Digital signal processing solution mannual chapter Bonus Oppenheim

download Digital signal processing solution mannual chapter Bonus Oppenheim

of 14

Transcript of Digital signal processing solution mannual chapter Bonus Oppenheim

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    1/14

    EE141 Digital Signal Processing (Fall 2003)Solution Manual

    Prepared by Xiaojun Tang and Zhenzhen Ye

    Text: A.V. Oppenheim, R.W. Schafer, and J. R. Buck,Discrete-Time SignalProcessing, 2nd edition, Prentice-Hall, 1999.

    HW#1: P2.1 (a), (c), (e), (g); P2.4; P2.24

    HW#2: P2.5; P2.18; P2.29 (a), (c), (e)HW#3: P2.40; P2.41; P3.27 (a), (c)

    HW#4: P3.6 (d), (e); P3.20; P4.1; P4.3

    HW#5: P4.5; P4.7; P5.2; P5.3HW#6: P5.10; P5.12; P5.15

    HW#7: P6.7; P6.8; P6.11; P6.25; P7.15

    HW#1: P2.1 (a), (c), (e), (g); P2.4; P2.24

    P2.1

    (a) T(x[n]) = g[n]x[n];

    Stable if g[n] is bounded; Causal output is not decided by future input; Linear T(ax[n] + by[n]) = ag[n]x[n] + bg[n]y[n] = aT(x[n]) + bT(y[n]); Time variant T(x[n-m]) = g[n]x[n-m]; Memoryless output only depends on x[n] with same n;

    (c)

    +

    ==

    0

    0][])[(

    nn

    nnk kxnxT ;

    Stable; Causal only if n0 = 0, else non-causal; Linear T(ax[n] + by[n]) = aT(x[n]) + bT(y[n]); Time Invariant +

    =

    +

    =

    ==0

    0

    0

    0 '

    ]'[][])[(nn

    nnk

    nmn

    nmnk

    mkxkxmnxT ;

    Memoryless only if n0 = 0;(e) ][])[( nxenxT = ;

    Stable; Causal; Nonlinear T(ax[n] + by[n]) aT(x[n]) + bT(y[n]); Time Invariant ][])[( mnxemnxT = ; Memoryless output only depends on x[n] with same n;

    (g) T(x[n]) = x[-n];

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    2/14

    Stable; Non-Causal output depends on future input; Linear T(ax[n] + by[n]) = aT(x[n]) + bT(y[n]); Time Variant; Not Memoryless;

    P2.4

    As ]1[2]2[8

    1]1[

    4

    3][ =+ nxnynyny , the Fourier transform is

    jwjwjwjwjwjwjw eeXeeYeeYeY =+ )(2)(8

    1)(

    4

    3)(

    2

    When 1)(][][ == jweXnnx , thus

    =

    +=

    jwjwjwjw

    jwjw

    eeee

    eeY

    )4/1(1

    1

    )2/1(1

    18

    )8/1()4/3(1

    2)(

    2

    ][41

    218][ nuny

    nn

    =

    P2.24

    As h[n] = [1 1 1 1 2 2] for n from 0 to 5 and x[n] = u[n-4], the system response is:

    y[n] = x[n] * h[n] = [0 0 0 0 1 2 3 4 2 0 ..]; The sketch is shown as follows:

    HW#2: P2.5; P2.18; P2.29 (a), (c), (e)

    P2.5

    (a) The roots for polynomial 0651 21 =+ zz are 2 and 3, so the homogeneousresponse for the system is:

    nn AAny 32][ 21 +=

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    3/14

    (b) As ]1[2]2[6]1[5][ =+ nxnynyny and ][][ nnx = , the impulse response of

    the system is:

    ][)23(2][

    21

    1

    31

    12

    651

    2)(

    2

    nunh

    eeee

    eeH

    nn

    jwjwjwjw

    jwjw

    =

    =

    +=

    (c) As ]1[2]2[6]1[5][ =+ nxnynyny and ][][ nunx = , the step response of the

    system is:

    ( )( )][)123(][

    3,31

    3

    21

    4

    1

    1

    1651

    2)()()(

    21

    111121

    1

    nuny

    zzzzzzz

    zzXzHzY

    nn +=

    >

    +

    =+

    ==

    ++

    P2.18

    (a) ][)2/1(][ nunh n=

    Causal, the output of the system does not depend on future input;

    (b) ]1[)2/1(][ = nunh n

    Causal, the output of the system does not depend on future input;

    (c)n

    nh )2/1(][ =

    Non-Causal, the output of the system depends on future input;

    (d) ]2[]2[][ += nununh

    Non-Causal, the output of the system depends on future input;

    (e) ]1[3][)3/1(][ += nununh nn

    Non-Causal, the output of the system depends on future input;

    P2.29

    As x[n] = [1 1 1 1 1 1/2] for n from 1 to 4,

    (a) x[n-2] = [1 1 1 1 1 1/2] for n from 1 to 6; The sketch is:

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    4/14

    (c) x[2n] = [1 1 1/2] for n from 0 to 2; The sketch is:

    (e) x[n-1][n-3] = x[2]; The sketch is:

    HW#3: P2.40, P2.41, P3.27 (a), (c)

    P2.40

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    5/14

    ][)1(][)cos(][ nununnx n==

    ][)2

    (][ nuj

    nh n=

    )2/(1

    )2/(1)1(

    )2

    ()1(][)1]([)2

    (][][][*][][

    10

    j

    j

    jknuku

    jknxkhnxnhny

    nn

    k

    n

    k

    knknk

    k

    =

    ====

    +

    = =

    =

    Since2/1

    1

    )2/(1

    )2/(1lim

    1

    jj

    j n

    n +=

    +

    The steady state response to the excitation ][)1(][ nunx n= is

    2/1

    )cos(

    2/1

    1)1(

    j

    n

    j

    n

    +=

    +

    P2.41

    Given a periodic impulse train

    =

    +=k

    kNnnx ][][ , we can write its Fourier transform as

    =

    +=k

    j NkN

    eX )/2(2

    )(

    (1)

    (Refer to Signal and Systems, 2nd edition by A.V. Oppenheim and A.S. Willsky, Page 371 for its proof)

    In problem, 2.41,N=16, so its Fourier transform is

    =

    +=k

    j keX )16/2(16

    2)(

    (2)

    Let )(

    j

    eY denotes the output of the system, then)()()(

    jjj eHeXeY = (3)

    If 8/3|| < , 3)( jj eeH =

    )]8/()8/()([16

    2)16/2(

    16

    2 8/38/33

    +++=+=

    =

    jjk

    j eeke (4)

    If 8/3|| , 0)( =jeH , thus 0)( =jeY , (5)

    So )]8/()8/()([16

    2)( 8/38/3

    +++= jjj eeeY (6)

    Take the inverse Fourier transform, we can get

    ))3(8

    cos(8

    1

    16

    1))3(

    8cos21(

    16

    1

    )1(16

    1)1(16

    1][

    8/)3(8/)3(8/8/38/8/3

    +=+=

    ++=++=

    nn

    eeeeeenynnnjnj

    (7)

    Note: Take a look at (3), )(jeH is band limited, )(

    jeX is infinite pulse train. If we

    multiply them together, we can only consider those pulses falling into the band

    ( 8/3 , 8/3 ). The rest pulses are cancelled due to the multiplication with 0. There are

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    6/14

    three pulses falling into the band )(16

    2

    , )8/(

    16

    2

    + , )8/(

    16

    2

    , so we get

    (6)

    P3.27

    (a)

    111211121 3121

    2

    11)

    2

    11()31)(21()

    2

    11(

    1)(

    +

    +

    +

    +

    +

    =

    +

    =z

    D

    z

    C

    z

    B

    z

    A

    zzz

    zX

    X (z)s poles are z=-1/2, 2, 3, if it is stable, the ROC is )2,2/1(|| z

    35

    1

    )31)(21(

    1)

    2

    11)(( 2/1112/1

    21 =

    =+= ==

    zzzz

    zzXA

    1225

    1568

    )31()2

    11(

    1)21)(( 2

    1212

    1 =

    +

    == =

    =

    zz

    zz

    zzXC

    1225

    2700

    )21()2

    11(

    1)31)(( 3121

    3

    1 =

    +

    == =

    =

    zz

    zz

    zzXD

    Also, Let 01 =z at both sides,

    DCBAzXz

    +++===

    1)(01

    Thus,1225

    581 == DCAB

    111211121 31

    1225/2700

    21

    1225/1568

    2

    11

    1225/58

    )

    2

    11(

    35/1

    )31)(21()

    2

    11(

    1)(

    +

    +

    +

    +

    =

    +

    =zz

    zzzzz

    zX

    Since the ROC is )2,2/1(|| z ,

    ]1[31225

    2700]1[2

    1225

    1568][)

    2

    1(

    1225

    58]1[)

    2

    1)(1(

    35

    1][ ++++= nununununnx nnnn

    Note: To get the inverse Z-Transform of second-order term or multiple order term, we

    can use the differentiation propertydz

    zdXznnx

    )(][ (Refer to page122 of textbook for

    its proof)

    E.g. right side sequence1

    1

    1][][

    =

    az

    nuanx n (ROC: |||| az > )

    21

    11

    )1(]

    )1

    1(

    [][

    =

    az

    azdz

    azd

    znna n , So21

    11

    )1(][

    az

    znna n

    (c)

    1

    23

    21

    22

    2

    2)(][

    ++=

    =

    zzz

    z

    zzzXnx

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    7/14

    X(z) has its only pole at z=2. If x[n] is a left-sided sequence, the ROC is 2||

    =

    zz

    z

    zX

    Partial Fraction Expansion:

    ][2

    1][

    )2/1(1

    1

    ))2/1(1)()2/1(1(

    )2/1(1

    )4/1(1

    )2/1(1)(

    111

    1

    2

    1

    nunx

    zzz

    z

    z

    zzX

    n

    =

    +=

    +

    =

    =

    Power Series Expansion:

    ][2

    1][

    )16/1()8/1()4/1()2/1(1)4/1(1

    )2/1(1

    )(

    4321

    2

    1

    nunx

    zzzzz

    z

    zXn

    =

    +++=

    =

    L

    Fourier Transform exists as the ROC including unit circle.

    (e) azaz

    azzX /1

    1)(

    1

    1

    >

    =

    Partial Fraction Expansion:

    ]1[1

    ][1

    ][1

    ][][1

    ][

    )/1(1)/1(1

    /1111)(

    1111

    111

    2

    11

    1

    11

    1

    +

    =

    +

    =

    +

    =

    =

    =

    =

    ++

    nua

    nua

    nua

    nanua

    nx

    za

    aa

    za

    a

    az

    aa

    azaz

    az

    azaz

    azzX

    nnnn

    Power Series Expansion:

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    8/14

    ]1[1

    ][1

    ][2][1][

    ]1[1][2111

    ][1

    ][11

    ][1111

    111

    11)(

    11

    14

    3

    3

    2

    21

    1

    1

    1

    3

    3

    2

    2

    1

    1

    1

    1

    11

    1

    +

    =+=

    =++++=

    =

    =

    ++++

    =

    =

    =

    +

    +

    nua

    nua

    nxnxnx

    nua

    nxza

    za

    za

    zaz

    az

    nua

    nuaa

    nxza

    za

    zaaaz

    az

    az

    azaz

    azzX

    nn

    n

    nn

    L

    L

    Fourier Transform exists when the ROC including unit circle, which means1 3/4, and the ROC ofY(z) is |z| > 2/3, the ROC ofH(z)should be |z| > 2/3 ;

    (b)As the ROC ofX(z) is |z| < 1/3, and the ROC ofY(z) is 1/6 < |z| < 1/3, the ROC ofH(z) should be |z| > 1/6 ;

    P4.1

    As [ ])100(2sin)( ttxc = and T = 1/400 sec,

    [ ]

    ===

    2sin)100(2sin)(][ nnTnTxnx c

    P4.3

    As [ ]ttxc 4000cos)( = and

    =

    3cos][

    nnx ,

    (a)Let000,12

    1)(][ == TnTxnx c

    (b)T is not unique, for example,000,12

    5=T

    HW#5: P4.5; P4.7; P5.2; P5.3

    P4.5

    (a) From Nyquist Sampling theorem, to avoid aliasing in the C/D converter, the sampling

    frequency HzHzT

    m

    s

    s

    4105000*221

    === , so sTs410

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    9/14

    (b) Hzf

    s

    cutoff

    cutoff 625102

    8/

    2

    4 ===

    (c) kHzHzf

    s

    cutoff

    cutoff 25.112501022

    8/

    2

    4 ====

    Note: The relation between digital frequency f and analog frequency is 2

    f

    s=

    ,

    where s is the sampling frequency, f is in radians.

    P4.7

    (a)

    )()()( dccc tststx +=

    )1)(()( dj

    cc ejSjX

    +=

    Consider sampling, )(][ nTxnx c= , in frequency domain (refer to Eq4.19 in textbook, P147),

    ( ) ))2((1

    =

    =k

    c

    Tj

    T

    kjX

    TeX

    ( ) ( )

    ))2

    (()1(1

    ))2

    (()1(1

    ))2

    ((1

    /

    =

    =

    =

    +=

    +===

    k

    c

    Tj

    k

    c

    j

    k

    c

    Tjj

    T

    k

    TjSe

    T

    T

    kjSe

    TT

    kjX

    TeXeX

    d

    d

    (b)Tjj deeH

    /1)(

    +=

    (c)

    )/(

    ])/sin[()sin(

    2

    1

    2

    1)1(2

    1)(2

    1][)/(/

    Tn

    Tn

    n

    n

    dededeedeeHnh

    d

    d

    TnjjnjnTjjnj dd

    +=

    +=+==

    if Td = , ]1[][)1(

    ])1sin[()sin(][ +=

    += nn

    n

    n

    n

    nnh

    if 2/Td = ,

    )1(

    ])2/1sin[(][

    )1(

    ])2/1sin[()sin(][

    +=

    +=

    n

    nn

    n

    n

    n

    nnh

    P5.2

    ][]1[][3

    10]1[ nxnynyny =++

    )()()(3

    10)(

    1zXzzYzYzYz =+

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    10/14

    1111

    1

    1 31

    8/3

    )3/1(1

    8/3

    )31)()3/1(1(

    3

    10

    1

    )(

    )()(

    +

    =

    =

    +

    ==zzzz

    z

    zzzX

    zYzH

    (a) H (z) has two zeroes: 0, ; two poles: 1/3, 3

    (b) The system is stable, so the ROC includes the unit circle. The ROC is 1/3

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    11/14

    P5.12

    (a)

    As the poles of H(z) are 0.9, -0.9, ROC includes the unit circle, the system is stable.

    (b)

    )()(

    ))3/1(1)()3/1(1(

    )3/1)(3/1(

    )9.01)(9.01(

    ))3/1(1)()3/1(1)(2.01(9

    )9.01)(9.01(

    )31)(31)(2.01()(

    1

    )(

    11

    11

    )(

    11

    111

    11

    111

    1

    zHzH

    zz

    zz

    zjzj

    zzz

    zjzj

    zzzzH

    ap

    zHzH ap

    =

    +

    +

    +

    ++=

    +

    ++=

    4444 34444 214444444 34444444 21

    P5.15

    Generalized Linear Phase GLP;

    Linear Phase LP;

    (a) As jwewjwHnnnnh+=++= )cos41()(]2[2]1[][2][ ,

    wjwA cos41)( += and 0,1 == , it is a GLP, but not LP as )( jwA is not always

    nonnegative for all w;

    (b) It is not a GLP or LP as it is not a symmetric filter;

    (c) As jwewjwHnnnnh+=++= )cos23()(]2[]1[3][][ ,

    wjwA cos23)( += and 0,1 == , it is a GLP and also LP as )( jwA is always

    nonnegative for all w;

    (d) As )2/()2/cos(2)(]1[][][ wjewjwHnnnh =+= ,

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    12/14

    )2/cos(2)( wjwA = and 0,2/1 == , it is a GLP, but not LP as )( jwA is not always

    nonnegative for all w;

    (e) As )2/(sin2)(]2[][][ == wjwejwHnnnh ,

    wjwA sin2)( = and 2/,1 == , it is a GLP, but not LP as )( jwA is not always

    nonnegative for all w;

    HW#7: P6.7; P6.8; P6.11; P6.25; P7.15

    P6.7

    The difference equation is: ][4

    1]2[]2[

    4

    1][ nxnxnyny =

    Z-Transform: )(4

    1)()(

    4

    1)(

    22zXzzXzzYzY =

    Transfer function:2

    2

    411

    4

    1

    )(

    )()(

    +==

    z

    z

    zX

    zYzH

    P6.8]2[]1[3]2[2][ += nxnxnyny

    P6.11

    1

    321

    1

    111

    2

    11

    86

    2

    11

    )41)(21()(

    +=

    =

    z

    zzz

    z

    zzzzH

    (a)

    -1/4

    1z

    1z

    ][nx ][ny

    1/4

    1z

    1z

    ][ny

    1/2

    -6

    1z8

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    13/14

    (b)

    P6.25

    (a) )1

    1)](21(

    8

    7

    8

    31

    2

    11

    [)()]()([)(1

    21

    21

    1

    321

    +++

    +

    =+=

    zzz

    zz

    z

    zHzHzHzH

    The Z-Transfer function:

    321

    4321

    8

    7

    4

    5

    8

    111

    87

    811

    89

    892

    )(

    +

    ++++=

    zzz

    zzzz

    zH

    (b)

    The difference equation:

    ]4[8

    7]3[

    8

    11]2[

    8

    9]1[

    8

    9][2]3[

    8

    7]2[

    4

    5]1[

    8

    11][ ++++=+ nxnxnxnxnxnynynyny

    (c)

    P7.15Specifications:

    (a) Pass band ripple: 05.0=p , dBA pp 02.26log20 ==

    Stop band ripple: 1.0=s , dBA ss 20log20 ==

    Pass band edge: 25.0=p

    Stop band edge: 35.0=s

    ][nx

    1z

    1

    z

    ][ny

    -6

    1/2

    1z8

    2

    1z

    1z

    ][nx ][ny

    -5/4

    11/8 9/8

    9/8

    1z

    1z

    7/8 11/8

    7/8

  • 7/29/2019 Digital signal processing solution mannual chapter Bonus Oppenheim

    14/14

    Cutoff: 3.0=cThe peak approximate error dB02.26log20 10