Differential Equations Complete Manual

download Differential Equations Complete Manual

of 71

description

A Brief manual in studying Differential Equation.

Transcript of Differential Equations Complete Manual

  • BASIC CONCEPTS OF DIFFERENTIAL EQUATIONS

    Dependent Variable and the Independent Variable

    Definition:

    By a Differential Equation (DE), we shall mean any equation that involves the derivatives

    or differential of a function or functions.

    The following are examples of differential equations:

    Common symbols/notations used to denote the derivative of a function are:

    The numerator y of dy

    dx indicates the dependent variable and the denominator x is the

    independent variable.

    Example:

    Identify the dependent variable (DV) and the independent variable/s (IV) of the following

    equations.

    DV IV

    22

    2

    2 2

    2 22

    2 2

    32

    2

    dycos x

    dx

    d yk y 0

    dx

    (x y )dx 2xydy 0

    u u uh

    t x y

    d y dy7 8y 0

    dx dx

    ' "

    x x

    df dyD f ,D y, , , y , y

    dx dx

    2

    2

    2

    '

    da1) 4ab b a b

    db

    dx d x2) 5x x y x y

    dy dy

    dy3) y cos x 4 y x

    dx

    y y4) a b ab y a,b

    a b

    v v v5) 0 v x, y, z

    x y z

  • Classification of Differential Equations

    Ordinary Differential Equations (ODE) are equations on which the dependent variable

    depends on only one independent variable.

    The notations usually used to express ODE are:

    Examples of ODE are the following:

    Partial Differential Equations (PDE) are equations on which the dependent variable depends

    on two or more independent variables.

    The notation used to denote PDE are:

    Examples of PDE are the following:

    2' "

    2

    dy d y df, y , , y , ,etc.

    dx dx dw

    " 2 '

    22

    2

    dx1) 2y x 0

    dy

    2) xy 1 x 2x 1 y 0

    da3) 5b 4

    db

    d y dy4) 5x 3x ycos x 0

    dx dx

    5) ydx 2x xy 3 dy 0

    2

    2

    f y y, .

    x x x

    2 2

    2 2

    2 2

    z z1) z

    x y

    u u u2)

    a b c

    w3) 10xy yz

    x

    y y4) 4

    t x

    f f5) x y 3f

    x y

  • Order and Degree of a Differential Equation

    The ORDER of a differential equation is the order of the highest ordered derivative

    involved in the equation.

    Example: Give the order and degree of the following equations.

    The DEGREE of a differential equation refers to the exponent of the highest ordered

    derivative involved in the equation. If the exponent of the highest ordered derivative is one (1),

    the degree of the equation is first degree. If the exponent is two (2), the degree is second degree.

    If the exponent is three (3), the degree is third degree and so on.

    If the differential equation is written as polynomial, then the highest power/exponent to

    which the highest ordered derivative appears in the equation is called the degree of the equation.

    Example: State the degree of the following equations.

    '

    " ' 2

    3

    3

    2

    2

    3 4'" ' x

    1) y 5xy 1 First order

    2) y 2y 8y x cos x Second order

    d y dy3) 3 2y 0 Third order

    dx dx

    v v4) 2xy 0 Second order

    y x

    5) y 5x y e 1 Third order

    3 5'" " '

    3

    2 6

    64 22

    2

    2

    2

    222

    2

    2

    2

    dy1) xy cos x First degree

    dx

    2) y xy 2y y 0 First degree

    dy3) 3t sin t y 0 Third degree

    dt

    dy d y4) 5x cos x 0 Sixth degree

    dx dx

    d y dy5) 1

    dx dx

    d y dy1

    dx dx

    d y dy dy1 2

    dx dx dx

    2

    First degree

  • Linearity of Differential Equations

    Linear Differential Equations are equations in which the dependent variable and its

    derivative appear to the first degree only and the coefficients are either constant or function only

    of the independent variable.

    Example: Identify whether the equation is linear or non-linear.

    PRIMITIVES OR SOLUTIONS

    Concepts of Primitives

    Definition:

    Primitive or solution is any non-derivative relation between the variables of a

    differential equation that satisfies the equation.

    If a solution of an equation of order n involves n arbitrary constants, it is called the

    general solution. Any solution that is obtained from the general solution by assigning values to

    the arbitrary constants is called the particular solution.

    Example:

    2 '" 2 " ' x 2

    2 ' 2

    " ' x

    4" ' x

    1) x y x 2 y sin x y e y x 1 Linear

    dx x2) 3 2y Linear

    dy y

    3) x y 2xy x 1 Non linear

    4) y 5xy e y Linear

    5) y 5x y e y Non linear

    "1) Show that y A cos 2x Bsin 2x is the general solution of y 4y 0, where A and B are

    arbitrary constants. Also find the particular solution of it.

    Solution :

    Since y A cos 2x Bsin 2x contains two arbitrary constants, it is the general soluti

    '

    on

    of the second order differential equation, if it is a solution. We can see that it is a solution by

    differentiating twice the given non derivative equation.

    Differentiating the equation

    y A cos 2x Bsin 2x

    first derivative

    y 2Asin 2x

    2Bcos 2x

  • "

    "

    "

    "

    secondderivative

    y 4Acos2x 4Bsin2x

    or

    y 4 Acos2x Bsin2x

    y 4y

    y 4y 0

    Hence, y Acos2x Bsin2xisa solution.

    Particular solutioncan beobtainedbyassigning values to thearbitraryconstants A

    andB.For instance, lettingA 2

    andB 1, then

    y 2cos2x sin2x

    isa particular solutionof thegivendifferential equation.

    2x 3x " '

    1 2 1 2

    2x 3x

    1 2

    '

    1

    2)Showthat y Ce C e is thegeneral solutionof y y 6y 0whereC andC are

    arbitraryconstants.

    Solution:

    Since twoconstantsare tobeeliminated, obtain the twoderivativesof

    y Ce C e (1)

    first derivative

    y 2Ce

    2x 3x2

    " 2x 3x

    1 2

    1 2

    2x 3x

    ' 2x 3x

    " 2x 3x

    2x 3x 2x

    3x

    3C e (2)

    secondderivative

    y 4Ce 9C e (3)

    eliminatingC andC usingdeterminants

    y e e

    y 2e 3e 0 (4)

    y 4e 9e

    sincee ande can not bezero, equation (4) maybe written, with thefactorse

    ande r

    '

    "

    ' '

    " "

    emoved, as

    y 1 1

    y 2 3 0

    y 4 9

    re arranging

    y 1 1 y 1

    y 2 3 y 2 0

    y 4 9 y 4

  • Condition:

    If a relation between two variables involves "n" arbitrary constants, those constants are

    essential if they cannot be replaced by a smaller number of constants.

    For the following primitives, identify the number of essential constants, where x and y

    are the variables. A, B, and C are the arbitrary constants.

    In (1), there is only one essential arbitrary constant since A + B is no more than a single

    arbitrary constant and can be replaced by a smaller number of constant, say L, without affecting

    the given primitive, and it can be written as

    y = L + x2

    In (2), again only one arbitrary constant is essential since y = Ae(x+B)

    can be written as

    y = Aexe

    B and Ae

    B is no more than a single arbitrary constant, and may be replaced by a smaller

    number of constant, say G, then the given primitive can be reduced to

    y = Gex

    In (3), no constants can be combined and replaced by a single constant, then all of them

    are essential.

    Obtaining Differential Equation from the General Solution

    Rule:

    To find the differential equation, differentiate the given relation; differentiate the first

    derived equation; differentiate the second derived equation; until the number of derived

    equations is equal to the number of essential constants in the given relation.

    Eliminate the constants using the given relation and the derived equations.

    Reminder:

    Before differentiating the given relation, count first the essential constants involved in

    order to know the required number of derivatives.

    number of constants = number of derivatives

    " ' " '" '

    " '

    fromwhich thedifferential equation

    18y 3y 4y 2y 12y 9y 0

    30y 5y 5y 0

    y y 6y 0

    2

    x B

    2

    1) y A B x

    2) y Ae

    3) y Ax Bx C

  • Example:

    '

    1) Solve the differential equation of

    y A cos 2x

    Solution :

    y A cos 2x is a relation with one arbitrary constant, so only the first derivative is

    necessary.

    y A cos 2x (1)

    first derivative

    y 2Asin 2x (2)

    from (1)

    yA

    cos 2x

    substitute the val

    '

    '

    '

    ue of A to (2), then simplify

    yy 2 sin 2x

    cos 2x

    sin 2xy 2y 2y tan 2x

    cos 2x

    y 2y tan 2x 0 differential equation

    4 2

    4 2

    ' 3

    " 2

    '"

    2) Solve the differential equation of

    y x Ax Bx C

    Solution :

    y x Ax Bx C 3 constants, 3 derivatives

    first derivative

    y 4x 2Ax B

    second derivative

    y 12x 2A

    third derivative

    y 24x

    The last equation does not contain any con

    '"

    stant, therefore the differential equation of

    the given relation is

    y 24x differential equation

  • x y

    x + C

    2x 2x

    1 2

    2x 2x

    1 2

    ' 2x 2x 2x 2x

    1 1 2 2

    ' 2x 2x

    1 2

    3) Solve the differential equation of

    y C e cos3x C e sin 3x

    Solution :

    y C e cos3x C e sin 3x 2 constants, 2 derivatives

    first derivative

    y 3C e sin 3x 2C e cos3x 3C e cos3x 2C e sin 3x

    y 2 C e cos3x C e sin 3

    2x 2x

    1 2

    ' 2x 2x

    1 2

    ' 2x 2x

    1 2

    " ' 2x 2x 2x 2x

    1 1 2 2

    " ' 2x 2x 2x

    1 2 1

    x 3C e sin 3x 3C e cos3x

    y 2y 3C e sin 3x 3C e cos3x

    y 2y 3C e sin 3x 3C e cos3x

    second derivative

    y 2y 9C e cos3x 6C e sin 3x 9C e sin 3x 6C e cos3x

    y 2y 9 C e cos3x C e sin 3x 2 3C e sin 3x

    2x

    2

    " ' '

    " ' '

    " '

    3C e cos3x

    y 2y 9y 2 y 2y

    y 2y 9y 2y 4y

    y 4y 13y 0 differential equation

    '

    2 2

    4) Solve the differential equation of

    y x sin x C

    Solution :

    y x sin x C 1constant,1derivative

    y x sin x C (1)

    first derivative

    y x cos x C sin x C (2)

    from (1)

    y oppositesin x C

    x hypotenuse

    by Pythagorean theorem

    x y adjacos x C

    x

    cent

    hypotenuse

  • Families of Curves

    An equation involving a parameter, as well as one or both of the coordinates of a point in

    a plane, may represent a family of curves, one curve corresponding to each value of the

    parameter.

    For instance, the equation

    x2 + (y-k)

    2 = r

    2

    may be interpreted as the equation of a family of circles having its center anywhere on the y-axis

    and its radius of any magnitude.

    Figure below shows several members of this family of circles.

    2 2'

    ' 2 2

    ' 2 2

    ' 2 2

    22' 2 2

    2' ' 2 2 2 2

    22 ' ' 2 4 2 2

    then

    x y yy x

    x x

    yy x y

    x

    xy x x y y

    xy y x x y

    squaring both sides of the equation

    xy y x x y

    xy 2xyy y x x y

    x y 2xyy y x x y differential equation

  • If k and r in equation x2 + (y-k)

    2 = r

    2 are to be treated as arbitrary constants and

    eliminated, the result will be a differential equation of the family of curves represented by that

    equation. We shall eliminate both k and r and obtain a second order differential equation for the

    family of circles.

    Example:

    2) Find the differential equation of the family of circles with centers on the line y = x.

    Solution:

    22 2

    '

    '

    " ' '

    2" '

    '

    1) Find the differential equation of the family of circles having an equation of

    x y k r

    Solution :

    first derivative

    2x 2 y k y 0

    x y k y 0 (1)

    second derivative

    1 y k y y y 0

    1 y k y y 0 (2)

    from (1)

    xk y (3)

    y

    substitute (3)

    2" '

    '

    3' " '

    '

    3' " '

    int o (2)

    x1 y y y y 0

    y

    y xy y0

    y

    therefore the differential equation that will satisfy the equation for the family of circles is

    y xy y 0 differential equation

    y = x

    y

    x

  • 3) Find the differential equation of the family of central conics with center at the origin and

    vertices on the coordinate axes.

    2 2 2

    '

    '

    " ' '

    The equation of the family of circles is

    x h y k r

    but h k sin ce y x; h and r being an arbitrary constants. We are dealing with two parameter family.

    first derivative

    2 x h 2 y h y 0

    x h y h y 0 (1)

    second derivative

    1 0 y h y y y 0

    2" '

    ' '

    '

    '

    '2

    " '

    '

    ' '2

    " '

    '

    2' " ' " ' ' '

    '

    1 y h y y 0 (2)

    from (1)

    x h yy hy 0

    x yyh (3)

    1 y

    substitute (3) int o (2)

    x yy1 y y y 0

    1 y

    y 1 y x yy1 y y 0

    1 y

    1 y yy 1 y y x yy y 1 y0

    1 y

    therefore the desired differential equat

    2' " ' " ' ' '

    2' ' "

    ion is

    1 y yy 1 y y x yy y 1 y 0

    simplifying the result

    1 y 1 y y x y 0 differential equation

  • 2 2

    2 2

    2 2 2 2 2 2

    2 ' 2

    2 ' 2

    22 " 2 ' 2

    Solution :

    The equation of the family is

    x y1

    a b

    where a and b being an arbitrary constants. Re arranging the equation

    x b y a a b

    first derivative

    2xb 2yy a 0

    xb yy a 0 (1)

    second derivative

    b yy a y a 0 (2)

    from (1

    ' 22

    ' 22

    " 2 ' 2

    2' 2 " 2 ' 2

    22 ' " '

    2" ' '

    )

    yy ab (3)

    x

    substitute (3) int o (2)

    yy ayy a y a 0

    x

    yy a xyy a x y a 0

    a yy xyy x y 0

    xyy x y yy 0 differential equation

  • SOLUTION OF FIRST ORDER, FIRST DEGREE

    ORDINARY DIFFERENTIAL EQUATION

    SEPARATION OF VARIABLES

    A first order, first degree differential equation is separable if it can be expressed in the

    form

    f1(x)dx + f2(y)dy = 0

    where f1(x) is a function only of x and f2(y) is a function only of y.

    The variables x and y can be replaced by any two other variables without affecting

    separability.

    32

    32

    2

    32

    2

    32

    2 2

    Example 1. Separate the var iables of

    yxy dx dy 0

    cos x

    Solution :

    yM xy and N

    cos x

    cos xTo separate the var iables, multiply the whole equatiion by .

    y

    y cos xxy dx dy 0

    cos x y

    cos x y cos xxy 0

    cos xy y

    x

    1 2

    cos xdx ydy 0,

    var iables are separated where f (x) x cos x and f (y) ydy

    Example 2. Separate the var iables of

    5 t dx x 3 dt 0

    Solution :

    M 5 t and N x 3

    To separate the var iables, divide the equation by 5 t x 3

    5 t x 3dx dt

    5 t x 3 5 t x 3

    1 2

    0

    dx dt0

    x 3 5 t

    1 1Variables are separated with f (x) and f (y)

    x 3 5 t

  • 2

    2

    2

    2

    2

    Example 3. Separate the var iables of

    4dy ydx x dy

    Solution : Before separating the var iables, collect and combine first the coefficients of dx and dy.

    4dy ydx x dy

    4dy ydx x dy 0

    4 x dy ydx 0 resulting equation,

    M y and N 4 x

    To se

    2

    2

    2 2

    2

    1 22

    3 2

    parate the var iables, divide the resulting equation by 4 x y

    4 x ydy dx 0

    4 x y 4 x y

    dy dx0

    y 4 x

    1 1Variables are separated with f (x) and f (y)

    y4 x

    Example 4. Separate the var iables of

    x dy xydx x dy 2ydx

    Solution : Collecti

    3 2

    3 2

    3 2

    3 2

    3 2 3 2

    3 2

    ng the coeefficients of dy and dx, and combining it will give :

    x x dy xy 2y dx 0

    x x dy y x 2 dx 0 resulting equation

    To separate the var iables, divide the resulting equation by y x x .

    x x y x 2dy dx 0

    y x x y x x

    x 2dyd

    y x x

    1 23 2

    x 0

    x 2 1Variables are separated with f (x) and f (y)

    yx x

  • The purpose of separating the variables is to make the equation integrable, since the

    process of integration is to be used to obtain the solution of the equation. A solution containing

    arbitrary constant(s) is called the general solution and solution containing no arbitrary

    constant(s) is called the particular solution.

    32

    Example 1. Obta in the general solution of

    yxy dx dy 0

    cos x

    Solution :

    Separating the var iable gives,

    x cos xdx ydy 0

    Integrating

    x cos xdx ydy 0

    x cos xdx int egration by parts

    u x dv cos xdx

    du dx v sin x

    udv uv vdu

    x cos xdx x sin

    2

    x sin xdx

    x sin x cos x

    x cos xdx ydy 0

    yx sin x cos x C general solution

    2

    2 2

    2 2

    Example 2.Solve thegeneral solution and the particular solution if x 0, y 1.

    dy x

    dx y 2

    Solution:

    y 2 dy xdx

    y 2 dy xdx 0

    y 2 dy xdx 0

    y x2y C

    2 2

    y 4y x C general solution

  • 2 2

    2 2

    for x 0, y 1

    1 4 1 0 C

    C 5

    then y 4y x 5 particular solution

    2

    Example 3. Solve the general solution of

    dyxy 2x

    dx

    Solution :

    Separating the var iables and factoring the right side of equation gives,

    dyx y 2

    dx

    dy x y 2 dx

    dy x y 2 dx 0

    dyxdx 0

    y 2

    int egrating

    dy. xdx 0

    y 2

    xln y 2 C general s

    2

    olution

    Example 4. Solve the general solution of

    5 t dx x 3 dt 0

    Solution :

    Separating the var iables

    dx dt0

    x 3 5 t

    dx dt0

    x 3 5 t

    ln x 3 ln t 5 C

    applying the properties of natural log arithms

    ln x 3 5 t ln C

    x 3 5 t C general soluti

    on

  • HOMOGENEOUS EQUATIONS

    A differential equation of the first order and first degree,

    Mdx + Ndy = 0

    is said to be homogeneous if M and N are homogeneous of the same degree in x and y.

    We say that f(x,y), defines a homogeneous function of degree n in x and y if and only if

    f(x,y) = kn f(x,y)

    for all k>0.

    A homogeneous equation Mdx + Ndy = 0 can be transformed to separable equation by

    changing the variable.

    Suggested substitution equations are:

    y = vx or x = vy

    2

    2 2 2 2

    2 2 2

    Example 1. Deter min e whether f (x, y) xy y is hom ogeneous and if so, find itsdeg ree.

    Solution :

    f (kx,ky) (kx)(ky) (ky) k (xy) k y

    k (xy y ) k f (x, y)

    The function is hom ogeneous of deg ree 2.

    Example 2. Deter min e whether f (x, y)

    2 2

    2 2 2 2 2 2 2 2 2

    2 2

    x

    3 2 y

    x y is hom ogeneous and if so, find its deg ree.

    Solution :

    f (kx,ky) (kx) (ky) k x k y k (x y )

    k x y kf (x, y)

    The function is hom ogeneous of deg ree 1.

    Example 3. Deter min e whether f (x, y) x xy e is hom ogeneous and if so

    kx x

    3 2 3 3 2 2ky y

    x x

    3 3 3 2 3 3 2 3y y

    , find its deg ree.

    Solution :

    f (kx,ky) (kx) (kx)(ky) e k x (kx)(k y )e

    k x k xy e k (x xy e ) k f (x, y)

    The function is hom ogeneous of deg ree 3.

  • Example 4. Solve the general solution of a given hom ogeneous equation

    xdy y x dx

    Solution :

    Usin g the substitution equation

    y vx and dy vdx xdv

    then

    xdy y x dx

    x vdx xdv vx x dx

    x vdx xdv x v 1 dx

    vdx xdv v 1 dx 0

    combining the coeffici

    ents of dx

    v v 1 dx xdv 0

    dx xdv 0 ; var iables are separable

    int egrating term by term

    dxdv 0

    x

    ln x v C

    ybut v

    x

    yln x C

    x

    x ln x y Cx general solution

    2 2

    2 2

    2 2 2

    2 2 2

    2

    2 2

    Example 5. Solve the general solution of

    xydy x y dy 0

    Solution :

    Usin g the substitution equation

    y vx and dy xdv vdx

    then

    xydy x y dy 0

    x vx xdv vdx x x v dx 0

    x v xdv vdx x 1 v dx 0

    v xdv vdx 1 v dx 0

    vxdv v dx 1 v dx 0

  • 2 2

    2

    2

    2

    2

    2

    2 2 2

    combining the coefficients of dx

    v 1 v dx vxdv 0

    dx vxdx 0

    separating the var iables

    dxvdv 0

    x

    dxvdv 0

    x

    vln x C

    2

    2ln x v 2C C

    ybut v

    x

    y2ln x C

    x

    y2ln x C

    x

    y 2x ln x Cx general solution

    2

    Example 6. Solve the general solution of

    x xy dy ydx 0

    Solution :

    Usin g the substitution equation

    x vy and dx vdy ydv

    then

    x xy dy ydx 0

    vy vy y dy y vdy ydv 0

    vy vy dy y vdy ydv 0

    vy y v dy y vdy ydv 0

    y v v dy y vdy ydv 0

    v v dy vdy y

    dv 0

    combining the coefficients of dy

    v v v dy ydv 0

    vdy ydv 0

  • 1/ 2

    1/ 2

    1/ 2

    1/ 2

    1/ 2

    separating the var iables

    dy dv dy dv0 or 0

    y y vv

    dyv dv 0

    y

    int egrating

    dyv dv 0

    y

    ln y 2v C

    xbut v

    y

    xln y 2 C

    y

    xor ln y 2 C general solution

    y

    2 2

    2 2 2

    2 2

    2

    2

    Example 7. Solve the general solution of

    xdy y x y dx 0

    Solution :

    Usin g the substitution equation

    y vx and dy vdx xdv

    then

    x vdx xdv vx x x v dx 0

    x vdx xdv vx x 1 v dx 0

    x vdx xdv vx x 1 v dx 0

    x vdx xdv x v 1 v dx 0

    vdx xdv

    2

    2

    2

    v 1 v dx 0

    combining the coefficients of dx

    v v 1 v dx xdv 0

    1 v dx xdv 0

  • 2

    2

    1

    1

    separating the var iables

    dx dv0

    x 1 v

    int egrating

    dx dv0

    x 1 v

    ln x sin v 0

    ybut v

    x

    yln x sin C general solution

    x

    x x

    y y

    vy vy

    y y

    v v

    v

    Example 8. Solve the general solution of

    x1 2e dx 2e 1 dy 0

    y

    Solution :

    Usin g the substitution equation

    x vy and dx vdy ydv

    then

    vy1 2e vdy ydv 2e 1 dy 0

    y

    1 2e vdy ydv 2e 1 v dy 0

    1 2e vd

    v v

    v v v v

    v v

    v

    v

    y 1 2e ydv 2e 1 v dy 0

    combining the coefficients of dy

    v 2ve 2e 2ve dy 1 2e ydv 0

    v 2e dy 1 2e ydv 0

    separating the var iables

    1 2edydv 0

    y v 2e

  • EQUATIONS REDUCIBLE TO HOMOGENEOUS EQUATIONS

    Consider the differential equation having the form

    (ax + by + c) dx + (x + y + ) dy = 0 (1)

    Figure 1 shows two lines

    ax + by + c = 0

    x + y + = 0 (2) meeting at point (h,k); hence

    ah + bk + c = 0

    h + k + = 0 (3)

    y y ah + bk + c

    h + k +

    (h,k)

    x '

    x

    v

    v

    v

    v

    v

    x

    y

    x

    y

    x

    y

    int egrating

    1 2edydv 0

    y v 2e

    ln y ln v 2e ln C

    ln y v 2e ln C

    y v 2e C

    xbut v

    y

    xy 2e C

    y

    x 2yey C

    y

    x 2ye C general solution

  • If we refer these two lines to parallel axes with origin (h,k), by the translation

    x = x + h y = y + k

    the constant term must vanish. In fact applying the translation (4) to (1) we get

    Equation (6) is homogeneous and can be solved by the method of frame 2. Then we must

    use (4) in the result to replace x by x h, and y by y k, where h and k are found by solving (3) for h and k.

    Suggested substitution

    y ' = vx and x = vy

    ax ' by ' ah bk c dx ' x ' y ' h k 0 (5)

    and because of (3), (5) reduces to

    ax ' by ' dx ' x ' y ' dy ' 0 (6)

    Example 1. Reduce the equation to hom ogeneous equation and solve the general solution of it.

    2x 3y 4 dx 3x 2y 1 dy 0

    Solution :

    In this case

    2h 3k 4 0, 3h 2k 1 0

    from that

    3 2h 3k 4 0

    2 3h 2k 1 0

    9k 4k 12 2 0

    k 2

    if k 2

    2h 3(2) 4 0

    h

    1

    The corresponding substitutions are

    x x ' h x ' 1; dx dx '

    y y ' k y ' 2; dy dy '

    making the substitution

    2 x ' 1 3 y ' 2 4 dx ' 3 x ' 1 2 y ' 2 1 dy ' 0

    2x ' 3y ' dx ' 3x ' 2y ' dy ' 0

    the resulting equation is hom ogeneous of deg ree 1.

  • 2

    2

    Usin g the substitution equations

    y ' vx ' and dy ' vdx ' x 'dv

    then

    2x ' 3vx ' dx ' 3x ' 2vx ' vdx ' x 'dv 0

    x ' 2 3v dx ' x ' 3 2v vdx ' x 'dv 0

    2 3v dx ' 3 2v vdx ' 3 2v x 'dv 0

    combining the coefficients of dx '

    2 3v 3v 2v dx ' 3 2v x 'dv 0

    2 2v d

    2

    2

    2

    2

    2

    x ' 3 2v x 'dv 0

    2 1 v dx ' 3 2v x 'dv 0

    separating the var iables

    3 2v dv2dx '0

    x ' 1 v

    3 2v dv2dx '0

    x ' 1 v

    3 2v dv 3 2v A B

    1 v 1 v 1 v 1 v1 v

    3 2v A 1 v B 1 v

    3 A B; 2 A B

    1 5A ; B

    2 2

    3 2v dv dv 5dv

    2 1 v 2 1 v1 v

    1 5ln 1 v

    2

    2

    ln 1 v2

    then

    3 2v dv2dx '0

    x ' 1 v

    1 52ln x ' ln 1 v ln 1 v ln C

    2 2

    4ln x ' ln 1 v 5ln 1 v ln C

  • 4 5

    4 5

    54

    5

    5

    5

    u sin g the properties of natural log arithms

    x ' 1 vln ln C

    1 v

    x ' 1 vC

    1 v

    y 'but v

    x '

    y 'x ' 1

    x 'C

    y '1

    x '

    simplifying

    x ' y ' C x ' y '

    but x ' x 1 and y ' y 2

    x 1 y 2 C x 1 y 2

    x y 3 C x y 1 general solution

    Example 2. Solve the general solution of

    2x 3y 1 dx 4 x 1 dy 0

    Solution :

    In this equation

    2h 3k 1 0; h 1 0

    from that equations

    h 1 and k 1

    the corresponding substitutions are

    x x ' h x ' 1; dx dx '

    y y ' k y ' 1; dy dy '

    making the substi

    2

    2

    tution

    2x ' 3y ' dx ' 4x 'dy ' 0

    u sin g the substitution equation

    y ' vx ' and dy ' vdx ' x 'dv

    2x ' 3vx ' dx ' 4x ' vdx ' x 'dv 0

    combining coefficients of dx '

    2x ' 3vx ' 4vx ' dx ' 4 x ' dv 0

    2x ' vx ' dx ' 4 x ' dv 0

    2 v dx ' 4x 'dv 0

  • SIMPLE SUBSTITUTION

    To solve a differential equation by simple substitution:

    1. Identify the substitution equation/s. 2. Differentiate the substitution equations. 3. Eliminate all but two of the unknowns from the given differential equation and the results

    of (1) and (2).

    4. Solve the result from (3). 5. Return to the original variables.

    4

    4

    4

    4 3

    4 3

    4 3

    separating the var iables

    dx ' 4dv0

    x ' 2 v

    dx ' 4dv0

    x ' 2 v

    ln x ' 4 ln 2 v ln C

    ln x ' 2 v ln C

    x ' 2 v C

    y 'but v

    x '

    y 'x ' 2 C

    x '

    2x ' y ' C x '

    but x ' x 1 and y ' y 1

    2 x 1 y 1 C x 1

    2x y 3 C x 1 general solution

    Example 1. Solve the general solution of

    x 2y 1 dx 3 x 2y dy 0 (1)

    Solution :

    To solve the general solution of

    x 2y 1 dx 3 x 2y dy 0

    let

    a x 2y (2)

    da dx 2dy (3)

    from (3)

    dx da 2dy (4)

  • substitute (2) and (4) int o (1)

    a 1 da 2dy 3ady 0

    a 1 da 2 a 1 dy 3ady 0

    combining the coefficients of dy

    a 1 da 3a 2a 2 dy 0

    a 1 da a 2 dy 0

    separating the var iables

    a 1da dy 0

    a 2

    int egrating term by term

    a 1da dy 0

    a 2

    a 2 3da

    a 2

    dy 0

    a 2 3da da dy 0

    a 2 a 2

    a 3ln a 2 y C

    but a x 2y

    x 2y 3ln x 2y 2 y C

    x 3y 3ln x 2y 2 C general solution

    Example 2. Solve the general solution and the particular solution when x 1 and y 0

    2 x y dx dy 0

    Solution :

    let

    a x y (1)

    da dx dy

    dx da dy (2)

    substitute (1) and (2) int o the given differential equation

    2a da dy dy 0

    2ada 2ady dy 0

    comb

    ining the coefficients of dy

    2ada 2a 1 dy 0

    separating the var iables

    2adady 0

    2a 1

  • int egrating term by term

    2adady 0

    2a 1

    2a 1 1da dy 0

    2a 1

    2a 1 dada dy 0

    2a 1 2a 1

    1a ln 2a 1 y C

    2

    2a ln 2a 1 2y C

    but a x y

    2 x y ln 2 x y 1 2y C

    2x 2y ln 2x 2y 1 2y C

    2x ln 2x 2y 1 C generalsolution

    3

    3

    3

    3

    2 4

    2 4

    2 4

    2 4

    Example3.Solve thegeneralsolution of

    xy xdy ydx 6y dy

    Solution :

    xy xdy ydx 6y dy (1)

    let a xy (2)

    da xdy ydx (3)

    substitute (3)and (2) int o (1)

    ada 6y dy

    int egrating

    ada 6y dy

    a 6yC

    2 4

    a 3yC

    2 2

    a 3y C

    but a xy

    xy 3y C

    generalsolution

  • 2

    2

    2

    2

    2 2

    2 2

    Example 4.Solve thegeneral solution of

    ydx dy x y 1 xdy ydx

    x

    Solution :

    ydx dy x y 1 xdy ydx (1)

    x

    ylet a ; b x y (2)

    x

    xdy ydxda ; db dx dy (3)

    x

    x da xdy ydx

    substitute (3)and (2) int o (1)

    db b 1 a x da

    db1 a x

    b

    22

    2

    22

    2

    2

    3

    3

    3

    2

    2

    da (4)

    from (3)and (2)

    ya ; y ax

    x

    b x y x ax x 1 a

    bx

    1 a

    bx (5)

    1 a

    substitute (5) int o (4)

    db b1 a da

    b 1 a

    dbb da

    b

    dbda ; b db da 0

    b

    int egrating term by term

    b db da 0

    b 1a C ; 2a C

    2 b

    returning to theorigi

    2

    nal var iables

    1 y2 C generalsolution

    xx y

  • 2

    2

    2

    2

    2 2

    Example5.Solve the general solution of

    dy x y 1 dx 2dx

    Solution :

    dy x y 1 dx 2dx (1)

    let a x y 1 (2)

    da dx dy ; dy da dx (3)

    substitute (2)and (3) int o (1)

    da dx a 2 dx

    da a 2 dx dx

    da a 2 1 dx a 1 dx

    separating the var iables

    d

    2

    2

    2

    adx

    a 1

    int egrating

    dadx

    a 1

    da 1 a 1ln

    2 a 1a 1

    1 a 1ln x C

    2 a 1

    returning to theoriginal var iables

    x y 1 11ln x C

    2 x y 1 1

    x y1ln x C generalsolution

    2 x y 2

    EXACT DIFFERENTIAL EQUATIONS

    A differential equation M(x,y)dx + N(x,y)dy = 0 is exact if there exists a function g(x,y),

    such that dg(x,y) = M(x,y)dx + N(x,y)dy.

    If M(x,y) and N(x,y) are continuous functions and have continuous first derivative

    (partial) on some rectangle of (x,y) plane, then the differential equation M(x,y)dx + N(x,y)dy = 0

    is exact if and only if

    M N

    y x

    In solving M

    y

    set x variable as constant, and in solving

    N

    x

    set y variable as constant.

  • 2 2 2 2

    2 2 2 2

    Example1. Deter min e whether the differential equation

    6x 4xy y dx 2x 2xy 3y dy 0 is exact or not.

    Solution : For this equation

    M 6x 4xy y and N 2x 2xy 3y

    M0 4x 2y 4x 2y

    y

    N4x 2y 0 4x 2y

    x

    M Nsin ce 4x 2y ; th

    y x

    2

    2

    2 2

    2

    en the equation is exact.

    Example 2. Deter min e whether the differential equation

    dx xdy 0 is exact or not.

    y y

    1 xSolution : M and N

    y y

    M 1 N 1and

    y y x y

    M N 1sin ce ; then the equation is exact.

    y x y

    Example 3. Deter min e whe

    ther the equation

    sin x cos ydx sin y cos xdy 0 is exact or not.

    Solution : M sin x cos y and N sin y cos x

    Msin x sin y cos y 0 sin x sin y

    y

    Nsin y sin x cos x 0 sin x sin y

    x

    M Nsin ce ; then the equation is not exact.

    y x

    Example 4. De

    3 3

    3 3

    3 3

    x 2 2 x

    x 2 2 x

    x 2 2 x

    ter min e whether the equation

    e 3x y x dx e dy 0 is exact or not.

    Solution : M e 3x y x and N e

    Me 3x 0 3x e

    y

  • 3 3

    3

    3 3

    3

    x 2 2 x

    x

    x 2 2 x

    x

    2 2

    Ne 3x 3x e

    x

    M Nsin ce ; then the equation is exact.

    y y

    Example 5. Deter min e whether the equation in Example 4 is exact or not after dividing it by e .

    Solution :

    from Ex. 4

    e 3x y x dx e dy 0

    dividing it by e gives

    3x y x d

    3

    2 2

    2 2

    x

    x dy 0

    now M 3x y x and N 1

    M3x 0 3x

    y

    N0

    x

    M Nsin ce ; then the equation is not exact if it is divided by e .

    y x

    NOTE :

    To test for the exactness of a diferential equation, it is advisable the

    equation.

    not to manipulate

    To Solve t

    '

    Method 1:

    1) Let F x M

    2) Integrate 1 with respect to x y cons tan t

    F x M

    F M f y

    3) Take the partial derivative of 2 with respect to y x cons tan t

    F Mf y

    y y

    he Solution of an Exact Differential Equation

  • '

    '

    '

    '

    4) Equate N to 3 and solve for f y

    FN f y

    y

    Ff y N

    y

    5) Integrate f y to get f y

    6) Substitute 5 int o 2 , the result is the general solution.

    Method 2.

    1) Let Fy N

    2) Integrate (1) with respect to y x cons tan t

    Fy N

    Fy N f (x)

    3) Take partial

    '

    '

    '

    '

    derivative of (2) with respect to x y cons tan t

    F Nf (x)

    x x

    4) Equate M to (3) and solve for f (x)

    NM f (x)

    x

    Nf (x) M

    x

    5) Integrate (4) to get f (x)

    6) Substitute (5) int o (2), the result is the general solution.

    Method 3.

    By Formul

    x y

    a b

    a

    F M t, y dt N a, t dt C

    M Nwhere a and b are the smallest number that will give a definite value for .

    y x

    NOTE :

    Use the above methods (methods1, 2, and 3) only if the differential equation is exact.

    Adopt the method that is convinient

    to you.

  • 2 2 2 2

    2 2

    2 2

    3 2 2

    2 '

    Example 6. Solve thegeneral solution of

    6x 4xy y dx 2x 2xy 3y dy 0

    Solution :

    M NThe equation is exact sin ce .

    y x

    Method 1.

    1) Fx M 6x 4xy y

    2) Fx 6x dx 4y xdx y dx

    F 2x 2x y xy f (y)

    F3) 0 2x 2xy f (y)

    y

    4) N

    2 2 2 '

    ' 2

    2

    3

    3 2 2 3

    2 2

    2 2

    2 2 3

    2 '

    F; 2x 2xy 3y 2x 2xy f (y)

    y

    f (y) 3y

    5) f '(y) 3y dy

    f (y) y

    6) F 2x 2x y xy y C general solution

    Method 2.

    1) Fy N 2x 2xy 3y

    2) Fy 2x dy 2x ydy 3y dy

    F 2x y xy y f (x)

    F3) 4xy y f (x)

    x

    F4) M ; 6x

    x

    2 2 2 '

    ' 2

    ' 2

    3

    2 2 3 3

    x y

    a b

    4xy y 4xy y f (x)

    f (x) 6x

    5) f (x) 6x dx

    f (x) 2x

    6) F 2x y xy y 2x C general solution

    Method 3.

    Usin g the formula

    F M t, y dt N a, t dt C

  • x y

    2 2 2 2

    0 o

    x y3 2 2 3

    0 0

    3 2 2 3

    2

    M N4x 2y

    y x

    if a 0; b 0

    M N4(0) 2(0) 0

    y x

    therefore :

    F 6t 4ty y dt 2a 2at 3t dt C

    F 2t 2t y ty 0 0 t C

    F 2x 2x y xy y C general solution

    Example 7.Solve the general solution of

    y 1dx dy 0

    x x

    S

    2

    2 2

    2

    2

    2

    '

    '

    '

    '

    y 1olution : M and N

    x x

    M 1 N 1and

    y x x x

    the equation is exact.

    Method 1.

    y1) Fx M

    x

    12) Fx y dx y x dx

    x

    yF f y

    x

    F 13) f y

    y x

    F 1 14) N ; f y

    y x x

    f (y) 0

    5) f y 0 sin ce f y 0

    y y6) F C; C

    x x

    yF C general solution

    x

  • ' '

    2 2

    '

    2 2

    '

    '

    x y

    a b

    2

    Method 2.

    11) Fy N

    x

    12) Fy dy

    x

    yF f y

    x

    F 1 y3) y f x f x

    x x x

    F y y4) M ; f x

    x x x

    f x 0

    5) f x 0 sin ce f x 0

    y6) F C

    x

    yF C general solution

    x

    Method 3.

    Usin g the formula

    F M t, y dt N a, t dt C

    M N 1

    y x x

    x y

    21 1

    x y2

    1 1

    xy

    11

    if x 0 and y 0

    M N 1; undefined

    y x 0

    if x 1 and y 1

    M N 11

    y x 1

    then a 1 and b 1

    therefore :

    y 1F dt dt C

    t a

    F yt dt dt C

    yF t C

    t

  • y y

    F y 1 Cx 1

    yF y y 1 C

    x

    yF C 1

    x

    yF C general solution

    x

    Example 8.So l ve the general solution of

    cos y 1dx sin y ln 5x 15 dy 0

    x 3 y

    cos y 1Solution : M and N sin y ln 5x 15

    x 3 y

    M sin y N 5and sin y

    y x 3 x 5x

    '

    '

    '

    '

    sin y0

    5 x 3

    M N sin ysin ce , the equation is exact.

    y x x 3

    Method 1.

    cos y1) Fx M

    x 3

    dx2) Fx cos y

    x 3

    F cos y ln x 3 f y

    F3) sin y ln x 3 f y

    y

    F 14) N ; sin y ln 5x 15 sin y ln x 3 f y

    y y

    1f y sin y ln 5

    y

    dy5) f y l

    y

    n 5 sin ydy

    f y ln y ln 5cos y

    6) F cos y ln x 3 ln y ln 5cos y C

    F cos y ln x 3 ln 5 ln y C

    F cos y ln 5 x 3 ln y C

    F cos y ln 5x 15 ln y C general solution

  • ' '

    '

    '

    '

    Method 2.

    11) Fy N sin y ln 5x 15

    y

    dy2) Fy ln 5x 15 sin ydy

    y

    F cos y ln 5x 15 ln y f x

    F 5 cos y3) cos y f x f x

    x 5x 15 x 3

    F cos y cos y4) M ; f x

    x x 3 x 3

    f x 0

    5) f x 0 sin ce f x 0

    6) F cos y ln 5x 15 ln y C general solution

    Metho

    x y

    a b

    x y

    0 0

    x y

    0 0

    x

    0

    d 3.

    Usin g the formula

    F M t, y dt N a, t dt C

    M N sin y

    y x x 3

    if x 0 and y 0

    M N sin 00

    y x 0 3

    then a 0 and b 0

    cos y 1F dt sin t ln 5a 15 dt C

    t 3 t

    cos y 1F dt sin t ln15 dt C

    t 3 t

    F cos y ln t 3

    y

    0ln15cos t ln t C

    F cos y ln x 3 ln 0 3 ln15cos y ln y ln15cos 0 ln 0 C

    F cos y ln x 3 ln 3 ln15cos y ln y ln15 C

    F cos y ln x 3 ln 3 cos y ln 3 ln15 ln y C ln15

    F cos y ln x 3 ln 3cos y ln 3cos y ln 5cos y ln y C

    F cos y ln x 3 ln 5cos y ln y

    C

    F cos y ln 5x 15 ln y C general solution

  • 2

    2 2

    2 2

    2 2

    2

    x 2

    x 2 x

    x 2 x

    x x

    x

    Example 9.Solve the general solution of

    e dy 2xydx 3x dx

    Solution :

    Combining the coefficients of dx

    2xye 3x dx e dy 0

    M 2xye 3x and N e

    M N2xe and 2xe

    y x

    M N; the equation is exact.

    y x

    Method 2.

    1) Fy N e

    2)

    2

    2

    2

    2 2

    2

    x

    x

    x '

    x 2 x '

    ' 2

    ' 2

    3

    x 3

    2

    2

    2

    2

    Fy e dy

    F e y f x

    F3) 2xye f x

    x

    F4) M ; 2xye 3x 2xye f x

    x

    f x 3x

    5) f x 3 x dx

    f x x

    6) F ye x C general solution

    Example10. Solve the general solution of

    y ydy x dx 0

    x 2x

    ySolution : M x a

    2x

    2 2

    2

    ynd N

    x

    M 2y y

    y 2x x

    N y

    x x

  • x y

    a b

    2x y

    21 1

    2 2x y

    1 1

    x y2 2 2

    1 1

    Method 3.

    Usin g the formula

    F M t, y dt N a, t dt C

    if x 0 and y 0

    M N 0; undefined

    y x 0

    if x 1and y 1

    M N 11

    y x 1

    then a 1and b 1

    y tF t dt dt C

    2t a

    y tF t dt tdt C

    2

    y t tF

    t 2 2

    2 2 2 2

    2 2

    2 3

    C

    y x y 1 y 1F C

    2x 2 2 2 2 2

    y xF C

    2x 2

    F y x Cx general solution

    If the differential equation

    M x, y dx N x, y dy 0

    is not exact, it can always be transformed to exact equation by multiplying it by an exp resion

    INTEGRATING FACTOR

    I x, y . The exp ression I x, y that makes the equation exact is called "int egrating factor".

    The equation

    I x, y M x, y dx I x, y N x, y dy 0

    is exact.

    An int egrating factor of a non exact differential equation is an exp ression such that the

    equatio

    n becomes exact if it is multiplied by that factor.

  • Example1.Show that the equation is not exact and that the given I x, y is an int egrating factor.

    2ydx xdy 0 I x, y x

    Solution : M 2y and N x

    M N2 and 1

    y x

    M Nsin ce , then the equation is not exact. Multiplying the given equation by I

    y x

    2

    2

    x, y

    2xydx x dy 0

    this time M 2xy and N x

    M N2x and 2x

    y x

    M N2x because of x, therefore I x, y x is an int egrating factor of the given

    y x

    non exact equation.

    Example 2.Show that the equation is not exact and that the given I x, y is an

    int egrating factor.

    1ydx x ln xdy 0 I x, y

    x

    Solution : M y and N x ln x

    M N1and 1 ln x

    y x

    M Nsin ce ; then the equation is not exact. Usin g the given I x, y , then

    y x

    y x ln xdx dy 0

    x x

    y x ln xthis time M and N ln x

    x x

    M 1 N 1and

    y x x x

    M

    N 1 1, therefore I x, y is the int egrating factor of the given non exact

    y x x x

    equation.

    1Example 3. Deter min e whether is an int egrating factor for

    xy

    ydx xdy 0

    1Solution : Multiplying the given differential equation by yields

    xy

  • y xdx dy 0

    xy xy

    dx dyor 0

    x y

    1 1M and N

    x y

    M N0 and 0

    y x

    M N 1sin ce 0, then the given exp ression I x, y is an int egrating factor for

    y x xy

    the given non exact differential equation.

    11) If

    N

    Determination of Integrating Factor

    f x dx

    g y dy

    2

    M Nf x , a function of x alone, then the int egrating factor is :

    y x

    I e

    1 M N2) If g y , a function of y alone, then the int egrating factor is :

    M y x

    I e

    Example1.Solve the int egrating factor of

    y y dx xdy 0

    S

    2

    2

    olution : M y y and N x

    M N2y 1and 1

    y x

    M N2y 1 1 2y 2 2 y 1

    y x

    2 y 11 M Nnot a function of x alone

    N y x x

    2 y 1 2 y 11 M Nfunction of y alone

    M y x y y y y 1

  • 2

    2dyg y dy 2ln y ln yy

    2

    2

    2

    2 2

    therefore, the int egrating factor is :

    I e e e e

    1I y

    y

    Example 2.Solve the int egrating factor of

    4xy 3y x dx x x 2y dy 0

    Solution : M 4xy 3y x and N x x 2y 2x 2xy

    M N4x 6y and 2x 2y

    y x

    M N

    y x

    2

    dxf x dx 2ln xx

    2

    2

    4x 6y 2x 2y 2x 4y 2 x 2y

    2 x 2y1 M N 2function of x alone

    N y x x x 2y x

    therefore, the int egrating factor

    I e e e

    I x

    Example 3.Solve the int egrating factor of

    ydx xdy xy dx 0

    Solution : Combining the co

    2

    2

    2

    g y dy

    efficients of dx gives

    y xy dx xdy 0

    M y xy and N x

    M N1 2xy and 1

    y x

    M N1 2xy 1 2 2xy 2 1 xy

    y x

    2 1 2xy 2 1 2xy1 M N 2function of y alone

    N y x y xy y 1 2xy y

    therefore, the int egrating factor is

    I e e

    2dy

    2ln yy

    2

    2

    e

    1I y

    y

  • The following examples will illustrate how to solve the general solution of a non exact

    differential equation u sin g int egrating factor.

    Example1.Show that the equation is not exact; find an int egrating factor and then the general

    solu

    f x dx dx x

    tion of x y dx dy 0

    Solution : M x y and N 1

    M N1and 0

    y x

    M Nthe equation is not exact sin ce .

    y x

    For the int egrating factor

    M N1 0 1

    y x

    1 M N 11

    N y x 1

    then,

    I e e e int egrating factor

    multiply the equa

    x

    x x

    x x

    x x

    x

    x

    x

    x

    x '

    x x ' x x x '

    ' x

    tion by I e

    e x y dx e dy 0

    this time, M e x y and N e

    M Ne and e

    y x

    M Ne , the equation is now exact.

    y x

    Usin g Method 2.

    1) Fy N e

    2) Fy e dy

    F e y f x

    F3) ye f x

    x

    F4) M ; e x y ye f x ; xe ye ye f x ;

    x

    f x xe

    ' x x

    x x x

    5) f x dx xe dx; f x xe x (int egration by parts)

    6) F ye xe e C general solution

  • 2

    2

    2

    Example 2. Show that the equation is not exact; find an integrating factor and then the general

    solution of y + xy dx xdy 0.

    Solution : M y xy and N x

    M N1 2xy and 1

    y x

    M NThe equation is not exact sin ce

    y

    2

    dyg y dy 2ln y 2y

    2

    .x

    Solving for the int egrating factor.

    M N1 2xy 1 2 2xy 2 1 xy

    y x

    2 1 xy1 M N 2; function of y alone

    M y x y 1 xy y

    the int egrating factor is

    1I e e e y

    y

    multiplying the given non exact equation

    2

    2

    2 2

    2

    2 2

    2 2

    2

    '

    2

    1by I gives

    y

    1 xy xy dx dy 0

    y y

    1 xthis time M y xy and N

    y y

    M 1 N 1and

    y y x y

    M Nthe equation is now exact sin ce .

    y x

    Usin g Method 1.

    11) Fx M x

    y

    12) Fx dx xdx

    y

    x xF f y

    y 2

    F x3) f y

    y y

    4)

    '

    2 2

    '

    F x xN ; f y

    y y y

    f y 0

  • '

    2

    2 2

    5) f y 0 simce f y 0

    x x6) F C general solution

    y 2

    Example 3.Show that the equation is not exact; find an int egrating factor and then the general

    solution of y x y 1 dx x x 3y 2 dy 0.

    Solution : M xy y y and N x 3xy 2x

    Mx 2y 1and

    y

    1

    dyg y dy y ln y

    N2x 3y 2

    x

    M Nthe equation is not exact sin ce .

    y x

    Solving for the int egrating factor,

    M Nx 2y 1 2x 3y 2 x y 1

    y x

    x y 11 M N 1function of y alone

    M y x y x y 1 y

    then,

    I e e e y

    mult

    2

    2 3 2 2 2

    2 2

    2 3 2

    2 3

    iplying the given non exact equation by I y gives,

    y x y 1 dx xy x 3y 2 dy 0

    this time M xy y y and N x y 3xy 2xy

    M N2xy 3y 2y and 2xy 3y 2y

    y x

    the equation is now exact.

    Usin g Method 1.

    1) Fx M xy y y

    2) Fx y xdx y d

    2

    2 23 2

    2 2 '

    2 2 2 2 '

    '

    '

    2 2 3 2

    x y dx

    y xF xy xy f y

    2

    F3) x y 3xy 2xy f y

    y

    F4) N ; x y 3xy 2xy x y 3xy 2xy f y

    y

    f y 0

    5) f y 0 sin ce f y 0

    6) F x y 2xy 2xy C general solution

  • Definition :

    Linear Differential Equation is one in which the dependent var iable and its derivatives

    appear to the first deg ree only and the coefficients are either a cons tan t or function only of the

    indepen

    LINEAR DIFFERENTIAL EQUATION

    dent var iable.

    The differential equation

    dyyP x Q x

    dx

    is a linear first order differential equation sin ce only y and its derivative appear int o the equation

    and they are only to the first power. As indicated in the equation above, P and Q ar

    e functions of

    x alone.

    To solve the general solution of a linear differential equation, the first thing to do is to

    reduce the given equation in the form

    dyyP x Q x

    dx

    which is the general form of a first order differential equation linear in y

    P x dx P x dx

    G y dy G y dy

    ,

    or in the form

    dxxG y H y

    dy

    which is the general form of a first order differential equation linear in x.

    dy1) yP x Q x ye Q x e dx C

    dx

    dx2) xG y H y xe H y e dy C

    dy

    General Solution of a Linear Differential Equation

  • 3

    3

    3

    P x dx P x dx

    dx dx

    3x x

    Example 1. Solve the general solution of a given linear differential equation.

    dy yx 3

    dx x

    Solution :

    dy yx 3 linear in y

    dx x

    1P and Q x 3

    x

    therefore the general solution is

    ye Qe dx C

    ye x 3 e dx

    ln x 3 ln x

    3

    4

    5 2

    5 2

    C

    ye x 3 e dx C

    yx x 3 xdx C

    xy x 3x dx C

    x 3xxy C

    5 2

    10xy 2x 15x C general solution

    Example 2. Solve the general solution of a given linear differential equation

    dx 3x2y

    dy y

    Solution :

    dx 3x2y linear in x

    dy y

    G

    G y dy G y dy

    3dy 3dy

    y y

    3ln y 3ln y

    3 3

    3 4

    3and H 2y

    y

    therefore the general solution is,

    xe He dy C

    the general solution is,

    xe 2ye dy C

    xe 2ye dy C

    xy 2y y dy C

    xy 2y dy C

  • 53

    3 5

    P x dx P x dx

    2yxy C

    5

    5xy 2y C general solution

    Example 3.Solve the general solution of a given linear differential equation

    dy 2yx 1

    dx x

    Solution :

    dy 2yx 1 linear in y

    dx x

    2P and Q x 1

    x

    the general solution is,

    ye Qe dx C

    ye

    2dx 2dx

    x x

    2ln x 2ln x

    2 2

    2

    2

    2

    2

    3

    x 1 e dx C

    ye x 1 e dx C

    yx x 1 x dx C

    y 1x dx C

    x x

    y 1ln x C

    x x

    y x ln x x C general solution

    Example 4. Solve the general solution of a given linear differential solution.

    dyx y x 3x

    dx

    2

    2

    2

    2

    P x dx P x dx

    2x

    Solution :

    Reducing the given equation int o linear form gives,

    dy yx 3x 2

    dx x

    dy yor x 3x 2 linear in y

    dx x

    1P x and Q x x 3x 2

    x

    the general solution is,

    ye Qe dx C

  • PHYSICAL APPLICATION OF FIRST ORDER

    FIRST DEGREE DIFFERENTIAL EQUATIONS

    It has been found experimentally that radioactive substance decompose at a rate propor -

    tional to the quantity of substance present.

    If we let Q(t) represent the quantity of substance at time t, then the statement above

    Radioactive Decay

    may

    be exp ressed mathematically by the differential equation

    dQkQ

    dt

    where k is the cons tan t of proportionality. Re arranging the equation gives

    dQkdt

    Q

    int egrating both sides of the equation

    dQkdt

    Q

    ln Q kt C working equation

    Ex

    ample1. Radium decomposes at a rate proportional to the amount present. If of 100 grams set

    aside now there will be left 96 grams ten years hence. Find how much will be left after 20 years.

    What is the half life of the radium?

    Solution :

    Q 100 wh

    en t 0

    Q 96 when t 10

    Q ? when t 20

    Q 50 when t ?

    Usin g the working equation

    ln Q kt C

    when Q 100, t 0

    ln100 k(0) C; C ln100

    when Q 96, t 10

    ln 96 k(10) ln100

    ln 96 ln100 10k

  • 196ln 10k

    100

    1 96k ln 0.00408

    10 100

    a) Q ? when t 20

    ln Q ( 0.00408)(20) ln100

    ln Q 4.524

    Q ln (4.524) 92.16 grams

    b) Q 50 when t ?

    ln 50 ( 0.00408)(t) ln100

    ln 50 ln100 0.00408 t

    50ln 0.00408 t

    100

    50ln

    100t 169.890.00408

    0

    0

    0

    0

    0

    0

    years

    Example 2. If 5% of the radioactive subs tan ce decompose in 5 years, what percentage will be

    present at the end of 500 years?1000 years?

    Solution :

    Q Q when t 0

    Q 0.95Q when t 50

    Q xQ when t 500

    Q xQ when t 1000

    when Q Q , t 0

    ln Q k

    0

    0

    0 0

    0 0

    3

    0

    3

    0 0

    0 0

    0

    0

    1

    (0) C; C ln Q

    when Q 0.95Q , t 50

    ln 0.95Q k(50) ln Q

    ln 0.95Q ln Q 50k

    ln 0.95 50k

    ln 0.95k 1.03 x 10

    50

    a) Q xQ when t 500

    ln xQ ( 1.03 x 10 )(500) ln Q

    ln xQ ln Q 0.515

    xQln 0.515

    Q

    ln x 0.515

    x ln ( 0.515) 0.59

    75 or 59.75%

  • 03

    0 0

    0 0

    0

    0

    1

    b) Q xQ when t 1000

    ln xQ ( 1.03 x 10 )(1000) ln Q

    ln xQ ln Q 1.03

    xQln 1.03

    Q

    ln x 1.03

    x ln ( 1.03) 0.3570 or 35.70%

    Example 3. If the half life of a radioactive subs tan ce is1800 years, what percentage is present

    at the en

    0

    0

    0

    0

    0

    0 0

    0

    0 0

    0

    d of 100 years? In how many years does only10% of the subs tan ce remain ?

    Solution :

    Q 0.5Q when t 1800

    Q Q when t 0

    Q xQ when t 100

    Q 0.10Q when t ?

    when Q Q , t 0

    ln Q k(0) C; C ln Q

    when Q 0.5Q , t 1800

    ln 0.5Q k(1800) ln Q

    ln 05Q l

    0

    0

    0

    4

    0

    4

    0 0

    0 0

    0

    0

    1

    0

    4

    0

    n Q 1800k

    0.5Qln 1800k

    Q

    ln 0.5k 3.85 x 10

    1800

    a) Q xQ , t 100

    ln xQ ( 3.85 x 10 )(100) ln Q

    ln xQ ln Q 0.0385

    xQln 0.0385

    Q

    ln x 0.0385

    x ln ( 0.0385) 0.9622 or 96.22%

    b) Q 0.10Q , t ?

    ln 0.10Q ( 3.85 x 10 )(t)

    04

    0 0

    40

    0

    4

    ln Q

    ln 0.10Q ln Q ( 3.85 x 10 ) t

    0.10Qln 3.85 x 10 t

    Q

    ln 0.10t 5980.74 years

    3.85 x 10

  • 00

    0

    0

    0 0

    Example 4. A certain radioactive subs tan ce has a half life of 38 hrs. Find how long it will take

    for 90% of the radioactivity to be dissipated.

    Solution :

    Q Q when t 0

    Q 0.5Q when t 38

    Q 0.10Q when t ?

    when Q Q , t 0

    ln Q k(0) C; C ln Q

    wh

    0

    0 0

    0 0

    0

    0

    0

    0 0

    0 0

    0

    0

    en Q 0.5Q , t 38

    ln 0.5Q k(38) ln Q

    ln 0.5Q ln Q 38k

    0.5Qln 38k

    Q

    ln 0.5k 0.01824

    38

    therefore, when Q 0.10Q ; t ?

    ln 0.10Q ( 0.01824)(t) ln Q

    ln 0.10Q ln Q 0.01824 t

    0.10Qln 0.01824 t

    Q

    ln 0.10t 126.24 hr

    0.01824

    s.

    Example1. A bacterial population P is known to have a rate of growth proportional to P itself .

    If between noon and 2 pm, the population tripples, at what time, no control being exerted,

    should P becomes100 times it was at

    Population Growth

    o

    noon ?

    Solution :

    P initial population

    P population at any time t

    dPrate of increase

    dt

    sin ce rate of increase is proportional to P itself then,

    dPkP

    dt

    dPkdt

    P

  • 00 0

    0

    0 0

    0 0

    0

    0

    0

    0

    int egrating both sides of the equation gives,

    dPk dt

    P

    ln P kt C working equation

    when P P , t 0

    ln P k(0) C; C ln P

    when P 3P , t 2

    ln 3P k(2) ln P

    ln 3P ln P 2k

    3Pln 2k

    P

    ln 3k 0.5493

    2

    when P 100P , t ?

    ln100P (0.5493)(t)

    0

    0 0

    0

    0

    ln P

    ln100P ln P 0.5493 t

    100Pln 0.5493 t

    P

    ln100t 8.38 pm

    0.5493

    Example 2. If the population of the city doubled in the past 25 years and the present population

    is100000, when will the city have a population of 500000?

    Solution :

    P

    50000 when t 0

    P 100000 when t 25

    P 500000 when t ?

    Solution :

    when P 50000, t 0

    ln 50000 k(0) C; C ln 50000

    when P 100000, t 25

    ln100000 k(25) ln 50000

    ln100000 ln 50000 25k

    100000ln 25k

    50000

    ln 2k 0.02773

    25

  • therefore; when P 500000, t ?

    ln 500000 (0.02773)(t) ln 50000

    ln 500000 ln 50000 0.02773 t

    500000ln 0.02773 t

    50000

    ln10t 83 years

    0.02773

    then

    t 83 25 58 years from now

    Example 3. Express the following proposition as a different

    0

    ial equation : The population of the

    city increases at a rate which is proportional to the current population and the difference bet.

    200000 and the current population.

    Solution :

    P initial population

    P population at any time t

    dPrat

    dt

    e of increase

    the rate of increase is jo int ly proportional to both P and (200000 P), then

    dPkP(200000 P) differential equation

    dt

    where k is the cons tan t of proportionality

    Example 4. The initial population of the city is 100000 and aft

    er 20 years, the population is

    50000. What will be the population after 35 years, following the rate of increase given in ex. 3.

    Solution :

    from ex. 3,

    dPkP(200000 P)

    dt

    dPkdt

    P(200000 P)

    int egrating both sides of the equation gives,

    dP

    P(

    k dt200000 P)

    1 A B

    P(200000 P) P 200000 P

    1 A(200000 P) BP

  • solving for A and B,

    1A B

    200000

    therefore;

    dP dPk dt

    200000P 200000(200000 P)

    1 1ln P ln(200000 P) kt C

    200000 200000

    1 Pln kt C working equation

    200000 200000 P

    when P 10000, t 0

    1 10000ln k(0) C

    200000 200000 10000

    1

    20000

    5

    5

    5

    6 5

    7

    7

    ln 0.0526 C0

    C 1.4722 x 10

    when P 50000, t 20

    1 50000ln k(20) 1.4722 x 10

    200000 200000 50000

    1ln 0.3333 20k 1.4722 x 10

    200000

    5.493 x 10 1.4722 x 10 20k

    k 4.6144 x 10

    when t 35, P ?

    1 Pln 4.6144 x 10 (3

    200000 200000 P

    5

    7 5

    5) 1.4722 x 10

    Pln 200000[4.6144 x 10 (35) 1.4722 x 10 ]

    200000 P

    Pln 0.28568

    200000 P

    P 114190 after 35 years

  • Newtons Law of Cooling

    Experiments has shown that under certain conditions, a good approximation to the tempe -

    rature of an object can be obtained by using Newton's Law of Cooling.

    Newton 's Law of Cooling stated that "the temperature of the body changes at a rate that

    is proportional to the difference in temperature between the outside medium and the body itself ".

    We shall assume that the cons tan t of proportionality is the same whether the temperature

    is increa sin g or

    bb m

    b

    m

    b

    b m

    b

    decrea sin g.

    Expressin g the above statement int o mathematical equation give,

    dTk T T

    dt

    where :

    T temperature of the body

    T temperature of the outside medium

    re arranging the equation and int egrating gives,

    dTkdt

    T T

    ln T

    m

    o o

    o

    T kt C working equation

    Example1. A thermometer reading 18 C is brought int o a room where the temperature is 70 C;

    1 min ute later the thermometer reading is 31 C. Find the temperature reading 5 min s. after the

    thermometer is first brou

    b m

    b

    b

    b m

    b m

    b m

    ght int o the room.

    Solution :

    T 18 when t 0; T 70

    T 31 when t 1

    T ? when t 5

    when T 18, t 0, T 70

    ln T T kt C

    ln 18 70 k(0) C; C ln( 52)

    when T 31, t 1, T 70

    ln 31 70 k(1) ln( 52)

    ln( 39) k ln( 52)

    ln( 39) ln( 52) k

    39k ln

    0.2877

    52

  • b m

    b

    5

    b

    5

    b

    b

    b

    when T ?, t 5, T 70

    ln T 70 ( 0.2877)(5) ln( 52)

    39ln T 70 ln 52

    52

    39T 70 52

    52

    T 12.34 70

    T 57.66 C

    Example 2. A pie ois removed from a 350 C oven and placed in the kitchen with 70 C

    sorrounding tempera

    b m

    b

    b

    b m

    b m

    ture. In half an hour, the pie has a temperature of 150 C. How soon

    will it be at 100 C and thus ready to eat ?

    Solution :

    T 350 when t 0; T 70

    T 150 when t 30

    T 100 when t ?

    when T 350, t 0, T 70

    ln T T kt C

    ln 350 70 k(0) C; C ln 280

    whe

    b m

    b m

    n T 150, t 30, T 70

    ln 150 70 k(30) ln 280

    ln80 30k ln 280

    ln80 ln 280 30k

    80ln 30k

    280

    80ln

    280k 0.0417630

    when T 100, t ?, T 70

    ln 100 70 0.04176 t ln 280

    ln 30 ln 280 0.04176t

    30ln 0.04176t

    280

    2.2336t 53.4

    0.04176

    9 min

  • Example 3. At 9 : 00 AM, a thermometer reading 70 C is taken outdoor where the temperature

    is15 C. At 9 : 05 AM, the thermometer reading is 45 C. At 9 :10 AM, the thermometer is taken

    indoors where the temperature is fixed at 70 C. Find the readi

    1

    2

    1

    m m

    b b

    b b

    b

    b

    b

    ng at 9 : 20 AM.

    Solution :

    outside T 15 inside T 70

    T 70, t 0 T ?, t 0

    T 45, t 5 T ?, t 10

    T ?, t 10 ref . time : 9 :10 AM

    OUTSIDE

    when T 70, t 0

    ln 70 15 k(0) C; C ln 55

    when T 45, t 5

    ln 45 15 5k ln 55

    ln 30 ln 55 5k

    30ln 5k

    55

    3ln

    k

    1

    1

    1

    1

    1

    1

    2

    2

    b

    b

    2

    b

    2

    b

    b

    b

    b

    b

    0

    55

    5

    when T ?, t 10

    30ln

    55ln T 15 10 ln 555

    30ln T 15 ln 55

    55

    30T 15 55

    55

    T 31.36 C reading at 9 :10 AM

    INSIDE (ref . time is 9 :10 AM)

    when T 31.36, t 0

    ln 31.36 70 k(0) C

    ln 38.64 C

    when T ?, t 10

    ln T

    30

    ln5570 10 ln 36.845

  • 2

    2

    2

    2

    b

    2

    b

    b

    30ln T 70 ln 36.84

    55

    30T 70 36.84

    55

    T 58.5 C reading at 9 : 20 AM

    Example 4. If the temperature of the air is 300 K and the subs tan ce cools from 370 K to 340 K

    in 15 min utes, find whe the temperature will be 310 K.

    S

    b m

    b

    b

    b

    b

    b

    olution :

    T 370 when t 0; T 300

    T 340 when t 15

    T 310 when t ?

    when T 370, t 0

    ln 370 300 k(0) C; C ln 70

    when T 340, t 15

    ln 340 300 15k ln 70

    ln 40 ln 70 15k

    40ln

    70k 0.037315

    when T 310, t ?

    ln 310 300 0.0373t ln 70

    ln10 ln

    70 0.0373t

    10ln 0.0373t

    70

    10ln

    70t0.0373

    t 52.15 min utes

  • 0Suppose that at time t = 0, a quantity Q of a subs tan ce is present in a container. Assume

    that at time t 0, a fluid containing a concentration C of a subs tan ce is allowed to enter the

    container at a cons tan t rate and that the m

    Mixture Problems

    ixture is kept at a uniform concentration throughout

    by a mixing device. Also assume that at t 0, the mixture in the container with concentration C

    is allowed to escape at a cons tan t rate .

    The problem is to det er min e the amt. Q of the subs ta

    n ce in the container at any time t.

    dQThe rate of change of the amount of the subs tan ce in the container equals the rate at

    dt

    which a fluid enters the container times the concentration of the subs tan ce in the entering fluid

    min us the rate at which a fluid leaves the container times the concentration of the subs tan ce in

    the container.

    entering leaving

    rate rate

    C concentration C concentration

    dQentering leaving

    dt

    dQC C working equation

    dt

    Example1. Pure wat

    er is poured at the rate of 3 gal / min int o a tan k containing 300 kg of salt

    dissolved in 100 gallons of water and the solution, kept well stirred, pours out at 2 gal / min . Find

    the amount of salt at the end of 100 min utes.

    Given :

    Required : Q when t 1

    00 min

    Solution :

    rate of filling 3 2 1gpm

    number of gal lons added at any time t

    1gpm t t gallons

    volume at any time t

    100 t

  • then, the concentration of the subs tan ce in the container at any time t is,

    QC

    100 t

    Usin g the derived equation gives,

    dQ QC C 3(0) 2

    dt 100 t

    dQ Q2

    dt 100 t

    dQ 2Q0

    dt 100 t

    separating the var iables,

    dQ 2dt0

    Q 100 t

    int egrating

    2

    2

    2 2

    2 2

    2

    2

    term by term,

    dQ dt2 0

    Q 100 t

    ln Q 2ln 100 t C

    ln Q 100 t C

    Q 100 t C

    when t 0,Q 300

    300 100 0 C; C 300 100

    therefore,

    Q 100 100 300 100

    300 100Q 75 kg of salt

    200

    Example 2. A tan k initially holds 100 gallons of brine solution c

    ontaining 1 kg of salt. At t 0,

    another brine solution containing 1 kg of salt per gallon is poured int o the tan k at the rate of

    3 gpm, while the well stirred mixture leaves the tan k at the same rate.

    Find the time at which the mixture contains 2 kg

    of salt.

    Given :

  • 3 3dt dt

    100 100

    3 3t t

    100 100

    3 3t t

    100 100

    3t

    100

    Required : t when Q 2 kg

    Solution :

    QC

    100

    dQ Q(3)(1) 3

    dt 100

    dQ Q3 3

    dt 100

    dQ Q3 3 linear differential equation

    dt 100

    Qe 3e dt C

    Qe 3e dt C

    Qe 100e C

    Q 100 Ce

    when t 0, Q 1

    1 100 C; C

    3t

    100

    3t

    100

    99

    therefore,

    2 100 99e

    98e

    99

    3 98t ln

    100 99

    t 0.338 min

    Example 3. A tan k contains 80 gallons of pure water. A brine solution with 2 kg / gal of salt

    enters at 2 gpm, and the well stirred mixture leaves at the same rate.

    Find t

    he time at which the brine leaving will contain 1 kg / gal of salt.

    Given :

  • dt dt

    40 40

    t t

    40 40

    t t

    40 40

    t

    40

    t

    40

    Required : t so that C 1 kg / gal

    Solution :

    dQ Q Q(2)(2) 2 4

    dt 80 40

    dQ Q4 linear

    dt 40

    Qe 4e dt C

    Qe 4e C

    Qe 160e C

    Q 160 Ce

    when t 0, Q 0

    0 160 C; C 160

    therefore,

    Q 160 160e

    Qwhen C 1 ; Q 8

    80

    t

    40

    t

    40

    0

    80 160 160e

    e 0.5

    tln(0.5)

    40

    t 27.73 min

  • In this topic, we use the notation t, s, v, a, m, and F for time, dis tan ce, velocity, accele

    ration, mass, and force respectively. From calculus, we have

    ds dv dvv and a v

    dt dt ds

    If a particle of mass m moves in a strai

    Motion in a Straight Line

    2 2 2

    ght line under the inf luence of one or more forces

    having resul tan t F, then, in accordance with Newton 's law of motion, we have

    dF mv

    dt

    assu min g that m is cons tan t, then

    dv a W dvF m ma W

    dt g g dt

    where :

    g 9.8 m / s 98 cm / s 32.2 ft / s

    Example1. A boat with its load weighs 322 lbs. If the force exerted upon the boat by the motor

    in the direction of the motion is equivalent to a cons tan t force of 15 lbs, if the resis tan ce (in lb)

    to motion is equal numerically to twice the speed (

    in ft / s), that is, 2v lb and if the boat starts from

    rest, find the speed after 10 seconds.

    Solution :

    W dvF

    g dt

    322 dv15 2v

    32.2 dt

    dv15 2v 10

    dt

    15 2v dt 10dv

    10dv 5dvdt

    15 2v 7.5 v

    int egrating

    dvdt 5

    7.5 v

    t 5ln 7.5 v

    C

  • 0.0745

    5

    0.0745

    5

    when t 0, v 0

    0 5ln 7.5 0 C

    C 5ln 7.5

    therefore,

    10 5ln 7.5 v 5ln 7.5

    10 5ln 7.5 5ln 7.5 v

    0.0745 5ln 7.5 v

    0.0745ln 7.5 v

    5

    7.5 v e

    v 7.5 e

    v 6.48 ft / s

    Example 2. An iceboat with load weighs 322 lbs. It is prope

    o

    o

    lled by a force of 2 v v lb when

    moving at the rate of v ft / s in a v ft / s tail wind. There is a cons tan t resis tan ce to motion of

    10 lbs. (a) Find the speed v at time t sec from rest in a 40 ft / s wind. (b) Find its speed after 10 s

    from rest.

    Solution :

    (a) F

    o

    o

    o

    o

    o

    o

    W dv

    g dt

    322 dv2 v v 10

    32.2 dt

    dvv v 5 5

    dt

    5dvdt

    v v 5

    int egrating

    5dvdt

    v v 5

    t 5ln v v 5 C

    when t 0, v 0 and v 40

    0 5ln 40 0 5 C

    C 5ln 35

    therefore,

    t 5ln 40 v 5 5ln 35

    t 5ln 35 v 5ln 35

  • tln35

    5

    tln35

    5

    10ln35

    5

    ln35 2

    5ln 35 t 5ln 35 v

    tln 35 v ln 35

    5

    35 v e

    v 35 e

    (b) when t 10

    v 35 e

    v 35 e

    v 30.26 ft / s

    Example 3. A boat is being towed at the rate of 20 kph. At the ins tan t (t 0) that the towing

    line is cast off , a man in the b

    oat begins to row in the direction of motion exerting a force of

    90 N. If the combined mass of the man and the boat is 225 kg and the resis tan ce is equal to

    26.25v, find the speed of the boat after 1/ 2 min ute.[Ans. 3.5 m / s]

  • Example1. The rate of change of air pressure with altitude (distance above the earth) is propor -

    tional to the air pressure. If the air pressure on the ground is101 KPa and if at an altitude of

    3050 m it is 70 KPa, find the air

    Other Rate Problems

    pressure at an altitude of 4575 m.

    Solution :

    h 0 P 101 KPa

    h 3050 P 70 KPa

    h 4575 P ?

    dPkP

    dh

    dPkdh

    P

    int egrating

    dPkdh

    P

    ln P kh C working equation

    when h 0, P 101

    ln101 k(0) C; C ln101

    when h 3050, P 70

    ln 70 3050k ln101

    ln 70 ln1

    4

    4

    4.065

    01 3050k

    70ln

    101k 1.2 x 103050

    when h 4575

    ln P 1.2 x 10 4575 ln101

    ln P 4.065

    P e

    P 58.28 Kpa

    Example 2. Water leaks from a cylinder through a small orifice in its base at a rate proportional

    to the square root of the volume rem

    aining at any time. If the cylinder contains 64 gallons ini

    tially and 15 gallons leaks out the first day, when will 25 gallons remain ? How much will remain

    at the end of four days?

    Solution :

    v 64 when t 0

    v 49 when t 1

  • 12

    1

    2

    t ? when v 25

    t 4 when v ?

    water leaks at the rate proportional to the square root of the volume remaining at any

    time, then

    dvk v

    dt

    separating the var iables and int egrating,

    dvkdt

    v

    v dv kdt

    2v kt C

    2 v kt C working equation

    when

    t 0, v 64

    2 64 k(0) C; C 16

    when t 1, v 64 15 49

    2 49 k(1) 16

    k 2(7) 16 2

    when t ?, v 25

    2 25 2t 16

    2t 16 2(5)

    t 3 days

    when t 4, v ?

    2 v 2(4) 16

    2 v 8

    v 16 gallons