Development of high speed waveform sampling ASICs

39
Development of high speed waveform sampling ASICs Stefan Ritt - Paul Scherrer Institute, Switzerland NSNI – 2010, Mumbai, India

description

NSNI – 2010, Mumbai, India. Development of high speed waveform sampling ASICs. Stefan Ritt - Paul Scherrer Institute, Switzerland. Question …. 4 channels 5 GSPS 1 GHz BW 8 bit (6-7) 15k$ (700kRs). 4 channels 5 GSPS 1 GHz BW 11.5 bits 1k$ (50kRs) USB Power. - PowerPoint PPT Presentation

Transcript of Development of high speed waveform sampling ASICs

Page 1: Development of high speed waveform sampling ASICs

Development of high speed waveform sampling ASICs

Stefan Ritt - Paul Scherrer Institute, Switzerland

NSNI – 2010, Mumbai, India

Page 2: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 2

Question …

4 channels5 GSPS1 GHz BW8 bit (6-7)15k$ (700kRs)

4 channels5 GSPS1 GHz BW8 bit (6-7)15k$ (700kRs)

4 channels5 GSPS1 GHz BW11.5 bits1k$ (50kRs)USB Power

4 channels5 GSPS1 GHz BW11.5 bits1k$ (50kRs)USB Power

Page 3: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 3

Switched Capacitor Array

Shift RegisterClock

IN

Out

“Time stretcher” GHz MHz“Time stretcher” GHz MHz

Waveform stored

Inverter “Domino” ring chain0.2-2 ns

FADC 33 MHz

Page 4: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 4

Switched Capacitor Array

•Cons

• No continuous acquisition

• Limited sampling depth

• Nonlinear timing

•Pros

• High speed (up to 5 GSPS) high resolution (13 bit SNR)

• High channel density (16 channels on 5x5 mm2)

• Low power (10-40 mW / channel)

• Low cost (~ 10$ / channel)

t t t t t

Goal: Minimize Limitations

Page 5: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 5

• CMOS process (typically 0.35 … 0.13 m) sampling speed

• Number of channels, sampling depth, differential input

• PLL for frequency stabilization

• Input buffer or passive input

• Analog output or (Wilkinson) ADC

• Internal trigger

Design Options

PLL

ADC

Trigger

Page 6: Development of high speed waveform sampling ASICs

Write CircuitryHow to sample the input signal

Page 7: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 7

Simple inverter chain

1 0 0 0 0 0

0 0 0 0 00

1 0

0 0 0 0 00

1

0

10 0 0

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

11

1 0 0 0 0 0

0 0 0 0 00

0

0 0 0 0 00

0

0 0 0

1

1

1

0 0 00

0 0 0 0

0 0 0 0

00

0 0 0 0 00

00

Page 8: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 8

Design of Inverter Chain

PMOS > NMOS

PMOS < NMOS

Page 9: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 9

“Tail Biting”

enable

1 2 3 4

1

2

3

4

speed

Page 10: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 10

Phase Locked Loop

On-chip PLL can lock sampling frequency to external reference clock

T Q

PhaseComparator

ExternalReference

Clock

Inverter Chain

loopfilter

down

1

2

sampling speed control

PLLup

Page 11: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 11

Timing jitter

t1 t2 t3 t4 t5

• Inverter chain has transistor variations ti between samples differ “Fixed pattern aperture jitter”

• “Differential temporal nonlinearity” TDi= ti – tnominal

• “Integral temporal nonlinearity”TIi = ti – itnominal

• “Random aperture jitter” = variation of ti between measurements

• Inverter chain has transistor variations ti between samples differ “Fixed pattern aperture jitter”

• “Differential temporal nonlinearity” TDi= ti – tnominal

• “Integral temporal nonlinearity”TIi = ti – itnominal

• “Random aperture jitter” = variation of ti between measurements

TD1 TI5

Page 12: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 12

Fixed jitter calibration

• Fixed jitter is constant over time, can be measured and corrected for

• Several methods are commonly used

• Most use sine wave with random phase and correct for TDi on a statistical basis

• Fixed jitter is constant over time, can be measured and corrected for

• Several methods are commonly used

• Most use sine wave with random phase and correct for TDi on a statistical basis

Page 13: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 13

Fixed Pattern Jitter Results

• TDi typically ~50 ps RMS @ 5 GHz

• TIi goes up to ~600 ps

• Jitter is mostly constant over time, measured and corrected

• Residual random jitter 3-4 ps RMS

Page 14: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 14

Achievable Timing Resolution

After proper timing calibration, a “split pulse timing accuracy” of typically~10 ps can be chieved

D. BretonPicosecond WorkshopClermont-Ferrand, Jan 2010

D. BretonPicosecond WorkshopClermont-Ferrand, Jan 2010

Page 15: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 15

What determines the BW?

• The analog bandwidth is given by the parasitic capacitance of the input bus and the input impedance

• Typically 20fF/cell+20pF (bus), 2-3 for bond wire 1 GHz BW

• An active input buffer does not really help

20 fF

20 pFBond wire2-3

GHzRC

f dB 8.12

13

“The best buffer is no buffer” – G. Varner

“The best buffer is no buffer” – G. Varner

Page 16: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 16

Cascaded Switched Capacitor Array

• Combines the advantage of a short input stage (32 cells) with a deep secondary sampling stage (32x32 cells)

• Estimated input BW:5 GHz

• Sampling speed:10 GSPS (130 nm)

• 100 ps sample time –3.1 ns hold time

• Matches BW of fastestdetectors (G-APD, MCP-PMT)

next generation of SCAs

shift registerinput

fast sampling stage secondary sampling stage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 17: Development of high speed waveform sampling ASICs

Readout Circuitry

How to read out sampled waveforms

Page 18: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 18

Analog Readout Methods

write

read

C

. . .

R(700 )I

Uin

write

C

Uin

“DifferentialPair”

Ib

Vout

Ib/2Ib/2

+-

read

write

C (200fF)

Uin

read

I ~ kT

Page 19: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 19

Digital Readout

Wilkinson-type ADC requires only one comparator per sampling cell

12-b

it co

unte

r

+

-

+

-

latc

h

DAC latc

h

ramp voltage

comparator comparator

ASIC

FPGA

Page 20: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 20

How to minimize dead time ?

• Fast analog readout: 30 ns / sample

• Parallel readout

• Region-of-interestreadout

• Simultaneouswrite / read

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

STOP SHIFT REGISTER

READ SHIFT REGISTER

W SRO UT

CO NFIG REGISTER

RSRLO AD

DENABLE

W SRIN

DW RITE

DSPEED PLLO UT

DO MINO WAVE CIRCUIT

PLL

AGND

DG ND

AVDD

DVDD

DTAPREFCLKPLLLCK A0 A1 A2 A3

EN

AB

LE

OU T0

OU T1

OU T2

OU T3

OU T4

OU T5

OU T6

OU T7

OU T8/MUXOUT

BIASO-O FS

RO FSSROUT

RESETSRCLK

SRIN

F U N C T IO N A L B L O C K D IA G R A M

MUX

WR

ITE

SH

IFT

RE

GIS

TE

R

WR

ITE

CO

NF

IG R

EG

IST

ER

CHANNEL 0

CHANNEL 1

CHANNEL 2

CHANNEL 3

CHANNEL 4

CHANNEL 5

CHANNEL 6

CHANNEL 7

CHANNEL 8

MUX

LVDS

AD922212 bit

8 channels

DRS4DRS4

Page 21: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 21

DRS4 ROI readout mode

readout shift register

Triggerstop

normal trigger stop after latency

Delay

delayed trigger stop

Patent pending!

33 MHz

e.g. 100 samples @ 33 MHz 3 us dead time

300,000 events / sec.

e.g. 100 samples @ 33 MHz 3 us dead time

300,000 events / sec.

Page 22: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 22

Simultaneous Write/Read

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

0

FPGA

0

0

0

0

0

0

0

1 Channel 0

Channel 11

Channel 0 readout

8-foldanalog multi-event

buffer

Channel 21

Channel 10

Expected crosstalk ~few mVExpected crosstalk ~few mV

Page 23: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 23

Current SCA ASICs

Chip family SAM [1] LAB [2] DRS [3] Anusmriti

[4]

Max. sampling speed

2.5 GSPS 3.7 GSPS 6 GSPS 0.5 GSPS

Analog Bandwidth 300 MHz 900 MHz 950 MHz ?

Number of channels

2 1-16 9 1

SNR 13.4 bits 10 bits 11.4 bits ?

Sampling depth 144-2520 256-64k 1025-8192 128

Readout time 650 s 150 s – 10ms

30 ns * nsamples 128 s

Input Buffers YES YES NO YES

Internal PLL YES NO YES YES

ADC External Internal External External

Power/channel 150-500 mW

15-50 mW 14-45 mW 400 mW[1] E. Delagnes, D. Breton et al., NIM A567 (2006) 21[2] G. Varner et al., NIM A583 (2007) 447[3] S. Ritt, NIM A518 (2004) and http://drs.web.psi.ch[4] M. Sukhwani et al., NSNI 2010

Page 24: Development of high speed waveform sampling ASICs

Advanced Topics

Triggering, Channel Cascading, Waveform Analysis

Page 25: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 25

How to measure best timing?

Simulation of MCP with realistic noise and different discriminatorsSimulation of MCP with realistic noise and different discriminators

J.-F. Genat et al., arXiv:0810.5590 (2008)

Page 26: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 26

Flash ADC Technique

60 MHz12 bit

Q-sensitivePreamplifierPMT/APD

WireShaper

• Shaper is used to optimize signals for “slow” 60 MHz FADC• Shaping stage can only remove information from the signal• Shaping is unnecessary if FADC is “fast” enough• All operations (CFD, optimal filtering, integration) can be done digitally

• Shaper is used to optimize signals for “slow” 60 MHz FADC• Shaping stage can only remove information from the signal• Shaping is unnecessary if FADC is “fast” enough• All operations (CFD, optimal filtering, integration) can be done digitally

FADC

TDC

“Fast”12 bit

TransimpedancePreamplifier FADC

PMT/APDWire

DigitalProcessing

Amplitude

Time

BaselineRestoration

Page 27: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 27

How fast is “fast”

• Nyquist-Shannon: Sampling rate must be 2x the highest frequency coming from detector

• Analog Bandwidth must match signal from detector

• Fastest pulses coming from Micro-Channel-Plate PMTs

3mpores

Page 28: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 28

Fastest pulses

• MCP-PMTs: 70 ps rise time 4-5 GHz BW 10 GSPS

• Cable should not limit bandwidth Put digitizer onto detector

• Higher sampling speed only improves statistics

J. Milnes, J. Howoth, Photek

shift registerinput

fast sampling stage secondary sampling stage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aimed parameters:5 GHz Bandwidth10 GSPS Sampling Rate

Aimed parameters:5 GHz Bandwidth10 GSPS Sampling Rate

10 GSPS

30 GSPS

Page 29: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 29

Trigger and DAQ on same board

• All SCA applications need some kind of trigger split signals

• Using a multiplexer in DRS4, input signals can simultaneously digitized at 65 MHz and sampled in the DRS

• FPGA can make local trigger(or global one) and stop DRSupon a trigger

• DRS readout (5 GSPS)though same 8-channel FADCs

an

alo

g fro

nt e

nd

DRSFADC12 bit

65 MHz

MU

X FPGA

trigger

LVDS

SRAM

DRS4

glo

bal tr

igger

bu

s

“Free” local trigger capability without additional hardware

“Free” local trigger capability without additional hardware

Page 30: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 30

Daisy-chaining of channels

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Domino Wave

1

clock

0

1

0

1

0

1

0

enableinput

enableinput

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Domino Wave

1

clock

0

1

0

1

0

1

0

enableinput

enableinput

DRS4 can be partitioned in: 8x1024, 4x2048, 2x4096, 1x8192 cellsChip daisy-chaining possible to reach virtually unlimited sampling

depth

DRS4 can be partitioned in: 8x1024, 4x2048, 2x4096, 1x8192 cellsChip daisy-chaining possible to reach virtually unlimited sampling

depth

Page 31: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 31

Interleaved samplingdela

ys

(167p

s/8 =

21ps)

G. Varner et al., Nucl.Instrum.Meth. A583, 447 (2007)G. Varner et al., Nucl.Instrum.Meth. A583, 447 (2007)

6 GSPS * 8 = 48 GSPS

Possible if delay is implemented on PCBPossible if delay is implemented on PCB

Page 32: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 32

On-line waveform display

click

templatefit

pedestalhisto

848PMTs

“virtual oscilloscope”“virtual oscilloscope”

Page 33: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 33

Pulse shape discrimination

)tt[...]θ.. )tθ(td)/τt(te

/τ)t(te i/τ)t(t

eAV(t)r00

000

CsB

Leading edge Decay time AC-coupling Reflections

Example: / source in liquid xenon detector (or: /p in air shower)Example: / source in liquid xenon detector (or: /p in air shower)

Page 34: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 34

-distribution

= 21 ns

= 34 ns

Waveforms can be clearly

distinguished

= 21 ns

= 34 ns

Waveforms can be clearly

distinguished

Page 35: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 35

Template Fit

• Determine “standard” PMT pulse by averaging over many events “Template”

• Find hit in waveform

• Shift (“TDC”) and scale (“ADC”)template to hit

• Minimize 2

• Compare fit with waveform

• Repeat if above threshold

• Store ADC & TDC values

Experiment500 MHz sampling

Pile-up can be detected if two hits are separated in time by ~rise time of signal

Pile-up can be detected if two hits are separated in time by ~rise time of signal

Page 36: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 36

Do we still need crates?

• An empty crate slot costs ~1k$ (crate, interface/computer, cooling)

• Crate topologies requires long cables Reduction of bandwidth

• Alternative: Put electronics on detectors

MEG 3000 channelsMEG 3000 channels

G. VarnerBelle-TOF

G. VarnerBelle-TOF cPCI

H. FriedrichWaveDREAMPSI/ETHZ

H. FriedrichWaveDREAMPSI/ETHZ

GBitEthernet

Page 37: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 37

Experiments using SCA ASCIs

MAGIC-IIMAGIC-IIMEG 3000 channelsMEG 3000 channels

ANITAANITA

ANTARESANTARES

H.E.S.S.H.E.S.S.

Belle-TOFBelle-TOF

Page 38: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 38

Conclusions

• Fast waveform digitizing with SCA chips will have a big impact on experiments in the next future, replacing traditional ADCs and TDCs

• SCA community growing! Exchange ofexperience is important. Joining is easy(e.g. USB evaluation boards)

• New generation of SCA chips on the horizon

Page 39: Development of high speed waveform sampling ASICs

Feb. 25th, 2010 NSNI-2010 Mumbai 39

Thank You!