Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion...

39
Diffusion Monte Carlo simulations of crystalline FeO under pressure 1/36 Diffusion Monte Carlo simulations of crystalline FeO under pressure J. Kolorenˇ c and L. Mitas North Carolina State University July 20, 2007 NC STATE UNIVERSITY

Transcript of Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion...

Page 1: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 1/36

Diffusion Monte Carlo simulations ofcrystalline FeO under pressure

J. Kolorenc and L. Mitas

North Carolina State University

July 20, 2007

NC STATE UNIVERSITY

Page 2: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 2/36

Why?FeO

magnesiowustite, MgxFe1−xO, is(believed to be?) one of the mostabundant minerals in the lowerEarth mantle

FeO is a subset of MgxFe1−xO

quantum Monte Carlo

conventional band-structuremethods unreliable for materialswith 3d electrons

NC STATE UNIVERSITY

Page 3: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 3/36

The method

NC STATE UNIVERSITY

Page 4: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 4/36

Diffusion quantum Monte Carlo (DMC)

stochastic implementation of projector on the ground state

e−Hτ |ΨT 〉τ→∞−−−−−−−→ e−E0τ |Ψ0〉 ,

modified diffusion in 3N-dim space, Ψ(1, . . . ,N) acts asa probability distribution

fermionic Ψ changes sign (antisymmetry w.r.t. particleexchanges) −→ fixed-node approximation

sign Ψ(1, . . . ,N)

= signΨT (1, . . . ,N)

NC STATE UNIVERSITY

Page 5: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 5/36

DMC and DFT

diffusive projection

e−Hτ |ΨT 〉τ→∞−−−−−→ e−E0τ |Ψ0〉

Hohenberg-Kohn theorem&

Kohn-Sham equations

give exact answers if we know

nodes of the wave functionthe exchange-correlation

functional

nodal quality for solids: even the simplest ansatz for nodes isseen to provide considerably better results than DFT based

methods

NC STATE UNIVERSITY

Page 6: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 6/36

Trial wave function“trial” wave function sampling efficiency

nodal structureinitial guess

ΨT (1, . . . ,N) = det[ψi (j)

]︸ ︷︷ ︸× exp[J(1, . . . ,N)

]︸ ︷︷ ︸Slater determinant

of 1-body orbitals

Jastrow many-body

correlation factor

1-body orbitals = variational “parameters”Hartree-Fock approximationPBE0x — PBE-GGA mixed with x % of exact exchange

Jastrow factor

J(1, . . . ,N) =∑

i

fe(ri ) +∑ij

fee(ri − rj) +∑i ,α

feI (ri − Rα)

NC STATE UNIVERSITY

Page 7: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 7/36

Reduction to the primitive cell?

non-interacting particles in a periodic potential

E [config1] = E [config2]

interacting particles in a periodic potential

E [config1] 6= E [config2]

No 1-electron Bloch theorem −→ large simulation cell needed

NC STATE UNIVERSITY

Page 8: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 7/36

Reduction to the primitive cell?

non-interacting particles in a periodic potential

E [config1] = E [config2]

interacting particles in a periodic potential

E [config1] 6= E [config2]

No 1-electron Bloch theorem −→ large simulation cell needed

NC STATE UNIVERSITY

Page 9: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 8/36

Periodic Coulomb interactionPeriodically repeated supercell (k = 0. . . homogeneous background)

vee(r) =∑RS

1

|r − RS |' 4π

Ω

∑k6=0

1

k2e ik·r

Both sums converge slowly −→ cure: combine them into one∑k6=0

1

k2e ik·r =

∑k6=0

1

k2e−k2/(4α2)e ik·r − lim

k→0

1

k2

(1− e−k2/(4α2)

)+∑k

1

k2

(1− e−k2/(4α2)

)e ik·r

=∑k6=0

1

k2e−k2/(4α2)e ik·r − 1

4α2

∑RS

1

|r − RS |erfc(α|r − RS |)

NC STATE UNIVERSITY

Page 10: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 9/36

Total interaction energy (Ewald)

Total e–e interaction energy per simulation cell.

2

1 1’

2’

Vee =1

2

∑i 6=j

1

rij+

1

2

∑i

[vee(rii )−

1

rii

]

+1

2

∑i<j

[vee(rij)−

1

rij

]+

1

2

∑j<i

[vee(rij)−

1

rij

]

NC STATE UNIVERSITY

Page 11: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 10/36

Total interaction energy (Ewald), cont.

The same formula once more in B&W.

Vee =1

2

∑i 6=j

vee(rij)︸ ︷︷ ︸interaction of i with jand with images of j

+1

2

∑i

limrii→0

[vee(rii )−

1

rii

]︸ ︷︷ ︸

interaction of i withits periodic images

=1

2

∑i 6=j

∑RS

1

|rij − RS |erfc(α|rij − RS |)

+2π

Ω

∑k6=0

1

k2e−k2/(4α2)

∑i 6=j

e ik·rij

− 1

2N2 π

Ωα2− N

α√π

+1

2N∑RS 6=0

1

|RS |erfc(α|RS |)

NC STATE UNIVERSITY

Page 12: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 11/36

FeO, part I

NC STATE UNIVERSITY

Page 13: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36

Cohesive energy

Ecoh = Eatom[TM] + Eatom[O]− 1

NTMOEsupercell [TMO]

Simulation parameters

simulation cell size: 8 FeO (176 electrons)further corrections towards infinite system (will discuss later)Ne-core pseudopotentials for Fe and Mn, He-core for O(Dirac-Fock, Troullier-Martins)

LDA HF B3LYP DMC[HF] DMC[PBE020] exp.

FeO 11.68 5.69 7.95 9.23(6) 9.47(4) 9.7MnO 10.57 5.44 7.71 9.26(4) 9.5

* all calculations at experimental lattice constant

FeO total energy (hartree) −139.6105(8) −139.6210(5)

NC STATE UNIVERSITY

Page 14: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36

Cohesive energy

Ecoh = Eatom[TM] + Eatom[O]− 1

NTMOEsupercell [TMO]

Simulation parameters

simulation cell size: 8 FeO (176 electrons)further corrections towards infinite system (will discuss later)Ne-core pseudopotentials for Fe and Mn, He-core for O(Dirac-Fock, Troullier-Martins)

LDA HF B3LYP DMC[HF] DMC[PBE020] exp.

FeO 11.68 5.69 7.95 9.23(6) 9.47(4) 9.7MnO 10.57 5.44 7.71 9.26(4) 9.5

* all calculations at experimental lattice constant

FeO total energy (hartree) −139.6105(8) −139.6210(5)

det[ψHFi (j)]

det[ψPBE020i (j)]

NC STATE UNIVERSITY

Page 15: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 13/36

Competing crystal structures in FeO

Fe ↑

Fe ↓

O

B1 (NaCl) AFM-II iB8 (NiAs) AFM

NC STATE UNIVERSITY

Page 16: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 14/36

Equation of state: Experimental estimates

Experiments are not particularly conclusive so far.

ener

gy

volume

iB8

B1 (insulator)

shock-wave compressionPc ∼ 70 GPa

[Jeanloz&Ahrens (1980)]

static compression900 K: Pc ∼ 74 GPa600 K: Pc ∼ 90 GPa

[Fei&Mao (1994)]

300 K: Pc > 220 GPa? large barrier & slow kinetic ?

[Yagi,Suzuki,&Akimoto (1985)]

[Mao,Shu,Fei,Hu&Hemley (1996)]

NC STATE UNIVERSITY

Page 17: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 15/36

Equation of state: Failure of LDA/GGAen

ergy

volume

iB8

B1 (metal)

iB8 stable at all pressures

[Mazin,Fei,Downs&Cohen (1998)]

[Fang,Terakura,Sawada,Miyazaki

&Solovyev (1998)]

B1 has no gap (metal)

NC STATE UNIVERSITY

Page 18: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 16/36

Equation of state: “Correlated” band theories

Inclusion of Coulomb U stabilizes B1 phase.[Fang,Terakura,Sawada,Miyazaki&Solovyev (1998)]

ener

gy

volume

iB8

B1 (insulator)

FeO

method Pc (GPa)

PBE010 7PBE020 43exp. &&& 70

MnO

method Pc (GPa)

PBE010 117exp. ∼ 100

NC STATE UNIVERSITY

Page 19: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 17/36

Equation of state: DMC[PBE020]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

15 16 17 18 19 20

E (

eV/F

eO)

V (Å3/FeO)

B1 AFMiB8 AFM

0

30

60

90

120

15 16 17 18 19 20

P (

GP

a)

57.4

method Pc

(GPa)

PBE-GGA —PBE010 7PBE020 43DMC 57± 5*

exp. &&& 70

* pure Ewald formula

geometry optimization:iB8 c/a (PBE020)B1 none

NC STATE UNIVERSITY

Page 20: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 18/36

Finite size errors

NC STATE UNIVERSITY

Page 21: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 19/36

Only 8 FeO in the simulation cell: Finite-size errorskinetic energy FSEaverage over 8 k-points (a.k.a. twists of

boundary conditions) → only ∼ 0.01 eV/FeO

away from converged Brillouin zone integral

−4

−3

−2

−1

0

1

2

3

4

(¼,¾,0)ΓF

E (

eV)

potential energy FSE (beyond Ewald)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

16 12 8

E-E

∞ (

eV/F

eO)

No. of FeO formula units

E∞ ≈ 139.6 hartree ≈ 3800 eV

E − E∞ comparable tothe scale of our physics(∼ 1 eV/FeO)

finite-size scaling atevery volume tooexpensive

NC STATE UNIVERSITY

Page 22: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 20/36

Improving kinetic energy — k-point average

Adding k-points effectively increases simulation cell size. . .

L = L0 L = 2L0

Γ Γ

. . . but not quite when interactions are in the game.

NC STATE UNIVERSITY

Page 23: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 20/36

Improving kinetic energy — k-point average

Adding k-points effectively increases simulation cell size. . .

L = L0 L = 2L0 L = 4L0

Γ Γ Γ

. . . but not quite when interactions are in the game.

NC STATE UNIVERSITY

Page 24: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 21/36

Only 8 FeO in the simulation cell: Finite-size errorskinetic energy FSEaverage over 8 k-points (a.k.a. twists of

boundary conditions) → only ∼ 0.01 eV/FeO

away from converged Brillouin zone integral

−4

−3

−2

−1

0

1

2

3

4

(¼,¾,0)ΓF

E (

eV)

potential energy FSE (beyond Ewald)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

16 12 8

E-E

∞ (

eV/F

eO)

No. of FeO formula units

E∞ ≈ 139.6 hartree ≈ 3800 eV

E − E∞ comparable tothe scale of our physics(∼ 1 eV/FeO)

finite-size scaling atevery volume tooexpensive

NC STATE UNIVERSITY

Page 25: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 22/36

Potential energy & static structure factor[after Chiesa,Ceperley,Martin&Holzmann (2006)]

Vee =1

2

∑i 6=j

1

rij=

2πN

Ω

∑k

(ρkρ−k

N− 1)

=2πN

Ω

∑k

(SN(k)− 1

)

Correction ∆FS =(limΩ→∞ Vee − Vee

)/N has two parts

∆(1)FS =

Ω

∑k6=0

1

k2− 1

4π2

∫d3k

1

k2= lim

rii→0

[vee(rii )−

1

rii

]. . . this one we already know (and have in Ewald formula)

∆(2)FS =

1

4π2

∫d3k

S∞(k)

k2− 2π

Ω

∑k6=0

SN(k)

k2' 1

4π2

(2π/L)3∫0

d3kS∞(k)

k2

1

4π2

(2π/L)3∫0

d3kS∞(k)

k2

1

4π2

(2π/L)3∫0

d3kS∞(k)

k2

. . . this contribution is new

NC STATE UNIVERSITY

Page 26: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 23/36

Potential energy & static structure factor, cont.

∆(2)FS =

1

4π2

(2π/L)3∫0

d3kS∞(k)

k2

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

S(k

)

|k|

0.0

0.5

1.0

0 1 2 3 4

We need S∞(k) at k ≤ 2π/L

SN(k) does not depend much on N −→ S∞(k) ' SN(k)

k ≤ 2π/L correspond to wavelengths longer than the size ofour simulation cell, i.e., no direct access to SN(k) there−→ extrapolation needed

fortunately, exact identity fixes SN(0) = 0, so that theextrapolation is under control

NC STATE UNIVERSITY

Page 27: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 24/36

Extrapolated estimate for S(k)mixed estimateDMC with guiding wave function samples the mixeddistribution f (R) = Ψ0(R)ΨT (R)

〈Ψ0|S |ΨT 〉 =

∫d3NR Ψ0(R)ΨT (R)︸ ︷︷ ︸

f (R)

S(R)ΨT (R)

ΨT (R)︸ ︷︷ ︸SL(R)

=1

Nw

∑w

SL(Rw )

ΨT (R) known in explicit form −→−→−→ derivatives in S(R) wouldbe no problem in evaluation of SL(R)

extrapolated estimateapproximate expression for the desired matrix element

〈Ψ0|S |Ψ0〉 = 2〈Ψ0|S |ΨT 〉 − 〈ΨT |S |ΨT 〉+O((Ψ0 −ΨT )2

)|Ψ0〉 = |ΨT + ∆〉 : 〈ΨT + ∆|S |ΨT + ∆〉 = 〈ΨT |S |ΨT 〉 + 2〈∆|S |ΨT 〉 + 〈∆|S |∆〉

〈ΨT + ∆|S |ΨT 〉 = 〈ΨT |S |ΨT 〉 + 〈∆|S |ΨT 〉

NC STATE UNIVERSITY

Page 28: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 25/36

Comparison of various estimates for S(k)

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

S(k

)

|k|

~ k1.5

~ k1.9

VMCDMC mixed

DMC extrapolatedRMC

Reptation Monte Carlo(RMC)

provides pureestimates for local(“density-type”)quantities

quickly losesefficiency withincreasing systemsize

NC STATE UNIVERSITY

Page 29: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 26/36

Expectation values in DMC and DFT

DMC

expectation values calculated using explicitly correlatedmany-body wave function

in general, only mixed estimators 〈Ψ0|A|ΨT 〉 available; thesedepend on quality of |ΨT 〉for the total energy and all

[B, H

]= 0 we have

〈Ψ0|B|ΨT 〉 = 〈Ψ0|B|Ψ0〉DFT

quantities calculated from eigenfunctions of artificialnon-interacting Kohn-Sham system

these eigenfunctions (and eigenvalues) not guaranteed to havedirect physical content (but often seem to be close)

total energy prominent — K-S system constructed to have thesame total energy as the original interacting system

NC STATE UNIVERSITY

Page 30: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 27/36

Back to FeO

NC STATE UNIVERSITY

Page 31: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 28/36

“S(k) correction” does a good job

Finite size errors at different levels of compression−→−→−→ errors grow as electron density increases

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

16 12 8

E−

E∞

(eV

/FeO

)

No. of FeO formula units

V=20.4 Å3/FeO

pure EwaldS(k) correction −1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

16 12 8

No. of FeO formula units

V=15.9 Å3/FeO

pure EwaldS(k) correction

NC STATE UNIVERSITY

Page 32: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 29/36

Transition pressure Pc revisited

Finite-size corrections (slightly) increase Pc .

pure Ewald formula → Pc = 57 ± 5GPa

S(k) correction → Pc = 65 ± 5GPa

0.9

1.0

1.1

1.2

15 16 17 18 19 20

∆ FS

(2) (

eV/F

eO)

V (Å3/FeO)

~ V−0.7

~ rs

−2.1

S(k) correctionscaling correction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

15 16 17 18 19 20

E (

eV/F

eO)

V (Å3/FeO)

B1 AFMiB8 AFM

0

30

60

90

120

15 16 17 18 19 20

P (

GP

a)

65.2

NC STATE UNIVERSITY

Page 33: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 30/36

Equilibrium volume and related properties

Murnaghan equation of state fits the B1 AFM-II data nicely.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

16 18 20 22 24

E (

eV/F

eO)

V (Å3/FeO)

0.00

0.05

0.10

0.15

18 19 20 21 22 23

NC STATE UNIVERSITY

Page 34: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 31/36

Equilibrium volume and related properties, cont.

E (V ) = E0 +K0V

K ′0

((V0/V )K

′0

K ′0 − 1

+ 1

)− K0V0

K ′0 − 1

K0 = −V(∂P/∂V

)T

K ′0 =

(∂K0/∂P

)T

a0 (A) K0 (GPa) K ′0

DMC, pure Ewald 4.283(7) 189(8) 5.5(7)DMC + S(k) correction 4.324(6) 170(10) 5.3(7)PBE020 4.328 182 3.7PBE010 4.327 177 3.7PBE 4.300 191 3.5LDA 4.185 224 4.0experiment 4.307–4.334 140–180 2.1–5.6

NC STATE UNIVERSITY

Page 35: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 32/36

Can we access also spectral information?

[Bowen,Adler&Auker (1975)]

2.48 1.24 0.82 (eV)

NC STATE UNIVERSITY

Page 36: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 33/36

Band gap estimate in B1 at ambient pressure

∆ = E s.cellsolid [e.s.]− E s.cell

solid [g .s.] = 2.8 ± 0.4 eV

−4

−3

−2

−1

0

1

2

3

4

(¼,¾,0)ΓF

E (

eV)

−4

−3

−2

−1

0

1

2

3

4

(¼,¾,0)ΓF

E (

eV)

NC STATE UNIVERSITY

Page 37: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 34/36

Band gap estimate in B1 at ambient pressure, cont.

DMC, hybrid-functional DFT and LDA+U compared.

0

1

2

3

4

5

6

0 10 20 30 40 50

∆ (e

V)

HF percentage in PBE0

DMC[PBE020]

PBE0 x

exp. ~ 2.2 eV

U=4.3 eV

U=6.8 eV

B3LYP

NC STATE UNIVERSITY

Page 38: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 35/36

Notes on band gaps in DMCin ∆ = E [e.s.]− E [g .s.], the intensive quantity ∆ iscalculated from extensive energies

−→−→−→ unfavorable for errorbars

single k-point quantities; although large cancellation of kineticenergy finite-size errors is likely (E [e.s.] and E [g .s.] are at thesame k-point), safe elimination of these is through a largesimulation cell

−→−→−→ unfavorable for errorbars

(the lowest) excited state must have a different symmetrythan the ground state (exc. state is then a groundstate withinthat symmetry)

−→−→−→ might not be the case in large supercell with smallnumber of symmetry operations

other methods for extracting excited-state information fromDMC available, but considerably more costly

NC STATE UNIVERSITY

Page 39: Diffusion Monte Carlo simulations of crystalline FeO under pressure · 2007. 9. 5. · Diffusion Monte Carlo simulations of crystalline FeO under pressure 12/36 Cohesive energy

Diffusion Monte Carlo simulations of crystalline FeO under pressure 36/36

Final words

quantum Monte Carlo is ready to be applied to solids withcorrelated d electrons

FeO case study is very encouraginggood agreement with experimental data at both ambientconditions and elevated pressureconsistently accurate for various quantities (cohesion,Pc(B1 → iB8), equilibrium lattice constant, bulk modulus, . . . )

computer time provided by INCITE ORNL and NCSA

more good news: you can try it at home

www.qwalk.org

(Lucas Wagner, Michal Bajdich and Lubos Mitas)

the bad news: you need some 100,000+ CPU hours (for EoS)

NC STATE UNIVERSITY