DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals...

27
DFT in depth the exchange-correlation term Robin HIRSCHL Institut f ¨ ur Materialphysik and Center for Computational Material Science Universit ¨ at Wien, Strudlhofgasse 4, A-1090 Wien, Austria ienna imulation ackage b-initio R. HIRSCHL, DFT IN DEPTH Page 1

Transcript of DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals...

Page 1: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

DFT in depththe exchange-correlation term

Robin HIRSCHL

Institut fur Materialphysikand Center for Computational Material Science

Universitat Wien, Strudlhofgasse 4, A-1090 Wien, Austria

ienna imulation

ackage

b-initio

R. HIRSCHL, DFT IN DEPTH Page 1

Page 2: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Outline

exchange and correlation in DFT

local density and local spin density approximation

generalised gradient approximation

semilocal functionals beyond GGA

VASP input and output

nonlocal and hybrid functionals

applications

R. HIRSCHL, DFT IN DEPTH Page 2

Page 3: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

DFT basic theorems

DFT energy functional:

E n T n dr Vext r n r

12

dr dr n r n r

r r Exc n (1)

Hohenberg-Kohn theorems [1]:

HK1 The full many-particle ground state is a unique functional of n r .HK2 E n assumes its minimum value for the ground state density w.r.t. all densities

fullfilling n r dr N.

R. HIRSCHL, DFT IN DEPTH Page 3

Page 4: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Finding the minimum energy Minimizing the energy functional (1) directly

∂T n

∂n r Vext r dr n r

1

r r ∂Exc n

∂n r λn r (2)

Solving the Kohn-Sham equations [2]

12

∇2 Vext r Vxc r dr n r

1

r r

ψk r εkψk r (3)

leading to

E

N

∑k 1

εk

12

dr dr n r n r

r r Exc n dr Vxc n r n r (4)

only Exc n and Vxc n r

∂Exc n ∂n r are to be approximated!

R. HIRSCHL, DFT IN DEPTH Page 4

Page 5: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Exchange-correlation energy

Exc n T n T0 n Uxc n (5)

T n T0 n . . . kinetic energy difference of interacting and non-interacting systemUxc n . . . Coulomb interaction of electrons with exchange correlation hole nxc

Adiabatic connection formula:

Exc n 12

dr n r dr

1

0dλ

nxc λ r r

r r (6)

λ . . . interaction parameter.

Coulomb interaction is isotropic:

Exc n 12

dr n r

0dRR2 1

RdΩ

1

0dλnxc λ r R (7)

R. HIRSCHL, DFT IN DEPTH Page 5

Page 6: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Exchange-correlation hole nxc rσ r σ

Definition from two-electron density matrix,

ρ2 rσ r σ nσ r nσ r nxc rσ r σ ! (8)

nxc is local,lim

" r# r "%$ ∞nxc rσ r σ 0 (9)

from the Pauli exclusion principle follows

nxc rσ rσ nσ r (10)

Dividing nxc in exchange and correlation part,nxc rσ r σ nx rσ r σ nc rσ r σ yields

nx rσ r σ & 0 dr nx rσ r σ δσ σ (11)

anddr nc rσ r σ 0 (12)

R. HIRSCHL, DFT IN DEPTH Page 6

Page 7: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Scaling relations (see eg. [3])

Lieb-Oxford bound,

Exc n ' D drn4 ( 3 r 1 44& D& 1 68 (13)

Uniform scaling, e.g.,

Ex γ3n γr γEx n r Ec γ3n γr *) γEc n r γ) 1 (14)

limγ$ 0

Exc γ3n γr B n r *+ Exc n r (15)

non-uniform scalin, e.g.,

limγ$ 0

Exc γ2n γx γy z ) ∞ (16)

limγ$ ∞

Exc γn γx y z ) ∞ (17)

. . . and many more.

R. HIRSCHL, DFT IN DEPTH Page 7

Page 8: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Local Density Approximation (LDA) I

Exc dr n r εxc n r (18)

εxc n r . . . exchange correlation energy of a uniform electron gas.

Exchange:

Ex ∑σ

k dr n43σ r (19)

with k 224 , 3

32 3

4π !

13 in LDA and k 3

2 34π !

13 in LSDA.

Correlation:Parametrised from quantum Monte Carlo Simulations.

R. HIRSCHL, DFT IN DEPTH Page 8

Page 9: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Local Density Approximation (LDA) II

fully local

exchange and correlation of a physical system

obeys uniform scaling relations (e.g. 14,15)

does not obey non-uniform scaling relations (e.g. 16,17)

although qualitatively wrong exchange-correlation hole, good approximation forthe spherical average

Overall, LDA performs remarkably well!

R. HIRSCHL, DFT IN DEPTH Page 9

Page 10: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Local Density Approximation (LDA) III

Figure 1: Exact and LSDA local (top) and integrated (bottom) exchange hole in anitrogen atom (from [4]).

R. HIRSCHL, DFT IN DEPTH Page 10

Page 11: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Spin-polarised exchange-correlation

Replacing scalar potentials and densities by spin-matrices [5]

V r .- Vαβ r n r - nαβ r (20)

HK1 is lost (class of potentials leads to same density matrix).

BUT: ground-states and derived quantities of the classes are equal

- DFT still valid.

Exchange energy treated seperatly for both spins

Correlation energy Commonly written as functionals of rs ∝ ρ# 1 ( 3 and ζ n / # n 0

n

von Barth and Hedin: correlation potential and energy from RPA

Vosko, Wilk, and Nusair: included interpolations from quantom Monto Carloresults for ζ 0 and ζ 1.

R. HIRSCHL, DFT IN DEPTH Page 11

Page 12: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Gradient Expansion Approximation (GEA)

Already suggested by Kohn and Sham [2],

EGEAxc n 1 n 2 dr n r εxc n 1 r n 2 r

∑σ σ

Cσ σ n 1 r n 2 r

∇nσ

n2 ( 3σ

∇nσ

n2 ( 3σ

(21)

nxc not the exchange-correlation hole of any physical system

improvement over LSDA for slowly varying systems

Typically GEA performs worse than LSDA for real electronic systems.

R. HIRSCHL, DFT IN DEPTH Page 12

Page 13: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Generalised Gradient Approximation (GGA)

General semilocal approximation to the exchange-correlation energy as a functional ofthe density and its gradient to fullfill a maximum number of exact relations,

EGGAxc n 1 n 2 dr f n 1 r n 2 r ∇n 1 r ∇n 2 r (22)

Exchange correlation potential:

Vxc n r ∂Exc n ∂n r

∇3 ∂Exc n

∂ ∇n r (23)

The gradient of the density is usually determined numerically.

R. HIRSCHL, DFT IN DEPTH Page 13

Page 14: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

GGA Examples I Langreth-Mehl 1983 (LM)

– Construction from wave-vector analysis of Exc

– Correlation term for small k set to zero

– Correction in right direction but major shortcomings, e.g. uniform gas limit isnot correct

Perdew-Wang 1986 (PW86)

– real space cutoff to Ex of GEA

– reciprocal space cutoff to Ec of GEA

Becke-Perdew 1988 (BP)

– Improved exchange functional with a single adjustable parameter

Lee-Yang-Parr 1988 (LYP)

– correlation functional derived from the Cole-Salvetti formula

R. HIRSCHL, DFT IN DEPTH Page 14

Page 15: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

GGA Examples II Perdew-Wang 1991 (PW91) [6]

– purely ab-initio

– fullfills almost all scaling relations except high density limit of uniformscaling

Exchange energy:

EPW91x n drn

3kF

4π1 0 1965ssinh# 1 7 796s 0 274 0 151e# 100s2

s2

1 0 1964ssinh# 1 7 796s 0 004s4

Correlation energy:

EPW91c n drn εc rs ζ H t rs ζ

with kF 3π2n 1 ( 3, s ∇n 4 2kF n, t ∇n 4 2gksn, g 1 ζ 2 ( 3 1 ζ 2 ( 3 4 2,and ks 4kF4 π 1 ( 2.

R. HIRSCHL, DFT IN DEPTH Page 15

Page 16: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

GGA Examples III Perdew-Burke-Ernzerhof 1996 (PBE)

– simplification of the derivation of PW91

– only minor changes to PW91

Revised Perdew-Burke-Ernzerhof 1999 (RPBE)

– semi-empirical change of PBE to improve atomisation energies of smallmolecules and chemisorption energies of atoms and molecules on transitionmetal surfaces

Many GGAs are tailored for specific classes of problems and havetherefore a limited general applicability.

R. HIRSCHL, DFT IN DEPTH Page 16

Page 17: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Extending the GGA

Problem:

GGA cannot describe the r- ∞ limit of the xc-energy density and thexc-potential simultaneously correctly.

Solution:

include further semilocal information of the density, e.g. ∆n r

include semilocal information of the orbitals, e.g. the kinetic energy density,

τ r 12

N

∑k 1

∇ψk r 2 (24)

R. HIRSCHL, DFT IN DEPTH Page 17

Page 18: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Laplacian of the density

Advantage:

straight forward exchange-correlation potential

Vxc n r ∂Exc n

∂n r ∇3 ∂Exc n

∂ ∇n r ∆3 ∂Exc n

∂ ∆n r

(25)

Disadvantage:

numerically unstable

Examples:

Jemmer and Knowles (1995)

Filatov and Thiel (1998) (FT98)

R. HIRSCHL, DFT IN DEPTH Page 18

Page 19: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Kinetic energy density

modifications of the LDA which do not consider the nature of the orbitalsinvolved are unlikely to be satisfactory in all systems

Jones and Gunarsson 1985

Problem:

Determination of the exchange-correlation potential

Solution:

Optimised effective potential method

∑i

dr V OEPxc r

1ψi r

∂Exc 5 ψi 6

∂ψ 7i r

ψ 7

i r Gi r r ψi r c c 0

Neumann-Nobes-Handy method

ψiVxcψkdr ∇ψi 2∂εxc n ∇n τ

∂τ∇ψkdr

R. HIRSCHL, DFT IN DEPTH Page 19

Page 20: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

VASP Input Choose the exchange correlation functional

– via the POTCAR file

– by setting GGA = |CA|91|PE|RP in the INCAR file

8 (two blanks) . . . LDA exchange only

8 CA . . . LDA exchange and correlation

Switch on non-selfconsistent PKZB meta-GGA energy

– based on PBE potentials (only those include the kinetic energy density)

– set LMETAGGA=.TRUE. in the INCAR file

non-selfconsistent aspherical contributions to the on-site GGA energy (PAWpotentials only)

– set LASPH=.TRUE. in the INCAR file

R. HIRSCHL, DFT IN DEPTH Page 20

Page 21: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

VASP output OSZICAR and stdout:

1 F= -.35333292E+01 E0= -.35333292E+01 d E =-.748238E-17

1 F(ASPHER.)= -.35567321E+01 E0(ASPHER.)= -.35567321E+01

1 F(METAGGA)= 0.32195711E+01 E0(METAGGA)= 0.32195711E+01

OUTCAR:

ASPHERICAL CONTRIBUTION TO EXCH AND CORRELATION IN SPHERES (eV)

---------------------------------------------------

standard PAW PS : AE= 135.083574 -166.260165

Aspheric PAW PS : AE= 135.115379 -166.315373

core xc AE= -1334.998410

---------------------------------------------------

Aspherical result:

free energy TOTEN = -3.556732 eV

energy without entropy= -3.556732 energy(sigma->0) = -3.556732

R. HIRSCHL, DFT IN DEPTH Page 21

Page 22: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

OUTCAR cont’d:

METAGGA EXCHANGE AND CORRELATION (eV)

---------------------------------------------------

LDA+GGA E(xc) EXCG = -164.793059

LDA+GGA PAW PS : AE= 135.115379 -166.315373

core xc AE= -1334.998410

metaGGA E(xc) EXCM = -164.476006

metaGGA PAW PS : AE= 134.494206 -159.234950

metaGGA core xc AE= -1378.140708

---------------------------------------------------

METAGGA result:

free energy TOTEN = 3.219571 eV

energy without entropy= 3.219571 energy(sigma->0) = 3.219571

R. HIRSCHL, DFT IN DEPTH Page 22

Page 23: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Hybrid functionals

Motivation:Adiabatic connection formula (6)

Exc n

1

0Uxc λ n dλ9 1

2Uxc 0 n

12

Uxc 1 n (26)

Uxc 0 n . . . nonlocal exchange energy of KS-orbitalsUxc 1 n . . . potential energy of exchange-correlation

Common hybrid functional B3LYP:

Exc 1 a0 ELSDAx a0Eexact

x ax∆EB88x acELYP

c 1 ac EVWNc (27)

a0 0 20, ax 0 72, and ac 0 81.

R. HIRSCHL, DFT IN DEPTH Page 23

Page 24: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Implementation of exact exchange

Eexactx is a sum of four-center integrals,

Eexactx 1

2

N

∑m n

fn fmdrdr

r r

φ 7

m r φm r φn r φ 7

n r (28)

Scaling problem:

DFT scaling (VASP): O N2

Ex scaling (plane waves): O N3 logN Periodic boundary conditions (PBC):

Integrable divergence in reciprocal space for G 0.

Remove the singulartiy due to PBC by “localising” the orbitals.

R. HIRSCHL, DFT IN DEPTH Page 24

Page 25: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Application I: Small Molecules

ato

mis

atio

n e

ne

rgy e

rro

r /

eV

3.0

2.5

2.0

1.5

0.5

1.0

0.0

-0.5

-1.0H2

LiH

CH4

NH3

OH

H2O

HF

Li2

LiF

Be2

C H22

C H42

HCN

CO

N2

NO

O2

F2

P2

Cl2

LSDAPBERPBEPKZBFT98B3LYP

Figure 2: Atomisation energy errors (Ecalc Eexp of small molecules (results from [7](B3PW91) and [8])

R. HIRSCHL, DFT IN DEPTH Page 25

Page 26: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

Application II: Adsorption path

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DE

[eV

]

s

Pd (111) PBE

Pd (111) RPBE

Pd (111) PKZB (aPBE)

Pd (111) PKZB (aPKZB)

Figure 3: Minimum energy path (MEP) of the H2 approach over the Pd(111) surface(RH, thesis)

R. HIRSCHL, DFT IN DEPTH Page 26

Page 27: DFT in depth the exchange-correlation term · VASP input and output nonlocal and hybrid functionals applications R. HIRSCHL, DFT IN DEPTH Page 2. DFT basic theorems DFT energy functional:

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136(3), B864(1964).

[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133(1965).

[3] K. Burke, J. P. Perdew, and M. Levy, in J. Seminarioand P. Politzer, eds., Modern Density FunctionalTheory: A Tool for Chemistry , Elsevier, Amsterdam(1995).

[4] R. O. Jones and O. Gunarsson, Rev.Mod. Phys. 61,689 (1989).

[5] U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

[6] J. P. Perdew et al., Phys. Rev. B 46, 6671 (1992).

[7] A. Becke, J. Chem. Phys. 98, 5648 (1993).

[8] S. Kurth, J. P. Perdew, and P. Blaha, Int. J. QuantumChem. 75, 889 (1999).

[9] R. Hirschl, Binary Transition Metal Alloys and TheirSurfaces - an Ab Initio Study, PhD Thesis, UniversitatWien (2002), available fromhttp://cms.mpi.univie.ac.at/robin/

R.H

IRS

CH

L,DF

TIN

DE

PT

HPage

27