :hadronic mean fields, Coulomb, “off-shell potential”

collision term Icoll :decays and scattering processes (2- and 3-body)low energy: resonance model, high energy: string fragment.

O. Buss et al., Phys. Rep. 512 (2012),http://gibuu.physik.uni-giessen.de

J. Weil Dilepton Production at SIS Energies

Page 9: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Modeling collisions in the few-GeV regime

baryon-baryon collisions at low energies:resonance models vs. string fragmentation

HADES energy range is clearly in the resonance regime!

we need one consistent model for the whole energy range!

J. Weil Dilepton Production at SIS Energies

Page 10: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Resonance Model

assumption: inel. NN cross section is dominated byproduction and decay of baryonic resonances

NN → NR,∆R (R : ∆, 7 N∗ and 6 ∆∗ states)

based on Teis RM [Z. Phys. A 356, 1997] with several extensions

all π, η and ρ mesons produced via R decays (ω, φ: non-res.)

good descr. of total NN cross sections up to√s ≈ 3.5GeV

0

5

10

15

20

25

30

35

40

2 2.5 3 3.5 4

σin

el [

mb]

sqrt(s) [GeV]

pp → X

HADES

2 2.5 3 3.5 4 0

5

10

15

20

25

30

35

40

sqrt(s) [GeV]

np → X

datainel.N∆

NN*N∆*∆∆

∆N*∆∆*

NNπω/φ

BYK

J. Weil Dilepton Production at SIS Energies

Page 11: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Resonance Production

NN → N∆: OBE model [Dmitriev et al, NPA 459 (1986)]

other resonances produced via phase-space approach(constant matrix elements):

σNN→NR =CI

pi s

|MNR |2

16π

∫dµAR(µ)pF (µ)

σNN→∆R =CI

pi s

|M∆R |2

16π

∫dµ1dµ2A∆(µ1)AR(µ2)pF (µ1, µ2)

lately: introduced angular distributions dσ/dt = b/ta, a ≈ 1(→ A. Dybczak)

J. Weil Dilepton Production at SIS Energies

Page 12: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

∆ production cross section

only exclusive ∆+ production constrained by data

resonance models (UrQMD/GiBUU) agree roughly oninclusive production

but: inclusive cross section much larger in HSD/FRITIOF

string models do not obey isospin relations!

10-1

100

101

2 2.5 3 3.5 4 4.5 5 5.5

σpp [m

b]

sqrt(s) [GeV]

pp → ∆+X production

∆+X (Res)

∆+p (Res)

∆+X (Py)

∆+p (Py)

∆+X (Fr)

∆+p (Fr)

HSD inclHSD excl

UrQMD inclUrQMD excl

∆+p data

2 2.5 3 3.5 4 4.5 5 5.5

sqrt(s) [GeV]

pp → ∆++

X production

∆++

X (Res)∆

++n (Res)

∆++

X (Py)∆

++n (Py)

∆++

X (Fr)∆

++n (Fr)

2 2.5 3 3.5 4 4.5 5 5.5-0.5

0

0.5

1

1.5

2

2.5

3

3.5

sqrt(s) [GeV]

isospin ratio ∆++

/∆+

incl. (Res)excl. (Res)

incl. (Py)excl. (Py)incl. (Fr)

excl. (Fr)

lesson: don’t trust string fragmentation models at low energies!J. Weil Dilepton Production at SIS Energies

Page 13: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Hadronic decays

all resonance parameters, decays modes and width parametriz.taken from: Manley/Saleski, Phys. Rev. D 45 (1992)Manley: PWA including πN → πN and πN → 2πN dataimportant point: consistency! (coupled-channel constraints)

ΓR→ab(m) = Γ0R→ab

ρab(m)

ρab(M0)

ρab(m) =

∫dp2

adp2bAa(p2

a)Ab(p2b)pabm

B2Lab

(pabR)F2ab(m)

J. Weil Dilepton Production at SIS Energies

Page 14: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Dilepton decays

V → e+e− (with V = ρ, ω, φ) via strict VMD: Γ(µ) ∝ µ−3

P → γe+e− (with P = π0, η, η′) [Landsberg, Phys.Rep.128, 1985]:

dµ=

ΓP→γγ

µ

(1− µ2

m2P

)3

|FP(µ)|2,

ω → π0e+e− [Landsberg]:

dµ=

Γω→π0γ

µ

[(1 +

µ2

µ2ω −m2

π

)2

− 4µ2ωµ

2

(µ2ω −m2

π)2

]3/2

|Fω(µ)|2

∆→ Ne+e− [Krivoruchenko, Phys.Rev.D65, 2002]:

dµ=

3πµ

α

16

(m∆ + mN)2

m3∆m

2N

√(m∆ + mN)2 − µ2

[(m∆ −mN)2 − µ2

]3/2

|F∆(µ)|2

important: form factors well restricted for π0, η and ω,but completely unknown for ∆!

we use Delta FF model of Ramalho/Pena [Phys.Rev.D85, 2012]

J. Weil Dilepton Production at SIS Energies

Page 15: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Dilepton decays of baryonic resonances

how to treat R → Ne+e−?

option 1: do Dalitz decay (as for ∆), with proper form factor!(fixed at photon point, ’extrapolate’ to q2 > 0)

option 2: do two-step decay R → ρN → e+e−N(using ’hadronic’ info from PWA)

consequence: dilepton contributions from all N∗ and ∆∗

resonances, which have a ρ coupling

and: we get an ’implicit’ form factor from decay kinematics

J. Weil Dilepton Production at SIS Energies

Page 16: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Bremsstrahlung

soft-photon approximation[Gale/Kapusta, PRC40, 1989]:

dσpn→pne+e−

dMdEdΩ=

α2

6π3

q

ME2σ(s)

R2(s2)

R2(s),

σ(s) =s − (m1 + m2)2

2m21

σpnel (s) ,

R2(s) =√

1− (m1 + m2)2/s ,

s2 = s + M2 − 2E√s ,

used for NN, πN

NN: pn only (destr. interference in pp not treated)

OBE: Kaptari-Kampfer [NPA764, 2006],Shyam-Mosel [PRC82, 2010]

J. Weil Dilepton Production at SIS Energies

Page 17: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Results: elementary reactions

if we want to investigate in-medium effects, we better makesure we understand the dilepton signal from elementary NNcollisions (“in the vacuum”)

this is not a trivial task and represents the most importantprerequisite for understanding the heavy-ion collisions

HADES has measured:p+p at Ekin = 1.25, 2.2 and 3.5 GeVd+p at Ekin = 1.25 GeV

all simulation results filtered through HADES acceptance filter

opening angle cut: θee > 9

lepton momentum cut: pmine < pe < pmax

e

J. Weil Dilepton Production at SIS Energies

Page 18: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

p+p at 3.5 GeV

using resonance model

important: ρ production viabaryonic resonances

R → ρN → e+e−N

low-mass part enhanced bylight resonances (and 1/m3

factor from dilepton decaywidth)

same effect seen in UrQMD

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dm

ee [

µb

/Ge

V]

dilepton mass mee [GeV]

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

J. Weil Dilepton Production at SIS Energies

Page 19: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

p+p at 3.5 GeV: resonance contributions

ρ channel is given by a mix ofseveral resonance contributions

shape depends on the mass of theresonance (phase space of decay)

contributions of single resonancesnot well constrained, but goodagreement in total

cross check from πN mass spectraneeded

the same ρNR coupling thatdominates in-medium self-energy isresponsible for a ’modified’ ρalready in pp collisions!

10-3

10-2

10-1

100

0 0.2 0.4 0.6 0.8 1

/dm

ee [

µb/G

eV

]

dilepton mass mee [GeV]

ρ → e+e

-

D13(1520)S11(1535)S11(1650)F15(1680)P13(1720)

all Res.S31(1620)D33(1700)F35(1905)

0

200

400

600

800

1000

1200

1400

1600

1800

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

/dm

b/G

eV

]

m [GeV]

ρ totalD13(1520)S11(1535)S11(1650)F15(1680)P13(1720)S31(1620)D33(1700)F35(1905)

Pythia

J. Weil Dilepton Production at SIS Energies

Page 20: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

p+p at 3.5 GeV: comparison to HSD

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dm

ee [

µb/G

eV

]

dilepton mass mee [GeV]

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dp

T [

µb/G

eV

]

0 0.2 0.4 0.6 0.8 1

transverse momentum pT [GeV]

0 0.2 0.4 0.6 0.8 1

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dp

T [

µb/G

eV

]

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

10-4

10-3

10-2

10-1

100

0 0.5 1 1.5 2

/dy [

µb]

m < 150 MeV

0 0.5 1 1.5 2

rapidity y

150 MeV < m < 470 MeV

0 0.5 1 1.5 2

470 MeV < m < 700 MeV

0 0.5 1 1.5 2

10-4

10-3

10-2

10-1

100

/dy [

µb]

700 MeV < m

HSD fails to describe pT data due to large ∆ and Bremsstr. contr.!J. Weil Dilepton Production at SIS Energies

Page 21: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

other elementary collisions

10-3

10-2

10-1

100

101

0 0.1 0.2 0.3 0.4 0.5

/dm

ee [

µb

/Ge

V]

dilepton mass mee [GeV]

p + p at 1.25 GeV

dataGiBUU total

π0 → e

+e

∆ → Ne+e

-

ρ → e+e

-

D13(1520)

10-3

10-2

10-1

100

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/dm

ee [

µb

/Ge

V]

dilepton mass mee [GeV]

p + p at 2.2 GeV

dataGiBUU total

ρ → e+e

-

ω → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

D13(1520)P13(1720)

10-4

10-3

10-2

10-1

100

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

/dm

ee [

µb/G

eV

]

dilepton mass mee [GeV]

d + p at 1.25 GeV

dataGiBUU total

π0 → e

+e

η → e+e

∆ → Ne+e

-

pn Brems.ρ → e

+e

-

D13(1520)S11(1535)

p+p at 1.25 and 2.2 GeV rather well described

d+p misses factor 2-10

reason not completely clear, OBE models might help

isopsin effects not completely understood?

J. Weil Dilepton Production at SIS Energies

Page 22: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

In-medium effects in p+A and A+A

constrained by NN spectra:

basic cocktail composition (in ’vacuum’)

particle production from NN

form factors (limited)

ρ spectral distribution in vacuum (non-trivial!)

additional effects:

secondary collisions:

mB → X : meson absorption, secondary production (πN → R)mm→ X : most importantly ππ → ρ

modifications of spectral functions:

collisional broadening: Γtot = Γdec + Γcoll

mass shifts? m∗ = m · (1− ρ/ρ0)may be important for: ρ meson, baryonic resonances

J. Weil Dilepton Production at SIS Energies

Page 23: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Off-Shell Transport

off-shell EOM for test particles[Cassing/Juchem (NPA 665, 2000), Leupold (NPA 672, 2000)]:

~ri =1

1− Ci

1

2Ei

[2~pi +

∂~piRe(Σi ) + χi

∂Γi

∂~pi

],

~pi = − 1

1− Ci

1

2Ei

[∂

∂~riRe(Σi ) + χi

∂Γi

∂~ri

],

Ci =1

2Ei

[∂

∂EiRe(Σi ) + χi

∂Γi

∂Ei

],

χi =m2

i −M2

Γi,

dχi

dt= 0

needed to incorporate density-dependent self energies Σi ,widths Γi ∼ Im(Σi ) and spectral functions

but: neglecting momentum dependence

J. Weil Dilepton Production at SIS Energies

Page 24: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

p + 93Nb at 3.5 GeV

after [email protected] is fixed: goodoverall agreement in p+Nb

moderate mediummodifications (of VMspectral functions)

10-1

100

101

102

103

0 0.2 0.4 0.6 0.8 1 1.2

/dm

ee [

µb

/Ge

V]

dilepton mass mee [GeV]

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

D13(1520)S31(1620)F35(1905)

10-1

100

0.6 0.7 0.8

/dm

ee [

µb/G

eV

]

datavacCB

CB+shiftshift

0.6 0.7 0.8

dilepton mass mee [GeV]

ρ

0.6 0.7 0.8

ω

J. Weil Dilepton Production at SIS Energies

Page 25: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

12C + 12C at 1.0 and 2.0 GeV

10-5

10-4

10-3

10-2

10-1

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/dm

ee [

mb

/Ge

V]

dilepton mass mee [GeV]

C + C @ 1.0 GeV

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

pn Brems.πN Brems.D13(1520)S31(1620)

ππ

10-5

10-4

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1d

σ/d

me

e [m

b/G

eV

]dilepton mass mee [GeV]

C + C @ 2.0 GeV

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

pn Brems.πN Brems.D13(1520)S31(1620)

ππ

C+C is a light system, can be described roughly by asuperposition of NN collisions

2 GeV data well described by GiBUU

some discrepancies at 1 GeV (↔ “deuteron problem”?)

J. Weil Dilepton Production at SIS Energies

Page 26: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

40Ar + 39K 35Cl at 1.76 GeV

10-5

10-4

10-3

10-2

10-1

100

101

0 0.2 0.4 0.6 0.8 1

/dm

ee [

mb

/Ge

V]

dilepton mass mee [GeV]

dataGiBUU total

ρ → e+e

-

ω → e+e

-

φ → e+e

-

ω → π0e

+e

-

π0 → e

+e

η → e+e

∆ → Ne+e

-

pn Brems.πN Brems.D13(1520)S31(1620)

ππ

]2 [MeV/ceeM

0 0.2 0.4 0.6

)ee

/dM

NN

)/(d

Nee

/dM

AA

) (d

N0

πAA

/N0

πNN

(N 0

1

2

3

4

5

6

7

8

(b)Ar+KCl 1.76A GeV

C+C 1A GeV

C+C 2A GeV

Ar+KCl seems to show some excess over NN/CC (∼ factor 3)

GiBUU with vacuum SF: discrepancy is smaller than factor 3⇒ we get some enhancement over ’reference cocktail’,but: still room for in-medium effects

J. Weil Dilepton Production at SIS Energies

Page 27: Dilepton Production at SIS Energies - uni-frankfurt.dehees/transport-meeting/ws12/weil.pdf · Dilepton Production at SIS Energies DLS Puzzle Part II: The Crisis Janus Weil in collab.

Conclusions

1 large ∆ and Bremsstrahlung contributions (as claimed byHSD) do not provide a proper solution of the DLS puzzle:they are in conflict with HADES data (pT )!

2 alternative approach: significant yield from N∗ and ∆∗

resonances coupling to the ρ meson provides betterdescription of the data

3 independent analysis with a third model (UrQMD!) would behelpful to settle the discrepancy between GiBUU and HSD(aka “the ∆ crisis”)→ requires readjustments of UrQMD resonance model

4 more work on in-medium modifications needed

J. Weil Dilepton Production at SIS Energies