Digital Resonant Current Controllers for Voltage Source...

103

Transcript of Digital Resonant Current Controllers for Voltage Source...

Page 1: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Digital Resonant Current Controllers for Voltage Source Converters

Digital Resonant Current Controllers for Voltage

Source Converters

Author: Alejandro Gómez Yepes

Director: Jesús Doval Gandoy

Department of Electronics Technology, University of Vigo,

14 December 2011

Dissertation submitted for the degree ofDoctor of Philosophy at the University of Vigo

�Doctor Europeus� mention

Alejandro Gómez Yepes DTE, University of Vigo 1 of 66

Page 2: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Digital Resonant Current Controllers for Voltage Source Converters

Outline

1 Introduction

2 E�ects of Discretization Methods on the Performance of ResonantControllers

3 High Performance Digital Resonant Current Controllers Implemented withTwo Integrators

4 Analysis and Design of Resonant Current Controllers for Voltage SourceConverters by Means of Nyquist Diagrams and Sensitivity Function

5 Conclusions

Alejandro Gómez Yepes DTE, University of Vigo 2 of 66

Page 3: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Outline

1 Introduction

Plant Model for Current-Controlled VSCs

Review of Current Controllers for VSCs

Objectives

2 E�ects of Discretization Methods on the Performance of Resonant Controllers

3 High Performance Digital Resonant Current Controllers Implemented with Two

Integrators

4 Analysis and Design of Resonant Current Controllers for Voltage Source Converters

by Means of Nyquist Diagrams and Sensitivity Function

5 Conclusions

Alejandro Gómez Yepes DTE, University of Vigo 3 of 66

Page 4: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

3-7

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Plant Model for Current-Controlled VSCs

Plant Model for Current-Controlled VSCs I

Model suitable for active �lters, active recti�ers, adjustable speed drives(decoupled back EMF), etc.

vac: grid voltage, back EMF of electric machine, etc.

L �lter

GL(s) =I(s)

V C(s)=

1

s LF +RF

vCv

dcv

ac

iVSC L

FR

F

CONTROL

& PWM

i*

LCL �lter

G CLCL(s) =

I C(s)

V C(s); GG

LCL(s) =I G(s)

V C(s)

* *

vac

iG

VSC LC

vdc

RC L

GR

G

RD

C

iC

or iG

iC

vC

CONTROL

& PWM

vD

Alejandro Gómez Yepes DTE, University of Vigo 4 of 66

Page 5: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

3-7

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Plant Model for Current-Controlled VSCs

Plant Model for Current-Controlled VSCs II

fres

-80

-60

-40

-20

0

20

Magnitude (dB)

100 101

102

103

-270

-180

-90

0

90

Phase (deg)

Frequency (Hz)

LCL filter [ GLCL(s)= IG (s) / VC (s) ]

L filter [ GL(s)= I (s) / VC (s) ]

LCL filter [ GLCL(s)= IC (s) / VC (s) ]G

C

LCL �lters behave as L atfrequencies lower thanapprox. fres:

G CLCL(s) ≈ G G

LCL(s) ≈

≈GL(s) =1

s LF +RF

Alejandro Gómez Yepes DTE, University of Vigo 5 of 66

Page 6: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

3-7

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Plant Model for Current-Controlled VSCs

Plant Model for Current-Controlled VSCs III

vdc

GC

(s)+-

iiPWMe -sTs G

L(s)+

-

vac

Plant

*

++

vac

-1 vdc

e

Complete block diagram

≡GC (s)+

-ii

GPL(s)* e

Simpli�ed block diagram

GC: current controller

GL: L �lter

GPL: plant model

GPL(s) =

Comp.delay︷ ︸︸ ︷e−sTs

ZOH (PWM)︷ ︸︸ ︷1− e−sTs

s

GL(s)︷ ︸︸ ︷1

s LF +RF

GPL(z) = Z{L−1

[GPL(s)

]}=z−2

RF

1− ρ−1

1− z−1ρ−1where ρ = e RFTs/LF

Alejandro Gómez Yepes DTE, University of Vigo 6 of 66

Page 7: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

3-7

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Plant Model for Current-Controlled VSCs

Plant Model for Current-Controlled VSCs III

vdc

GC

(s)+-

iiPWMe -sTs G

L(s)+

-

vac

Plant

*

++

vac

-1 vdc

e

Complete block diagram

≡GC (s)+

-ii

GPL(s)* e

Simpli�ed block diagram

GC: current controller

GL: L �lter

GPL: plant model

GPL(s) =

Comp.delay︷ ︸︸ ︷e−sTs

ZOH (PWM)︷ ︸︸ ︷1− e−sTs

s

GL(s)︷ ︸︸ ︷1

s LF +RF

GPL(z) = Z{L−1

[GPL(s)

]}=z−2

RF

1− ρ−1

1− z−1ρ−1where ρ = e RFTs/LF

Alejandro Gómez Yepes DTE, University of Vigo 6 of 66

Page 8: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

7-11

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Hysteresis Control

Q

vac

iLF

RF

+

-

+

-

i*

+

-

S

R

Q

SWITCH

DRIVER

i

emin

emax

e

-vdc /2

+vdc /2

Simplicity

Unconditionedstability

Very fast

response

Good accuracy

Variable switching frequency (resonances, �lters,power losses, ripple...)

Interference among phases

Inability to perform selective control

Dependence on converter topology

Analog comparators

Alejandro Gómez Yepes DTE, University of Vigo 7 of 66

Page 9: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

7-11

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Hysteresis Control

Q

vac

iLF

RF

+

-

+

-

i*

+

-

S

R

Q

SWITCH

DRIVER

i

emin

emax

e

-vdc /2

+vdc /2

Simplicity

Unconditionedstability

Very fast

response

Good accuracy

Variable switching frequency (resonances, �lters,power losses, ripple...)

Interference among phases

Inability to perform selective control

Dependence on converter topology

Analog comparators

Alejandro Gómez Yepes DTE, University of Vigo 7 of 66

Page 10: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

11-12

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Deadbeat Control

GDB (z)+-

iiGPL(z)

* e

GDB(z)GPL(z)

1 +GDB(z)GPL(z)= z−2 ⇒ GDB(z) =

RF

1− ρ−1

1− z−1 ρ−1

1− z−2

Simplicity

Theoretically,fastest transientamong digitalcontrollers

Sensitiveness to deviations in plant parameters

Need for vac feedforward

Sensitiveness to measurement noise

Need for dead-times compensation

Closed-loop steady-state error

Alejandro Gómez Yepes DTE, University of Vigo 8 of 66

Page 11: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

12-16

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

PI Control in SRF

idq*

+

-+

-

idq

Plant: GL(s)´+

+

kPhidq

GPIh(s) =kPh+kIh /s

1/(LFs+RF)

jhω1LF

1/skIh Conventional PI

controller

+

-+

++

-

idq

Plant: GL(s)´

1/(LFs+RF)

jhω1LFjhω1LF

+

+

kPh

1/skIh

idq*

idq PI Controller withcross-coupling

decoupling (PICCD)

+

-+

+

kh+

++

-

idq

Plant: GL(s)´

1/(LFs+RF)

jhω1LF

idq*

idqjhω1LF

1/sRF

LFComplex-

vector PIcontroller

Alejandro Gómez Yepes DTE, University of Vigo 9 of 66

Page 12: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

17-23

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Repetitive Controllers

Common characteristics

Tracking of multiple harmonics by a simple scheme

Di�cult frequency adaptation

Same parameters for all peaks

Recursive form

+

+ z-nd+ns outputinput

z -ns

F1(z)

F2(z)

Krep No selectiveness

Steady-state errorDi�cult tuning

DFT-based

+

+GDFT(z) output

input

z -ns

Krep

Selectiveness

No steady-state error

Alejandro Gómez Yepes DTE, University of Vigo 10 of 66

Page 13: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

24-26

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Proportional+Resonant (PR) Controllers

Equivalent to a conventional PI in positive-sequence SRF + another one innegative-sequence SRF

Conventional PI:

GPIh(s) = kPh+kIhs

Pos.seq.SRF G+

PIh(s) = GPIh (s− jhω1) = kPh

+kIh

s−jhω1

Neg.seq.SRF G−PIh

(s) = GPIh (s+ jhω1) = kPh+

kIhs+jhω1

GPRh(s) = G+

PIh(s)+G−PIh

(s) =

KPh︷ ︸︸ ︷2 kPh

+

KIh︷ ︸︸ ︷2 kIh

s

s2 + h2ω21

= KPh+KIh

R1h(s)︷ ︸︸ ︷s

s2 + h2ω21

Delay compensation: G dPRh

(s) = KPh+KIh

Rd1h

(s)︷ ︸︸ ︷s cos(φ′h)− hω1 sin(φ′h)

s2 + h2ω21

Total controller: GC(s) =

nh∑h

G dPRh

(s) =

KPT︷ ︸︸ ︷nh∑h

KPh+

nh∑h

KIh Rd1h

(s)

Alejandro Gómez Yepes DTE, University of Vigo 11 of 66

Page 14: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

24-26

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Proportional+Resonant (PR) Controllers

Equivalent to a conventional PI in positive-sequence SRF + another one innegative-sequence SRF

Conventional PI:

GPIh(s) = kPh+kIhs

Pos.seq.SRF G+

PIh(s) = GPIh (s− jhω1) = kPh

+kIh

s−jhω1

Neg.seq.SRF G−PIh

(s) = GPIh (s+ jhω1) = kPh+

kIhs+jhω1

GPRh(s) = G+

PIh(s)+G−PIh

(s) =

KPh︷ ︸︸ ︷2 kPh

+

KIh︷ ︸︸ ︷2 kIh

s

s2 + h2ω21

= KPh+KIh

R1h(s)︷ ︸︸ ︷s

s2 + h2ω21

Delay compensation: G dPRh

(s) = KPh+KIh

Rd1h

(s)︷ ︸︸ ︷s cos(φ′h)− hω1 sin(φ′h)

s2 + h2ω21

Total controller: GC(s) =

nh∑h

G dPRh

(s) =

KPT︷ ︸︸ ︷nh∑h

KPh+

nh∑h

KIh Rd1h

(s)

Alejandro Gómez Yepes DTE, University of Vigo 11 of 66

Page 15: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

24-26

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Proportional+Resonant (PR) Controllers

Equivalent to a conventional PI in positive-sequence SRF + another one innegative-sequence SRF

Conventional PI:

GPIh(s) = kPh+kIhs

Pos.seq.SRF G+

PIh(s) = GPIh (s− jhω1) = kPh

+kIh

s−jhω1

Neg.seq.SRF G−PIh

(s) = GPIh (s+ jhω1) = kPh+

kIhs+jhω1

GPRh(s) = G+

PIh(s)+G−PIh

(s) =

KPh︷ ︸︸ ︷2 kPh

+

KIh︷ ︸︸ ︷2 kIh

s

s2 + h2ω21

= KPh+KIh

R1h(s)︷ ︸︸ ︷s

s2 + h2ω21

Delay compensation: G dPRh

(s) = KPh+KIh

Rd1h

(s)︷ ︸︸ ︷s cos(φ′h)− hω1 sin(φ′h)

s2 + h2ω21

Total controller: GC(s) =

nh∑h

G dPRh

(s) =

KPT︷ ︸︸ ︷nh∑h

KPh+

nh∑h

KIh Rd1h

(s)

Alejandro Gómez Yepes DTE, University of Vigo 11 of 66

Page 16: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

32-36

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Analysis and design of PR Controllers

Open-loop

1

0

10

20

30

40

50

Magnitude (dB)

101 102-180

-135

-90

-45

0

45

Phase (deg)

Frequency (Hz)

KPTKI KI KI3 5

fc

KI = 2000h

KI = 500h

KI = 0h

PMP

f1 3f1 5f1

Closed-loop

0

1

2

3

4

5

67

Magnitude (abs)50 150 250 350 450 550 650 750 850 950

-180

-135

-90

-45

0

45

90

Phase (deg)

Frequency (Hz)

h = 0

2 samples h

KPT → fc, PMP

KIh → bandwidth around hf1

hf1 < fc ∀h such that φ′h = 0

φ′h → anomalous peaks & stability

GC(s) = KPT+

nh∑h

KIh Rd1h

(s)

Alejandro Gómez Yepes DTE, University of Vigo 12 of 66

Page 17: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

26-27,53

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Vector Proportional+Integral (VPI) Controllers

Equivalent to a complex-vector PI in positive-sequence SRF + another one innegative-sequence SRF

GVPIh(s) =

G+cPIh︷ ︸︸ ︷

GcPIh (s− jhω1) +

G−cPIh︷ ︸︸ ︷GcPIh (s+ jhω1) =

= KPh

R2h︷ ︸︸ ︷s2

s2 + h2ω21

+KIh

R1h︷ ︸︸ ︷s

s2 + h2ω21

= Khs (

Plantcancellation︷ ︸︸ ︷s LF +RF )

s2 + h2ω21

Delay compensation: G dVPIh

(s) = Kh(s LF +RF)

[s cos(φ′h)− hω1 sin(φ′h)

]s2 + h2ω2

1

=

= KPh

Rd2h

(s)︷ ︸︸ ︷s2 cos(φ ′h)− s hω1 sin(φ ′h)

s2 + h2ω21

+ KIh

Rd1h

(s)︷ ︸︸ ︷s cos(φ ′h)− hω1 sin(φ ′h)

s2 + h2ω21

Alejandro Gómez Yepes DTE, University of Vigo 13 of 66

Page 18: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

26-27,53

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Vector Proportional+Integral (VPI) Controllers

Equivalent to a complex-vector PI in positive-sequence SRF + another one innegative-sequence SRF

GVPIh(s) =

G+cPIh︷ ︸︸ ︷

GcPIh (s− jhω1) +

G−cPIh︷ ︸︸ ︷GcPIh (s+ jhω1) =

= KPh

R2h︷ ︸︸ ︷s2

s2 + h2ω21

+KIh

R1h︷ ︸︸ ︷s

s2 + h2ω21

= Khs (

Plantcancellation︷ ︸︸ ︷s LF +RF )

s2 + h2ω21

Delay compensation: G dVPIh

(s) = Kh(s LF +RF)

[s cos(φ′h)− hω1 sin(φ′h)

]s2 + h2ω2

1

=

= KPh

Rd2h

(s)︷ ︸︸ ︷s2 cos(φ ′h)− s hω1 sin(φ ′h)

s2 + h2ω21

+ KIh

Rd1h

(s)︷ ︸︸ ︷s cos(φ ′h)− hω1 sin(φ ′h)

s2 + h2ω21

Alejandro Gómez Yepes DTE, University of Vigo 13 of 66

Page 19: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

36-37

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Review of Current Controllers for VSCs

Analysis and design of VPI ControllersClosed-loop

0

0.5

1

1.5

2

2.5

50 150 250 350 450 550 650 750 850 950 1050 1150-200

-150

-100

-50

0

50

100

Magnitude (abs)

Phase (deg)

Frequency (Hz)

Kh = 50

Kh = 200Kh

Kh → bandwidth around hf1

φ′h → anomalous peaks & stability (only required at ↑ hf1/fs)

Alejandro Gómez Yepes DTE, University of Vigo 14 of 66

Page 20: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

1

Digital Resonant Current Controllers for Voltage Source Converters

Introduction

Objectives

Main Objectives of this PhD Thesis

To provide an in-depth study and comparison of the e�ects ofdiscretization strategies

To develop optimized discrete-time implementations with a good

tradeo� between

accuracy

resource-consumption & simplicity

To propose an analysis and design methodology for resonant controllersby means of Nyquist diagrams, suitable for cases with more than onecross-over frequency.

Alejandro Gómez Yepes DTE, University of Vigo 15 of 66

Page 21: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Outline

1 Introduction

2 E�ects of Discretization Methods on the Performance of Resonant Controllers

Digital Implementations of Resonant Controllers

Resonant Poles Displacement

E�ects on Zeros Distribution

E�ects on Delay Compensation

Summary of Optimum Discrete-Time Implementations

Experimental Results

Conclusions

3 High Performance Digital Resonant Current Controllers Implemented with Two

Integrators

4 Analysis and Design of Resonant Current Controllers for Voltage Source Converters

by Means of Nyquist Diagrams and Sensitivity Function

5 Conclusions

Alejandro Gómez Yepes DTE, University of Vigo 16 of 66

Page 22: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

43-45

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Digital Implementations of Resonant Controllers

Digital Implementations

1 Discretization of continuous transfer function (by Tustin, zero-polematching, etc.)

2 Two discrete integrators

Direct int.: Forward Euler Feedback int.: Backward Euler (f&b)Direct int.: Backward Euler Feedback int.: Backward Euler + z−1 (b&b)Direct int.: Tustin Feedback int.: Tustin (t&t)

PR

1

s

1

s

+

++

-

outputinput KIh

KPh

X2 2

1h ω

VPI

1

sX

1

s

2 2

1h ω

+

++

-

outputinputKIh

KPh

Alejandro Gómez Yepes DTE, University of Vigo 17 of 66

Page 23: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

45-48

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Resonant Poles Displacement

Resonant Poles Displacement (fs = 10 kHz)

0.8 0.85 0.9 0.95 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

850 Hz

Real Axis

Imaginary Axis

750 Hz

650 Hz

550 Hz

450 Hz

350 Hz

150 Hz

50 Hz

250 Hz

351 Hz

350 Hz

349 Hz

zoom

A (f)B (b)C (t, t&t)D (f&b, b&b)E (zoh, foh,tp, zpm, imp)

Alejandro Gómez Yepes DTE, University of Vigo 18 of 66

Page 24: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

45-48

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Resonant Poles Displacement

Resonant Poles Displacement (fs = 10 kHz)

0.8 0.85 0.9 0.95 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

850 Hz

Real Axis

Imaginary Axis

750 Hz

650 Hz

550 Hz

450 Hz

350 Hz

150 Hz

50 Hz

250 Hz

351 Hz

350 Hz

349 Hz

zoom

A (f)B (b)C (t, t&t)D (f&b, b&b)E (zoh, foh,tp, zpm, imp)

Alejandro Gómez Yepes DTE, University of Vigo 18 of 66

Page 25: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

45-48

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Resonant Poles Displacement

Resonant Poles Displacement (variable fs)

Alejandro Gómez Yepes DTE, University of Vigo 19 of 66

Page 26: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

48-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R1h(s) (E methods)

-100

-80

-60

-40

-20

0

20

40

60

Magnitude (dB)

101

102

103

-180

-135

-90

-45

0

45

90

Phase (deg)

Frequency (Hz)

R1h (s)h

Alejandro Gómez Yepes DTE, University of Vigo 20 of 66

Page 27: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

48-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R1h(s) (E methods)

-100

-80

-60

-40

-20

0

20

40

60

Magnitude (dB)

101

102

103

-180

-135

-90

-45

0

45

90

Phase (deg)

Frequency (Hz)

zoom

R1h (s)h

impR1h (z)h

Better stability at

high frequencies

Alejandro Gómez Yepes DTE, University of Vigo 20 of 66

Page 28: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

48-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R1h(s) (E methods)

-100

-80

-60

-40

-20

0

20

40

60

Magnitude (dB)

101

102

103

-180

-135

-90

-45

0

45

90

Phase (deg)

Frequency (Hz)

zoom

R1h (z)=R1h (z)hh

R1h (s)h

impR1h (z)zoh zpmh

6,3º Worse stability at

high frequencies

Better stability at

high frequencies

Alejandro Gómez Yepes DTE, University of Vigo 20 of 66

Page 29: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

48-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R1h(s) (E methods)

-100

-80

-60

-40

-20

0

20

40

60

Magnitude (dB)

101

102

103

-180

-135

-90

-45

0

45

90

Phase (deg)

Frequency (Hz)

zoom

R1h (z)=R1h (z)hh

R1h (z)≈R1h (z)tp foh

hh

R1h (s)h

impR1h (z)

zoh zpmh

6,3º Worse stability at

high frequencies

Better stability at

high frequencies

Same phase

response as R1h (s)h

Alejandro Gómez Yepes DTE, University of Vigo 20 of 66

Page 30: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

50-51

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R1h(s) (D methods)

-100

-80

-60

-40

-20

0

20

40

60Magnitude (dB)

101

102

103

-180

-135

-90

-45

0

45

90

135

Phase (deg)

Frequency (Hz)

R1h (s)h

Alejandro Gómez Yepes DTE, University of Vigo 21 of 66

Page 31: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

50-51

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R1h(s) (D methods)

-100

-80

-60

-40

-20

0

20

40

60Magnitude (dB)

101

102

103

-180

-135

-90

-45

0

45

90

135

Phase (deg)

Frequency (Hz)

zoom

R1h (s)

R1h (z)f&b

h

h

6,4º

Alejandro Gómez Yepes DTE, University of Vigo 21 of 66

Page 32: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

50-51

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R1h(s) (D methods)

-100

-80

-60

-40

-20

0

20

40

60Magnitude (dB)

101

102

103

-180

-135

-90

-45

0

45

90

135

Phase (deg)

Frequency (Hz)

zoom

R1h (s)

R1h (z)f&b

h

h

R1h (z)h

b&b

6,4º6,4º

Alejandro Gómez Yepes DTE, University of Vigo 21 of 66

Page 33: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

49-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R2h(s) (E methods)

-50

0

50

100

Magnitude (dB)

101

102

103

-45

0

45

90

135

180

Phase (deg)

Frequency (Hz)

R2(s)R2h (s)h

Alejandro Gómez Yepes DTE, University of Vigo 22 of 66

Page 34: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

49-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R2h(s) (E methods)

-50

0

50

100

Magnitude (dB)

101

102

103

-45

0

45

90

135

180

Phase (deg)

Frequency (Hz)

R2zoh(z)

R2imp(z)

R2(s)

zoom

R2h (s)h

R2h (z)imph

Low gain at high

frequencies

Alejandro Gómez Yepes DTE, University of Vigo 22 of 66

Page 35: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

49-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R2h(s) (E methods)

-50

0

50

100

Magnitude (dB)

101

102

103

-45

0

45

90

135

180

Phase (deg)

Frequency (Hz)

R2zoh(z)

R2imp(z)

R2(s)

zoom

R2h (s)h

R2h (z)imph

R2h (z)zoh

h

6,2º

Low gain at high

frequencies

Alejandro Gómez Yepes DTE, University of Vigo 22 of 66

Page 36: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

49-50

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of R2h(s) (E methods)

-50

0

50

100

Magnitude (dB)

101

102

103

-45

0

45

90

135

180

Phase (deg)

Frequency (Hz)

R2zoh(z)

R2imp(z)

R2(s)

zoom

R2h (s)h

R2h (z)imph

R2h (z)zoh

h

R2h (z)≈R2h (z)≈R2h (z)tp zpm

h

foh

h

6,2º

Low gain at high

frequencies

h

Alejandro Gómez Yepes DTE, University of Vigo 22 of 66

Page 37: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

50-51

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of GVPIh(s) (D methods)

-60

-40

-20

0

20

40

60

80Magnitude (dB)

101

102

103

0

45

90

135

180

Phase (deg)

Frequency (Hz)

GVPIh(s)h

Alejandro Gómez Yepes DTE, University of Vigo 23 of 66

Page 38: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

50-51

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of GVPIh(s) (D methods)

-60

-40

-20

0

20

40

60

80Magnitude (dB)

101

102

103

0

45

90

135

180

Phase (deg)

Frequency (Hz)

zoom

f&bGVPIh(z)h

GVPIh(s)h

Alejandro Gómez Yepes DTE, University of Vigo 23 of 66

Page 39: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

50-51

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Zeros Distribution

E�ects on Zeros of GVPIh(s) (D methods)

-60

-40

-20

0

20

40

60

80Magnitude (dB)

101

102

103

0

45

90

135

180

Phase (deg)

Frequency (Hz)

zoom

f&bGVPIh(z)h

b&bGVPIh(z)h

GVPIh(s)h

Alejandro Gómez Yepes DTE, University of Vigo 23 of 66

Page 40: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

54-57

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Delay Compensation

E�ects on Delay Compensation (E methods)

Alejandro Gómez Yepes DTE, University of Vigo 24 of 66

Page 41: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

57-58

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

E�ects on Delay Compensation

E�ects on Delay Compensation (D methods)

Alejandro Gómez Yepes DTE, University of Vigo 25 of 66

Page 42: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

59-60

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Summary of Optimum Discrete-Time Implementations

Optimum Discrete-Time Implementations

Alejandro Gómez Yepes DTE, University of Vigo 26 of 66

Page 43: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

60-62

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Experimental Results

Experimental Setup (APF)

Alejandro Gómez Yepes DTE, University of Vigo 27 of 66

Page 44: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

60-62

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Experimental Results

Experimental Setup (APF)

Alejandro Gómez Yepes DTE, University of Vigo 27 of 66

Page 45: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

65-67

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Experimental Results

Resonant Poles Displacement I

Alejandro Gómez Yepes DTE, University of Vigo 28 of 66

Page 46: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

65-67

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Experimental Results

Resonant Poles Displacement II

Alejandro Gómez Yepes DTE, University of Vigo 29 of 66

Page 47: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

67,69-70

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Experimental Results

Discrete-Time Delay Compensation

Alejandro Gómez Yepes DTE, University of Vigo 30 of 66

Page 48: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

72,74

Digital Resonant Current Controllers for Voltage Source Converters

E�ects of Discretization Methods on the Performance of Resonant Controllers

Conclusions

Conclusions of Chapter II

An exhaustive study and comparison of discretization techniques applied

to resonant controllers has been presented, in terms of their e�ects on

steady-state error

stability

It has been shown that the choice of discretization strategy is a crucial

aspect for resonant controllers

The optimum discrete-time implementations have been assessed

Alejandro Gómez Yepes DTE, University of Vigo 31 of 66

Page 49: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Outline

1 Introduction

2 E�ects of Discretization Methods on the Performance of Resonant Controllers

3 High Performance Digital Resonant Current Controllers Implemented with Two

Integrators

Previous Schemes based on Two Integrators

Correction of Poles

Correction of Zeros

Experimental Results

Conclusions

4 Analysis and Design of Resonant Current Controllers for Voltage Source Converters

by Means of Nyquist Diagrams and Sensitivity Function

5 Conclusions

Alejandro Gómez Yepes DTE, University of Vigo 32 of 66

Page 50: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

75-77

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Previous Schemes based on Two Integrators

Previous Schemes based on Two Integrators

GPRh(s)

1

s

1

s

+

++

-

outputinput KIh

KPh

X2 2

1h ω

GVPIh(s)

1

s

X

1

s

2 2

1h ω

+

++

-

outputinputKIh

KPh

G dPRh

(s)

+

+

-

+

-

X

cos( )h

φ ′

X

X

outputinput

1 sin( )h

hω φ ′

KIh

KPh

2 2

1h ω

s

1

s

1

Simple frequency adaptation

Resonant poles deviation→steady-state error

Leading angle φh deviation→anomalous peaks

instability

Alejandro Gómez Yepes DTE, University of Vigo 33 of 66

Page 51: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

79-82

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Poles

Correction of Poles I

Accurate resonant poles: 1− 2z−1 cos (hω1Ts)+z−2

Schemes based on 2 int.: 1− 2z−1(1−h2ω21T

2s /2) +z−2

2nd order

Taylor

approx.

Proposed correction:

h2ω21 → Ch = 2

nT/2∑n=1

(−1)n+1h2nω2n1 T 2n−2

s

(2n)!=

nT = 4︷ ︸︸ ︷h2ω2

1−h4ω41T

2s

12+h6ω

61T

4s

360︸ ︷︷ ︸nT = 6

+. . .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

1

2

3

4

5

6

7

8

9

10

hf1/fs

Resonant frequency error (Hz)

nT=8nT=6nT=4nT=2Original

nT = 4: valid formost cases

Alejandro Gómez Yepes DTE, University of Vigo 34 of 66

Page 52: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

79-82

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Poles

Correction of Poles I

Accurate resonant poles: 1− 2z−1 cos (hω1Ts)+z−2

Schemes based on 2 int.: 1− 2z−1(1−h2ω21T

2s /2) +z−2

2nd order

Taylor

approx.

Proposed correction:

h2ω21 → Ch = 2

nT/2∑n=1

(−1)n+1h2nω2n1 T 2n−2

s

(2n)!=

nT = 4︷ ︸︸ ︷h2ω2

1−h4ω41T

2s

12+h6ω

61T

4s

360︸ ︷︷ ︸nT = 6

+. . .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

1

2

3

4

5

6

7

8

9

10

hf1/fs

Resonant frequency error (Hz)

nT=8nT=6nT=4nT=2Original

nT = 4: valid formost cases

Alejandro Gómez Yepes DTE, University of Vigo 34 of 66

Page 53: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

79-82

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Poles

Correction of Poles II

GPRh(z)

s

11

T

z−

+

-

X

outputinput 1

s

11

T z

z

KPh

KIh+

+

2

1ω +

-

4 2

1 s

12

Resonant poles

correction

h2

h4

Ch

GVPIh(z)

s

11

T

z−

+

-

X

outputinput 1

s

11

T z

z

KPh

2

1ω +

-

4 2

1 s

12

Resonant poles

correction

h2

h4

KIh

+

+

Ch

G dPRh

(z)

s

11

T

z−

+

+

+

+

-

X

outputinput 1

s

11

T z

z

KPh

cos( )h

φ ′

X

X

1sin( )

hhω φ ′

KIh

2

1ω +

-

4 2

1 s

12

Resonant poles

correction

h2

h4

Ch

Alejandro Gómez Yepes DTE, University of Vigo 35 of 66

Page 54: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

78,82-83

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Correction of Zeros

GdPRh

(s) = KPh+KIh ·

·s cos(φ′h)− hω1 sin(φ′h)

s2 + h2ω21

φ′h: target leading angle

φh: actual leading angle

Ideally:

φh = φ′h == −∠∠∠GPL(e

jhω1Ts)

0

0

20

40

60

80

100

120

700 710 720 730 740 750 760 770 780 790

-90

0

90

180

800

Phase (deg)

Frequency (Hz)

Magnitude (dB)

h= (no delay comp.)

In previous literature:

1 wrong target (2 samples)→ φ′h 6= −∠∠∠GPL(ejhω1Ts)

2 discretization→ inaccuracy: φh 6= φ′h

Alejandro Gómez Yepes DTE, University of Vigo 36 of 66

Page 55: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

78,82-83

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Correction of Zeros

GdPRh

(s) = KPh+KIh ·

·s cos(φ′h)− hω1 sin(φ′h)

s2 + h2ω21

φ′h: target leading angle

φh: actual leading angle

Ideally:

φh = φ′h == −∠∠∠GPL(e

jhω1Ts)

0

0

20

40

60

80

100

120

700 710 720 730 740 750 760 770 780 790

-90

0

90

180

800

Phase (deg)

Frequency (Hz)

Magnitude (dB)

h= /8 h= /4

h= /4h= /8

h=3 /8

h= (no delay comp.)

h=3 /8

In previous literature:

1 wrong target (2 samples)→ φ′h 6= −∠∠∠GPL(ejhω1Ts)

2 discretization→ inaccuracy: φh 6= φ′h

Alejandro Gómez Yepes DTE, University of Vigo 36 of 66

Page 56: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

78,82-83

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Correction of Zeros

GdPRh

(s) = KPh+KIh ·

·s cos(φ′h)− hω1 sin(φ′h)

s2 + h2ω21

φ′h: target leading angle

φh: actual leading angle

Ideally:

φh = φ′h == −∠∠∠GPL(e

jhω1Ts)

0

0

20

40

60

80

100

120

700 710 720 730 740 750 760 770 780 790

-90

0

90

180

800

Phase (deg)

Frequency (Hz)

Magnitude (dB)

h= /8 h= /4

h= /4h= /8

h=3 /8

h= (no delay comp.)

h=3 /8

In previous literature:

1 wrong target (2 samples)→ φ′h 6= −∠∠∠GPL(ejhω1Ts)

2 discretization→ inaccuracy: φh 6= φ′h

Alejandro Gómez Yepes DTE, University of Vigo 36 of 66

Page 57: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

83-85

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Improvement in φ′h Expression I

Objective:

φ′h ≈∣∣∠GPL(e

jhω1Ts)∣∣

2 samples: inaccurate

Proposed:

φ′h =π

2︸︷︷︸φ′

o

+3

2︸︷︷︸λ

TsGPL(z)

f90 << fs

Alejandro Gómez Yepes DTE, University of Vigo 37 of 66

Page 58: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

83-85

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Improvement in φ′h Expression I

Objective:

φ′h ≈∣∣∠GPL(e

jhω1Ts)∣∣

2 samples: inaccurate

Proposed:

φ′h =π

2︸︷︷︸φ′

o

+3

2︸︷︷︸λ

TsGPL(z)

f90 << fs

h

Alejandro Gómez Yepes DTE, University of Vigo 37 of 66

Page 59: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

83-85

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Improvement in φ′h Expression I

Objective:

φ′h ≈∣∣∠GPL(e

jhω1Ts)∣∣

2 samples: inaccurate

Proposed:

φ′h =π

2︸︷︷︸φ′

o

+3

2︸︷︷︸λ

TsGPL(z)

f90 << fs

h

≈ •Ts

o≈

h

Alejandro Gómez Yepes DTE, University of Vigo 37 of 66

Page 60: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

85-87

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Improvement in φ′h Expression II

1000 1200 1600 1800 2000 2200-180

-90

0

90

180-40

-20020

40

60

80

1400

Phase (deg)

Magnitude (dB)

1400 1420 1440 1460 1480 1500-180

-90

0

90

180-40

0

40

80

Magnitude (dB)

Phase (deg)

Frequency (Hz)

PM

PM0

1

2

3

1000 1200 1400 1600 1800 2000 2200-180

-90

0

90

180

Phase (deg)

Frequency (Hz)

Magnitude (abs)

´Proposed h

2 samples h

´

Greater phase

margin

Open-loop

Closed-loop Less anomalous

peaks

-180

Frequency (Hz)

Alejandro Gómez Yepes DTE, University of Vigo 38 of 66

Page 61: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

85-87

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Improvement in φ′h Expression II

1000 1200 1600 1800 2000 2200-180

-90

0

90

180-40

-20020

40

60

80

1400

Phase (deg)

Magnitude (dB)

1400 1420 1440 1460 1480 1500-180

-90

0

90

180-40

0

40

80

Magnitude (dB)

Phase (deg)

Frequency (Hz)

PM

PM0

1

2

3

1000 1200 1400 1600 1800 2000 2200-180

-90

0

90

180

Phase (deg)

Frequency (Hz)

Magnitude (abs)

´Proposed h

2 samples h

´

Greater phase

margin

Open-loop

Closed-loop Less anomalous

peaks

-180

Frequency (Hz)

Alejandro Gómez Yepes DTE, University of Vigo 38 of 66

Page 62: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

85-87

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Improvement in φ′h Expression II

1000 1200 1600 1800 2000 2200-180

-90

0

90

180-40

-20020

40

60

80

1400

Phase (deg)

Magnitude (dB)

1400 1420 1440 1460 1480 1500-180

-90

0

90

180-40

0

40

80

Magnitude (dB)

Phase (deg)

Frequency (Hz)

PM

PM0

1

2

3

1000 1200 1400 1600 1800 2000 2200-180

-90

0

90

180

Phase (deg)

Frequency (Hz)

Magnitude (abs)

´Proposed h

2 samples h

´

Greater phase

margin

Open-loop

Closed-loop Less anomalous

peaks

-180

Frequency (Hz)

Alejandro Gómez Yepes DTE, University of Vigo 38 of 66

Page 63: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

85-87

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Improvement in φ′h Expression II

1000 1200 1600 1800 2000 2200-180

-90

0

90

180-40

-20020

40

60

80

1400

Phase (deg)

Frequency (Hz)

Magnitude (dB)

1400 1420 1440 1460 1480 1500-180

-90

0

90

180-40

0

40

80

Magnitude (dB)

Phase (deg)

Frequency (Hz)

PM

PM0

1

2

3

1000 1200 1400 1600 1800 2000 2200-180

-90

0

90

180

Phase (deg)

Frequency (Hz)

Magnitude (abs)

´Proposed h

2 samples h

´

Greater phase

margin

Open-loop

Closed-loop Less anomalous

peaks

-180

Alejandro Gómez Yepes DTE, University of Vigo 38 of 66

Page 64: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

87-90

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Correction of φh Error Due to Discretization I1st order Taylor approximation centered at 0

z−1 [ cos (φ′h)−hω1Ts sin (φ′

h) ]− z−2 cos(φ′h)

1storder Taylor

approx. centered at 0

z−1 cos (hω1Ts+φ′h) −z−2 cos(φ′h)

Original delay compensation

s

11

T

z−

+

+

+

+

-

X

outputinput 1

s

11

T z

z

KPh

cos( )h

φ ′

X

X

1sin( )

hhω φ ′

KIh

2

1ω +

-

4 2

1 s

12

h2

h4

Ch

Accurate

s

11

T

z−

+

+

+

+

-

X

output

input 1

s

11

T z

z

KPh

+

-

cos( )h

φ ′

X

X

1 scos( )

hh Tω φ ′+

KIh

2

1ω +

+

4 2

1 s

12

h2

h4

Ch

Ts-1

Optimized

s

11

T

z−

+

-

X

1ω∆

X outputinput 1

s

11

T z

z

KPh

+

-

ah

bh

ch

dh

+

+

2

1ω +

+

4 2

1 s

12

h2

h4

Ch

Ts-1

+

-

+

+

1storder Taylor

approx. centered at 0

1st order Taylor

approximation

centered at hω1n

ah-dh: pre-calculatedconstants

Alejandro Gómez Yepes DTE, University of Vigo 39 of 66

Page 65: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

87-90

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Correction of φh Error Due to Discretization I1st order Taylor approximation centered at 0

z−1 [ cos (φ′h)−hω1Ts sin (φ′

h) ]− z−2 cos(φ′h)

1storder Taylor

approx. centered at 0

z−1 cos (hω1Ts+φ′h) −z−2 cos(φ′h)

Original delay compensation

s

11

T

z−

+

+

+

+

-

X

outputinput 1

s

11

T z

z

KPh

cos( )h

φ ′

X

X

1sin( )

hhω φ ′

KIh

2

1ω +

-

4 2

1 s

12

h2

h4

Ch

Accurate

s

11

T

z−

+

+

+

+

-

X

output

input 1

s

11

T z

z

KPh

+

-

cos( )h

φ ′

X

X

1 scos( )

hh Tω φ ′+

KIh

2

1ω +

-

4 2

1 s

12

h2

h4

Ch

Ts-1

Optimized

s

11

T

z−

+

-

X

1ω∆

X outputinput 1

s

11

T z

z

KPh

+

-

ah

bh

ch

dh

+

+

2

1ω +

+

4 2

1 s

12

h2

h4

Ch

Ts-1

+

-

+

+

1storder Taylor

approx. centered at 0

1st order Taylor

approximation

centered at hω1n

ah-dh: pre-calculatedconstants

Alejandro Gómez Yepes DTE, University of Vigo 39 of 66

Page 66: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

87-90

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Correction of φh Error Due to Discretization I1st order Taylor approximation centered at 0

z−1 [ cos (φ′h)−hω1Ts sin (φ′

h) ]− z−2 cos(φ′h)

1storder Taylor

approx. centered at 0

z−1 cos (hω1Ts+φ′h) −z−2 cos(φ′h)

Original delay compensation

s

11

T

z−

+

+

+

+

-

X

outputinput 1

s

11

T z

z

KPh

cos( )h

φ ′

X

X

1sin( )

hhω φ ′

KIh

2

1ω +

-

4 2

1 s

12

h2

h4

Ch

Accurate

s

11

T

z−

+

+

+

+

-

X

output

input 1

s

11

T z

z

KPh

+

-

cos( )h

φ ′

X

X

1 scos( )

hh Tω φ ′+

KIh

2

1ω +

-

4 2

1 s

12

h2

h4

Ch

Ts-1

Optimized

s

11

T

z−

+

-

X

1ω∆

X outputinput 1

s

11

T z

z

KPh

+

-

ah

bh

ch

dh

+

+

2

1ω +

-

4 2

1 s

12

h2

h4

Ch

Ts-1

+

-

+

+

1storder Taylor

approx. centered at 0

1st order Taylor

approximation

centered at hω1n

ah-dh: pre-calculatedconstants

Alejandro Gómez Yepes DTE, University of Vigo 39 of 66

Page 67: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

90-92

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Correction of Zeros

Correction of φh Error Due to Discretization II

0 10 20 30 40 60 70 80 90 100-60

-50

-40

-30

-20

-10

0

10

50

f1

h

Fundamental frequency (Hz)

Phase lead error (deg)

0 10 20 30 40 50 60 70 80 90 100-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Fundamental frequency (Hz)

Phase lead error (deg)

h

f1h = 45

h = 43

h = 41

zoom

0

48 50 52

0 10 20 30 40 50 60 70 80 90 100-5

-4

-3

-2

-1

0

1

2

Fundamental frequency (Hz)

Phase lead error (deg)

h

f1

A

3

4

5

1st order Taylor approx.

centered at 0

1st order Taylor

approx. centered at

h 1n

0.15

-0.2

f1 = 90 Hzf1 = 25 Hz

Original Accurate

Optimized

Alejandro Gómez Yepes DTE, University of Vigo 40 of 66

Page 68: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

92-96

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Experimental Results

Correction of Poles I

Alejandro Gómez Yepes DTE, University of Vigo 41 of 66

Page 69: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

92-96

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Experimental Results

Correction of Poles II

Alejandro Gómez Yepes DTE, University of Vigo 42 of 66

Page 70: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

97-98

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Experimental Results

Correction of Zeros

Alejandro Gómez Yepes DTE, University of Vigo 43 of 66

Page 71: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

98-99

Digital Resonant Current Controllers for Voltage Source Converters

High Performance Digital Resonant Current Controllers Implemented with Two Integrators

Conclusions

Conclusions of Chapter III

Enhanced digital implementations of resonant controllers based on two

integrators are contributed, with an optimized trade-o� between accuracy

and simplicity.

Correction of poles: improvement in steady-state error

Correction of zeros: improvement in stability margins

The advantages of the originals are maintained: low computational

burden and easy frequency adaptation

The steady-state error as a function of the order of Taylor seriesapproximation of the poles has been studied. A fourth order issatisfactory for most cases

An expression is proposed for the target leading angle, in order toachieve a better compensation of the plant phase lag

Alejandro Gómez Yepes DTE, University of Vigo 44 of 66

Page 72: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Outline

1 Introduction

2 E�ects of Discretization Methods on the Performance of Resonant Controllers

3 High Performance Digital Resonant Current Controllers Implemented with Two

Integrators

4 Analysis and Design of Resonant Current Controllers for Voltage Source Converters

by Means of Nyquist Diagrams and Sensitivity Function

Limitations of Previous Approaches

Analysis of Stability Margins by Means of Nyquist Diagrams

Relation Between Closed-Loop Anomalous Peaks and Sensitivity Function

Minimization of Sensitivity Function

Experimental Results

Conclusions

5 Conclusions

Alejandro Gómez Yepes DTE, University of Vigo 45 of 66

Page 73: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

101

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Limitations of Previous Approaches

Limitations of Previous Approaches

PR controllers

PMP is usually employed as indicator of stability. However, when thereare more 0 dB crossings (e.g., high-power, selective control...), PMP isno longer valid

Usually, phase margins are optimized. However:

the phase margin is a less reliable indicator than the

sensitivity peak 1/ηclosed-loop anomalous peaks are directly related to η,not to phase margin

VPI controllers

No methods have been proposed to measure and optimize proximity to

instability and closed-loop anomalous peaks

Ambiguity in φ′h selection: leading angles of 1 & 2 samples have beenproposed

Alejandro Gómez Yepes DTE, University of Vigo 46 of 66

Page 74: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

104-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers I

-30 -20 -10 0 10 20 40

-30

-20

-10

0

10

20

30

40

Real Axis

Imaginary Axis

0 rad/s

-40-40 30 -1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

fs

Real Axis

Imaginary Axis

zoom

c

GPL(z) (only proportional gain)KPT

KPT de�nes ωc, PMP, GMP and ηP

PMh ≤ PMP, GMh ≤ GMP and ηh≤ ηP

Alejandro Gómez Yepes DTE, University of Vigo 47 of 66

Page 75: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

104-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers IGPL(z) (only proportional gain)KPT

-30 -20 -10 0 10 20 40

-30

-20

-10

0

10

20

30

40

Real Axis

Imag

ina

ry A

xis

0 rad/s

-40-40 30

KP |GPL(z)|T

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

fs

Real Axis

Imagin

ary

Axis

KP |GPL(z)|

c

T

GPL(z)

zoom

== GPL(z)

KPT de�nes ωc, PMP, GMP and ηP

PMh ≤ PMP, GMh ≤ GMP and ηh≤ ηP

Alejandro Gómez Yepes DTE, University of Vigo 47 of 66

Page 76: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

104-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers I

-30 -20 -10 0 10 20 40

-30

-20

-10

0

10

20

30

40

Real Axis

Imaginary Axis

0 rad/s

-40-40 30

KP |GPL(z)|T

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

fs

Real Axis

Imaginary Axis

KP |GPL(z)|

cPMP

P

GMP

T

GPL(z)

zoom

== GPL(z)

GPL(z) (only proportional gain)KPT

KPT de�nes ωc, PMP, GMP and ηP

PMh ≤ PMP, GMh ≤ GMP and ηh≤ ηP

Alejandro Gómez Yepes DTE, University of Vigo 47 of 66

Page 77: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

104-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers IGPL(z) (only proportional gain)KP

[KP +KI R1 (z)]GPL(z) (proportional+resonant term)d

h

T

T h

-30 -20 -10 0 10 20 40

-30

-20

-10

0

10

20

30

40

Real Axis

Imaginary Axis

0 rad/s

-40

(∞)-40 30

KP |GPL(z)|T

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

fs

Real Axis

Imaginary Axis

KP |GPL(z)|

(∞)

cPMP

P

GMP

T

GPL(z)

zoom

== GPL(z)

KPT de�nes ωc, PMP, GMP and ηP

PMh ≤ PMP, GMh ≤ GMP and ηh≤ ηP

Alejandro Gómez Yepes DTE, University of Vigo 47 of 66

Page 78: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

104-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers IGPL(z) (only proportional gain)KP

[KP +KI R1 (z)]GPL(z) (proportional+resonant term)d

h

T

T h

-30 -20 -10 0 10 20 40

-30

-20

-10

0

10

20

30

40

Real Axis

Imaginary Axis

0 rad/s

-40

h 1

(∞)-40 30

KP |GPL(z)|T

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

fs

Real Axis

Imaginary Axis

h= /2+ h+

h 1

KP |GPL(z)|

(∞)

cPMP

P

GMP

T

+ GPL(e )

GPL(z)

zoom

KIh

=jh Ts

= GPL(z)

KPT de�nes ωc, PMP, GMP and ηP

PMh ≤ PMP, GMh ≤ GMP and ηh≤ ηP

Alejandro Gómez Yepes DTE, University of Vigo 47 of 66

Page 79: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

104-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers IGPL(z) (only proportional gain)KP

[KP +KI R1 (z)]GPL(z) (proportional+resonant term)d

h

T

T h

-30 -20 -10 0 10 20 40

-30

-20

-10

0

10

20

30

40

Real Axis

Imaginary Axis

0 rad/s

-40

h 1

(∞)-40 30

KP |GPL(z)|T

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

fs

Real Axis

Imaginary Axis

h= /2+ h+

h 1

KP |GPL(z)|

(∞)

PMh

h

cPMP

P

GMh

GMP

T

+ GPL(e )

GPL(z)

zoom

KIh

=jh Ts

= GPL(z)

KPT de�nes ωc, PMP, GMP and ηP

PMh ≤ PMP, GMh ≤ GMP and ηh≤ ηP

Alejandro Gómez Yepes DTE, University of Vigo 47 of 66

Page 80: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

106-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers II

GMh > 0 and PMP > 0, but system is unstable

GMh < 0, but system is stable

φ′h = 0 and hω1 > ωc, but system is stable

-1.5 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Imaginary Axis

h

(∞)

15

20

25

30

KP

-1

GM <0h

PM >0P

GM >0h

T

Alejandro Gómez Yepes DTE, University of Vigo 48 of 66

Page 81: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

106-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers II

GMh > 0 and PMP > 0, but system is unstable

GMh < 0, but system is stable

φ′h = 0 and hω1 > ωc, but system is stable

-1.5 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Imaginary Axis

h

(∞)

15

20

25

30

KP

-1

GM <0h

PM >0P

GM >0h

T

Alejandro Gómez Yepes DTE, University of Vigo 48 of 66

Page 82: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

106-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers II

GMh > 0 and PMP > 0, but system is unstable

GMh < 0, but system is stable

φ′h = 0 and hω1 > ωc, but system is stable

-1.5 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Imaginary Axis

h

(∞)

15

20

25

30

KP

-1

GM <0h

PM >0P

GM >0h

T

Alejandro Gómez Yepes DTE, University of Vigo 48 of 66

Page 83: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

106-107

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers II

GMh > 0 and PMP > 0, but system is unstable

GMh < 0, but system is stable

φ′h = 0 and hω1 > ωc, but system is stable

-1.5 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Imaginary Axis

h

(∞)

15

20

25

30

KP

-1

GM <0h

PM >0P

GM >0h

T

Alejandro Gómez Yepes DTE, University of Vigo 48 of 66

Page 84: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

106,108

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers III

ηh provides more information about the actual proximity to

instability than PMh

-1.5 -1 -0.5 0 0.5-1.5

-1

-0.5

0

0.5

Real Axis

Imaginary Axis

PMh=PMh=22.3ºh=0.24

h=0.40

(∞)

h=0.8727 rad´

h=0 rad´

Alejandro Gómez Yepes DTE, University of Vigo 49 of 66

Page 85: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

106-108

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers IV

φ′h = −∠GPL(ejhω1Ts) is usually pursued, but it is not the optimum

Objective: φ′h such that ηh becomes maximum, i.e., ηh =ηP ∀h

Real Axis

Imaginary Axis

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-0.5

0

0.5

1

1.5

h=0.32

h= P=0.49

PMh=46.7ºPMh=43º

h=0.8874 radh= GPL(e )

jh Ts1

´

(∞)

-1

´ -

Alejandro Gómez Yepes DTE, University of Vigo 50 of 66

Page 86: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

106-108

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of PR Controllers V

η de�nes:

Proximity to instability

Oscillations during transients (damping)

Maximum steady-state error

max{|S(z)|}= 1/η⇐

{|D(z)| ≤ηS(z) = E(z)/I∗(z) = 1/D(z)

ηP is set by KPT :

KPT = F1 (ηP, Ts, RF, LF )

Alejandro Gómez Yepes DTE, University of Vigo 51 of 66

Page 87: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

110-112

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Analysis of Stability Margins by Means of Nyquist Diagrams

Nyquist Diagrams of VPI Controllers

|GPL(z)| is cancelledφh = φ′h + arctan(hω1LF/RF)

}Greater stability margins and easier

design than PR

0

-1-1.5 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0.5

1

1.5

Real Axis

Imagin

ary

Axis

GM >>0h

(∞)

h

PM ≈h h

h= /2+ h++ GPL(e )-jh Ts

-0.15 -0.1 -0.05 0.05 0.1 0.15-0.1

0.05

0.1

0.15

50

Kh

100

150

200

Real Axis

Imag

ina

ry A

xis

(∞)-0.05

0

0

zoom

Stable ⇔ γh > 0 ∀h

Alejandro Gómez Yepes DTE, University of Vigo 52 of 66

Page 88: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

113,115-117

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Relation Between Closed-Loop Anomalous Peaks and Sensitivity Function

Relation in PR Controllers

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-0.5

0

0.5

1

1.5

Imaginary Axis

Real Axis

B

A (∞)

-1

D(z)

D(z)

c

A: hω1

B: D(e jωBTs) = ηh

01

2

3

4

5

67

8

Magnitude (abs)

600 610 620 630 640 650 660 670 680 6900

45

90

135

180

225

Phase (deg)

Frequency (Hz)

B

A

700

S(z)=E(z)/I*(z)

012

3

4

5

678

Magnitude (abs)

600 610 620 630 640 650 660 670 680 690-135

-90

-45

0

45

Phase (deg)

Frequency (Hz)700

B

A

CL(z)=I(z)/I*(z)

Alejandro Gómez Yepes DTE, University of Vigo 53 of 66

Page 89: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

113,115-117

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Relation Between Closed-Loop Anomalous Peaks and Sensitivity Function

Relation in PR Controllers

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-0.5

0

0.5

1

1.5

Imaginary Axis

Real Axis

h

B

A (∞)

-1

D(z)

D(z)

c

A: hω1

B: D(e jωBTs) = ηh

01

2

3

4

5

67

8

Magnitude (abs)

600 610 620 630 640 650 660 670 680 6900

45

90

135

180

225

Phase (deg)

Frequency (Hz)

B

A

700

|S(e )|j BTs

= 1/ h

S(z)=E(z)/I*(z)

012

3

4

5

678

Magnitude (abs)

600 610 620 630 640 650 660 670 680 690-135

-90

-45

0

45

Phase (deg)

Frequency (Hz)700

B

A

|CL(e )|j BTs

1/ h

CL(z)=I(z)/I*(z)

Alejandro Gómez Yepes DTE, University of Vigo 53 of 66

Page 90: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

113,115-117

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Relation Between Closed-Loop Anomalous Peaks and Sensitivity Function

Relation in VPI Controllers

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

Imaginary Axis

Real AxisA (∞)

B

D(z)

D(z)h

A: hω1

B: D(e jωBTs) = ηh

00.5

1

1.5

2

2.5

3

3.54

Magnitude (abs)

1300 1310 1320 1330 1340 1350 1360 1370 1380 1390-45

0

45

90

135

180

Phase (deg)

Frequency (Hz)1400

B

A

|S(e )|j BTs

= 1/ h

S(z)=E(z)/I*(z)

0

0.5

11.5

2

2.5

3

3.54

1300 1310 1320 1330 1340 1350 1360 1370 1380 1390-180

-135

-90

-45

0

45

Magnitude (abs)

Phase (deg)

Frequency (Hz)1400

B

A

|CL(e )|j BTs

1/ h

CL(z)=I(z)/I*(z)

Alejandro Gómez Yepes DTE, University of Vigo 54 of 66

Page 91: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

117-118

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Minimization of Sensitivity Function

Minimization of S(z) in PR Controllers

Objective: φ′h such that ηh becomes maximum, i.e., ηh =ηP ∀h

Solution: φ′h = −∠GPL(ejhω1Ts) + ∠D(ejhω1Ts)

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Imaginary Axis

GPL(z)KPDesired asymptote at h 1

D(e )jh 1Ts

GPL(e )jh 1Ts

KP GPL(e )jh 1Ts

D(e )jh 1Ts

h= D(e )+jh 1Ts

T

T

Alejandro Gómez Yepes DTE, University of Vigo 55 of 66

Page 92: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

118-119

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Minimization of Sensitivity Function

Minimization of S(z) in VPI Controllers

Optimum: φ′h = 32Ts ⇐

{max. ηh ⇒ γh = π

2⇒ φh = −∠GPL(e

jhω1Ts)φh = φ′h + arctan(hω1LF/RF)

0

-1-1.5 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0.5

1

1.5

Real Axis

Imagin

ary

Axis

h

PM ≈ /2h

h≈ /2

(∞)

≈1

Alejandro Gómez Yepes DTE, University of Vigo 56 of 66

Page 93: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

119-120

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Experimental Results

Test I

Objective of Test I: prove the sensitivity minimization around hω1 achieved bythe proposed φ′h expressions

Alejandro Gómez Yepes DTE, University of Vigo 57 of 66

Page 94: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

120-123

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Experimental Results

Test I (PR Controller)

650 Hz 656 Hz

Alejandro Gómez Yepes DTE, University of Vigo 58 of 66

Page 95: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

123-124

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Experimental Results

Test I (VPI Controller)

1300 Hz 1303 Hz

Alejandro Gómez Yepes DTE, University of Vigo 59 of 66

Page 96: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

125-129

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Experimental Results

Test II (Transient)

Alejandro Gómez Yepes DTE, University of Vigo 60 of 66

Page 97: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

125-129

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Experimental Results

Test II (Transient)

Alejandro Gómez Yepes DTE, University of Vigo 60 of 66

Page 98: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

123-127

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Experimental Results

Test II (Steady-State)

Alejandro Gómez Yepes DTE, University of Vigo 61 of 66

Page 99: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

128

Digital Resonant Current Controllers for Voltage Source Converters

Analysis and Design of Resonant Current Controllers for VSCs by Nyquist Diagrams and Sensitivity Function

Conclusions

Conclusions of Chapter IV

PR and VPI controllers, including delay compensation, are analyzed mymeans of Nyquist diagrams. The e�ect of each freedom degree on thetrajectories is studied, and their relation with the sensitivity function andits peak value is assessed

Optimization of the sensitivity peak permits to achieve a betterperformance and stability in resonant controllers than optimization of thegain or phase margins

A systematic method, supported by closed-form analytical expressions, is

proposed to optimize

stability

avoidance of closed-loop anomalous peaks

transient response (greater damping of frequencies at which the

trajectory is closer to the critical point)

Alejandro Gómez Yepes DTE, University of Vigo 62 of 66

Page 100: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Digital Resonant Current Controllers for Voltage Source Converters

Conclusions

Outline

1 Introduction

2 E�ects of Discretization Methods on the Performance of Resonant Controllers

3 High Performance Digital Resonant Current Controllers Implemented with Two

Integrators

4 Analysis and Design of Resonant Current Controllers for Voltage Source Converters

by Means of Nyquist Diagrams and Sensitivity Function

5 Conclusions

Conclusions

Future Research

Alejandro Gómez Yepes DTE, University of Vigo 63 of 66

Page 101: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

131

Digital Resonant Current Controllers for Voltage Source Converters

Conclusions

Conclusions

Conclusions

An exhaustive study and comparison of discretization techniques applied

to resonant controllers has been presented, in terms of

steady-state error

stability

Implementations based on two integrators, that overcome the issues of

the original ones, have been proposed. They achieve an optimized

tradeo� between

accuracy

simplicity

It is proved that to minimize the sensitivity peak permits a better

performance and stability in resonant controllers than to maximize the

gain or phase margins. A systematic method is proposed to obtain

high stability

reduced closed-loop anomalous peaks

reduced oscillations in transients

Alejandro Gómez Yepes DTE, University of Vigo 64 of 66

Page 102: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

132

Digital Resonant Current Controllers for Voltage Source Converters

Conclusions

Future Research

Future Research

Optimization of transient response for distributed power generationsystems

Torque ripple minimization

Injection of current harmonics in multi-phase drives for fault-toleranceoperation and increase of average torque

Active compensation of undesired current components caused bydead-time in multi-phase converters

Alejandro Gómez Yepes DTE, University of Vigo 65 of 66

Page 103: Digital Resonant Current Controllers for Voltage Source ...agyepes.webs.uvigo.es/files/Thesis_slides.pdf · Digital Resonant Current Controllers for Voltage Source Converters Introduction

Pag.

132

Digital Resonant Current Controllers for Voltage Source Converters

End

Digital Resonant Current Controllers for Voltage

Source Converters

Author: Alejandro Gómez Yepes

Director: Jesús Doval Gandoy

Department of Electronics Technology, University of Vigo,

14 December 2011

Dissertation submitted for the degree ofDoctor of Philosophy at the University of Vigo

�Doctor Europeus� mention

Alejandro Gómez Yepes DTE, University of Vigo 66 of 66