Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319...

18
ESE319 Introduction to Microelectronics 1 2008 Kenneth R. Laker updated 02Nov09 KRL Differential Amplifier with Active Loads Active load basics PNP BJT current mirror Small signal model Design example and simulation Comparison of CMRR with resistive load design

Transcript of Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319...

Page 1: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

12008 Kenneth R. Laker updated 02Nov09 KRL

Differential Amplifier with Active Loads

● Active load basics● PNP BJT current mirror● Small signal model● Design example and simulation● Comparison of CMRR with resistive load design

Page 2: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

22008 Kenneth R. Laker updated 02Nov09 KRL

Differential Amp – Active Loads Basics 1

Rc1 Rc2

Rb1 Rb2

Rref

Vee

VccIref

Vcg1Vcg2

Rref1

Rref2

Iref1

Iref2

-Vee

Vcc

Q1

Q3 Q4

Q5 Q6 Q7

Vc1

Q2

Vc2

Vi1 Vi2

RC1⇒ ro6

RC2⇒ r o7

PROBLEM: Op. Pt. VC1

, VC2

very sensitive to mismatch I

ref1 ≠ I

ref2.

+

+ +

+

Page 3: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

32008 Kenneth R. Laker updated 02Nov09 KRL

Differential Amp – Active Loads Basics 2

IC2

, IC7

VBE2

VCE2

VCE2

VCE2

VBE2

slope = -1/RC2 slope = -1/r

o7

IC2

VCC

VCC

Page 4: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

42008 Kenneth R. Laker updated 02Nov09 KRL

Differential Amp – Active Loads Basics 3

PROBLEM: Op. Pt. VC1

, VC2

very sensitive to mismatch I

ref1 ≠ I

ref2.

SOLUTION: all currents referenced to I

ref1. Op. Pt. sensitivity eliminated.

COST: output single-ended only. GOOD NEWS: CMRR is much improved over resistive-load differential amp single-ended CMRR.

Vc1 Vc2 Vc2Vc1

Page 5: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

52008 Kenneth R. Laker updated 02Nov09 KRL

Quick Review - PNP BJT

I

IE

IC

IB

Note reference currentdirections!

Voltage bias equations:

I E=V CC−V BV EB

RE

I≈I E

10

I E=V CC−V B−0.7

RE

I E=V R1−0.7

RE=

I R1−0.7RE

0.7 V

VB

R1

R2

RE

RC

Page 6: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

62008 Kenneth R. Laker updated 02Nov09 KRL

Quick Review - PNP BJT

iE

iC

iB

Usual Large signal equations:

iC=I S ev EB

V T

iB=iC

iE=iCiB=1

iC

iC= iE

R1

R2

RE

RC

Page 7: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

72008 Kenneth R. Laker updated 02Nov09 KRL

Quick Review - PNP – Small Signal Model

ib

ie

ic

ib

ie

ic

Page 8: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

82008 Kenneth R. Laker updated 02Nov09 KRL

PNP Mirror

I

I=V CC−0.7

RREF

Q1 = Q2: gm1

= gm2

= gmp

;Small signal model:

i x=v eb1

r pg mp veb1= 1

r pg mpveb1

i x= gmp

pg mpv eb1= p1

p g mp veb1=veb1

rep

I

Q1 Q2

veb

ix

B1 C1

E1

B2

E2

C2

Current through rπ and gmveb1:

re1

E1 E2

B1 C1 B2 C2

V CC=V EB1 I RREFr p=

p

gmb

rep=r p

p1

recall

rπ1 ro1gm1veb1 gm2veb1rπ2

ro2

ropgmpveb1rop rπ2p

rep

RREF

vEB2=v EB1

re1

= re2

= rep

; rπ1

= rπ2

= rπp

; β

1 = β

2 = β

p

Page 9: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

92008 Kenneth R. Laker updated 02Nov09 KRL

Simplified Mid-band DM Small Signal Model

NOTE:1. Due to imbalance created by active load current mirror, only single-ended output is available from common collector of Q2 and Q4.2. Q3, Q4 emitter symmetry creates virtual ground at amplifier emitter connection.

Q1 Q2

Q3 Q4

vi-dm/2

vi-dm/2

VEE

VCC

I ieie

Q3 = Q4

vc4-dm

vc4-dm is single-ended output.

vi-dm/2 vi-dm/2

B3 C3

E3 E4

B4C4B1=C1

E1

B2 C2

E2

virtual groundv

e = 0, i = 0

i

vdm/2 vdm/2

vc4-dm

ie ie

Q1 = Q2

gm2veb1

gm3vi-dm/2

gm4vi-dm/2

rπ3

re1||ro1 rπ2 ro2

ro4 rπ4

ro3

vbe2 = veb1

ro

ve

Page 10: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

102008 Kenneth R. Laker updated 02Nov09 KRL

Simplified DM Small Signal Model cont.

B3

E3

B4

E4

C3

E1 E2

B1=C1=B2 C4C2

vi-dm/2 vi-dm/2

virtual ground

re1∥ro1∥r 2∥ro3≈re1

vdm/2 vdm/2

combining parallel resistances to ground

Matched NPN: Q3 = Q4g m3=gm4=g mn

ro3=r o4=ron

Matched PNP Q1 = Q2gm1=gm2=gmp

ro1=r o2=r op

r1=r 2=r p

r3=r4=rn

re3=r e4=r en

re1=r e2=rep

gmpveb1

gmnvi-dm/2

gmnvi-dm/2

From previous slide

vc4-dm

rep

rπn rπnron

rop

re1∥ro1∥r 2∥ro3≈re1vc4-dm

Page 11: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

112008 Kenneth R. Laker updated 02Nov09 KRL

Simplified DM Small Signal Model - cont.

veb1≈gmnvi−dm

2rep

Matched NPN & PNP transistors have beenassumed throughout.

ic2=g mp veb1=g mpgmnv i−dm

2r ep

where: rep= p1 p

1gmp

≈ 1gmp

ic2≈gmnvi−dm

2

vi-dm

/2 vi-dm

/2vdm/2 vdm/2

B1C2

C4

ic2

E1 E2

B3 B4

E3 E4 hence:

virtual ground

ic4

Determine ic2

and ic4

:

ic4=gmnvi−dm

2by inspection:

⇒ ic2≈ic4

gmp

veb1

Matched NPN: Q3 = Q4Matched PNP: Q1 = Q2

rep

gmn vi−dm /2

gmn vi−dm /2

vc4−dm

rop

ronrn

rn

From previous slide:re1∥r o1∥r o3∥r2≈re1=r ep

1

1

2

3

2

3

Page 12: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

122008 Kenneth R. Laker updated 02Nov09 KRL

Simplified DM Small Signal Model - cont.

ic2≈gmn

v i−dm

2=ic4

vc4−dm=g mn Ro vi−dm

Av−dm4=vc4−dm

v i−dm=gmn rop∥ron

Ro=rop∥ron≠ ro∥ro=ro

2

Av−cm4=vc4−cm

v i−cm=−

rop

p r oalso

Matched NPN: Q3 = Q4Matched PNP: Q1 = Q2

From previous slide:

Note that the resistors ro2 = rop(PNP)& ro4 = ron (NPN) are in parallel, andare driven by two nearly equal parallelcurrent sources.

vc4−dm=ic2ic4Ro=2 g mnv i−dm

2Rogmn vi−dm /2

gmn vi−dm /2

repvc4−dm

Page 13: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

132008 Kenneth R. Laker updated 02Nov09 KRL

vi−cm=r n

1ie2 r o ie≈2 r o ie

veb1≈rep∥r pie=rep∥rbv i−cm

2 ro

vi-cm

B3 C3

E3 E4

B4C4B1=C1 = B2

E1 = E2

B2 C2

i = 2ie ro

ve

vcm vcm

vc4-cm

ie ie

re1∥ro1∥r2≈r ep∥r p

n ib n ib

ic4

ic4≈ie

ro3=r o4=ron

r3=r4=rn

re3=r e4=r en

Matched NPN: Q3 = Q4 Matched PNP: Q1 = Q2

ro1=r o2=r op

r1=r2=r pre1=r e2=rep

3=4=ngm1=gm2=gmp

gm3=gm4=gmn

1=2=p

gmpveb1

rep∥rb= p

g mp

p

gmp 1 p

p

gmp

p

gmp 1 p

=1

gmp

p2

1p∗

1 p

p1 p p

vo−cm=r opgmp veb1−ie=rop

2 r ogmprep∥rb−1v i−cm

rep∥rb p

gmp 1p∗

1 p

2p

veb1

ie gmp veb1−ic4

Simplified Mid-band CM Small Signal Model

vi-cm

re1∥ro1∥r2≈r ep∥r p

rn rnron ron

rop

ie≈vi−cm

2 ro

Page 14: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

142008 Kenneth R. Laker updated 02Nov09 KRL

Simplified CM Small Signal Model - cont.

Av−cm4=vc4−cm

vi−cm=

rop

2 r ogmp

1gmp

p

2 p−1

.=r op

2 r o

p

2 p−1=

rop

2 r o

−22p

=> Av−cm4=−rop

2 pro≈−

r op

p r o

rep∥rb=1

gmp

p

2p

Matched NPN: Q3 = Q4Matched PNP: Q1 = Q2

vo−cm=rop

2 rog mp rep∥rb−1v i−cm

From previous slide

re1∥ro1∥r2≈r ep∥r p gmpveb1

rn rnronron

rop

vi-cm vi-cm

vc4-cm

ro

n ib n ib

ieie

ic4

ve

ii

Page 15: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

152008 Kenneth R. Laker updated 02Nov09 KRL

DM Diff Amp 2N3906 PNP Active Loads

vi-dm

vc2-dm

Av−dm2=vo−dm

v i−dm=gm ro2∥ro8

Av-dm2(dB) = 55.5 dB @ 1 kHz = 52.5 dB @ 1.43 MHz

Design: set R3 for IREF = 10 mA

R3=23.3V10 mA

=2.33 k

IREF

Matched NPN: Q1 = Q2 = Q3 = Q4

Matched PNP: Q7 = Q8

Page 16: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

162008 Kenneth R. Laker updated 02Nov09 KRL

CM Diff Amp 2N3906 PNP Active Loads

Av−cm2=vc2−cm

v i−cm

vi-cm

vc2-cm

Av-cm2(dB) = -79.9 dB @ 1 kHz = -76.9 dB @ 0.54 MHzAv-dm2(dB) = 55.5 dB @ 1 kHz

CMRR=20 log10 ∣Av−dm2∣∣Av−cm2∣

.=Av−dm2 dB −Av−cm2dB

= 135.4 dB @ 1 k HzMatched NPN: Q1 = Q2

= Q3 = Q4Matched PNP: Q7 = Q8

Page 17: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

172008 Kenneth R. Laker updated 02Nov09 KRL

CMRR Comparison

vc2

vi-dm/2

CMRR = 82.8 dB @ 1 kHz

v-dm/2 v-dm/2

vc2

CMRR = 135 dB @ 1 kHz

vi-dm/2vi-cm

vi-dm/2 vi-dm/2vi-cm

2.33k Ohm

I ref 10 mA

Av-cm2(dB) = -79.9 dB @ 1 kHzAv-dm2(dB) = 55.5 dB @ 1 kHz

Av−cm2 dB=20log10 0.043=−27.3dB @ 1 kHz

56k Ohm56k Ohm

Av-dm2(dB) = 55.5 dB @ 1 kHz

Page 18: Differential Amplifier with Active Loadsese319/Lecture_Notes/Lec_16_DiffAmpActLoad_09.pdfESE319 Introduction to Microelectronics 2008 Kenneth R. Laker updated 02Nov09 KRL 1 Differential

ESE319 Introduction to Microelectronics

182008 Kenneth R. Laker updated 02Nov09 KRL

Summary

Active load advantages:1. Minimizes number of passive elements needed.2. Can produce very high gain in one stage.3. Much larger single-ended CMRR then single-ended

CMRR for resistive load differential amplifier.3. Inherent differential-to-single-ended conversion.

Active load disadvantages:1. No differential output available.