Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1...

31
Development of an Internal Reforming Alcohol High Temperature PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10 th 2010 Project acronym: IRAFC Grant agreement No.: 245202 Duration : Jan 2010- Dec 2012 A project supported by the Fuel Cells and Hydrogen Joint Undertaking

Transcript of Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1...

Page 1: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Development of an Internal Reforming Alcohol High Temperature

PEM Fuel Cell Stack

IRAFC, JTI-FCH-JU-2008-1

Brussels, November 10th 2010

Project acronym: IRAFC

Grant agreement No.: 245202

Duration : Jan 2010- Dec 2012

A project supported by the Fuel Cells and Hydrogen Joint Undertaking

Page 2: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Project Overview – Participants Project Overview – Participants

• Advanced Energy Technologies (Coordinator), Patras, Greece

• University of Maria Curie- Sklodowska, Poland

• Nedstack Fuel Cell Technology BV, The Netherlands

• Centre National de la Recherche Scientifique, CNRS,

Strasbourg, France

• Foundation for Research and Technology, Hellas-

Institute of Chemical Engineering & High Temperature

Chemical, Patras, Greece

• Institut für Mikrotechnik Mainz GmbH, Mainz, Germany

Page 3: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Work Packages Work Packages

•WP1: Project Management

•WP2: Synthesis and characterization of novel high temperature polymer

electrolyte membranes

•WP3: Reforming catalysts: synthesis and screening

•WP4: Catalytic formulations into functional structures

•WP5: Electrochemical characterization of materials

•WP6: Single cell, stack design and testing

•WP7: Construction, long term testing of short stacks and integration of a 100W stack

to a complete system

•WP8: Dissemination and public awareness

Page 4: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

The increase of the operation temperature opens new ways of direct combination of the Fuel Cell with the Reformer

Integrated reformed alcohol (methanol) HT-PEMFC configuration. The fuel cell is composed of a membrane electrode assembly (MEA)

comprising a high-temperature protonconducting electrolyte membrane sandwiched between the anodic (methanol reforming catalyst

for the production of CO-free hydrogen + anode electrocatalyst) and cathodic gas diffusion electrodes.

Graphite

Plate

Flowfield

H+

H+

H+

H+

HT-Polymer

Electrolyte

Membrane

oxygen

water

methanol

& water

carbon dioxide

& water

OHH

O

O

OHH

OHH

C

O

O

H C O

H

H

H

Al Plate

Current

Collector

Anode: Pt/C

H2→2H++2e-

Cathode: Pt/C

0.5O2+2H++2e-→H

2O

CuMnO/Cu foam catalyst

CH3OH+H

2O→3H

2+CO

2

Internal Reforming Methanol Fuel Cell

Graphite

Plate

Flowfield

H+

H+

H+

H+

HT-Polymer

Electrolyte

Membrane

oxygen

water

methanol

& water

carbon dioxide

& water

OHH

OHH

O

O

O

O

OHH

OHH

OHH

OHH

C

O

O

C

O

O

H C O

H

H

H

H C O

H

H

H

Al Plate

Current

Collector

Anode: Pt/C

H2→2H++2e-

Cathode: Pt/C

0.5O2+2H++2e-→H

2O

CuMnO/Cu foam catalyst

CH3OH+H

2O→3H

2+CO

2

Internal Reforming Methanol Fuel Cell

Main Idea Main Idea

Page 5: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Proof of conceptProof of concept

I-V and long term stability measurements of the TPS® type MEA

Polymer Electrolytes and Non Noble Metal Electrocatalysts for High Temperature PEM Fuel Cells,

NMP3-CT2006-033228-Apollon B

Page 6: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

18100 18200 18800 19000 19200

0

3

6

9

12

15

Feed 2 to anode

(I = 1.7 A at 0.5 V)

Anode

feedstream (Feed 2)

(cell bypass)

Feed 2 to anode

(EOCV = 0.990 V)

t = t0

CO2, H

2

H2O

H2O

CH3OH

CH3OH

CO2

Rate, cm

3/m

in

Time, s

H2

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

0

25

50

75

100

125

150

FEED 3

FEED 2

Power density, mW/cm

2

6.5% CH3OH (FEED 1)

13.0% CH3OH (FEED 2)

20.0% CH3OH (FEED 3)

H2O/CH

3OH = 1.5

Tcell= 200

oC

Voltage, mV

Current density, mA/cm2

FEED 1

Proof of conceptProof of concept

Performance of IRAFC.

G. Avgouropoulos, J. Papavasiliou, M. K. Daletou, J. K. Kallitsis, T. Ioannides, S. Neophytides

Applied Catalysis B: Environmental 90 (2009) 628–632

Page 7: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Project goalsProject goals

The ultimate goal of the project is to deliver:

-An Internal-Alcohol-Reforming High-Temperature PEM fuel cell

(IRAFC) with the following characteristics:

(i) 0.15 W/cm2 at 0.7V, operating at 220°C

(ii) Specific (W/kg) and volumetric (W/m3) power density similar to current,

state-of-the-art high-temperature PEM fuel cells operating on hydrogen.

Page 8: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

(i) New polymer membranes with improved thermal and chemical stability

able to operate at 220°C

(ii) New alcohol reforming catalysts with improved activity and stability

able to provide stable hydrogen production in the anode environment

(iii) Bipolar plates specifically designed under the requirements of IRAFC

operation.

How to get there How to get there

Critical components of the IRAFC

Page 9: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Characterization of the resulting copolymers by thermal, mechanical analyses andevaluation of their phosphoric acid uptake.

Synthesis of linear aromatic Synthesis of linear aromatic polyetherspolyethers containing side pyridine, containing side pyridine,

terpyridineterpyridine or carboxyl ester unitsor carboxyl ester units

Copolymers with expected increased acid doping ability Copolymers with expected increased acid doping ability

& potential crosslinking sites.& potential crosslinking sites.

R

R

O Y O( )

R = Crosslinking SitesR = Crosslinking Sitespyridine, terpyridine or carboxyl ester units

Y : O=P-Ph, SO2

O Y O( )x 1-x

New diol monomersNew diol monomersExisting monomersExisting monomers

pyridine or tetramethyl bearing monomers

WP 2 : Synthesis And Characterization Of Novel High Temperature Polymer Electrolyte MembranesWP 2 : Synthesis And Characterization Of Novel

High Temperature Polymer Electrolyte Membranes

Page 10: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

COOH

COOH

COOH

COOH COOH

COOH

=

N

HN

NH

N

NH2

NH2NH2

NH2

+

H2N NH2

H2N

NH2

OH2N NH2

H2N NH2NH2

NH2NH2

NH2

=

Attempts of crosslinking through Attempts of crosslinking through

ImidazoleImidazole FormationFormation

WP 2 : Synthesis And Characterization Of Novel High Temperature Polymer Electrolyte MembranesWP 2 : Synthesis And Characterization Of Novel

High Temperature Polymer Electrolyte Membranes

Page 11: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

o Monomer Preparationo Polymerization via polycondensationo Characterization via H-NMR, GPC, DMA,TGA, FT-iR, Tensile testingo Selection of the best membranes forMEA construction and testing

E.K. Pefkianakis, V. Deimede, M.K. Daletou, N. Gourdoupi, J.K. Kallitsis Macromol. Rapid Commun., 26, 1724, 2005

N.Gourdoupi, A.K. Andreopoulou, V. Deimede, J.K. Kallitsis Chem.Mater., 15, 5044, 2003

O

N N

OR

RO

O Xn

O O SO2

N

N

ON

O SO2

x y

O

N

O X

n

Structural

Characteristics

Aromatic Polyether

High Thermal Stability

High Chemical Stability

Pyridine Polar Group

H+ Acceptor site

Hydrogen Bond site

Route to Design and Synthesis of Novel Polymers(Aromatic Polyethers bearing Polar Groups)

Route to Design and Synthesis of Novel Polymers(Aromatic Polyethers bearing Polar Groups)

Page 12: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Temperature: 180 oC

Ambient pressure

Feed : H2/air

Anode: 1.2

Cathode: 2.0

0,0 0,2 0,4 0,6 0,8 1,0

100

200

300

400

500

600

700

800

900

1000

Advent TPS-2

1st generation product

2nd generation product

3nd generation productPotential, mV

Current Density, mA/cm2

110%6837803rd generation

55%6315902nd generation

-5943751st generation

V (mV) at 0.2 A/cm2

I (mA/cm2)at 0.5V

Increase in performance

PerformanceAdvent TPS-2

Membrane and MEA interface optimization-Advent TPS-2

Membrane and MEA interface optimization-Advent TPS-2

Page 13: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Linear aromatic polyethers containing side crosslinkable units

Linear aromatic polyethers containing side crosslinkable units

Copolymers with free carboxylic side groups

Copolymer ACopolymer A

NHO OH F S

O

O

F

O O OS

O

O

S

O

O

+ +

x 1-x

OHHO

COOH

N

COOH

O

+ K2CO3 + DMF + Tol

CopolymerCopolymer x x -- yy HH--NMRNMR Film IntegrityFilm Integrity

1 MX145 60-40 60-40 ���� ���� ����

2 MX149 65-35 55-45 ���� ���� ����

3 MX150 75-25 46-54 ����

4 MX151 80-20 70-30 ����

5 MX152 60-40 53-47 ���� ����

6 MX153 75-25 71-29 ���� ���� ����

7 MX154 85-15 59-41 ����

8 MX157 60-40 54-46 ���� ���� ����

9 MX159 80-20 71-29 ����

10 MX160 85-15 70-30 ����

Page 14: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

TGA thermographs in nitrogen atmosphere of the copolymers MX145(60-40)

before (----) and after Fenton Test(----)

N

* OO2S O O

COOH

O2S

60 40

Temperature dependence of the storage (E’) and loss (E”)modulus for the copolymers MX145(60-40) before (----)

and after Fenton Test(----)

100 125 150 175 200 225 250

0

500

1000

1500

2000

2500

3000

Temperature(oC)

E'(MPa)

0

100

200

300

400

500

600

700

MX145(Before Fenton)

MX145(After Fenton)

E"(MPa)

0 200 400 600 800

50

60

70

80

90

100

Weight(wt%

)

Temperature(oC)

Before Fenton Test

After fenton Test

TGATGA DMADMA

Thermal Properties of the Copolymers with free carboxylic side groups

Thermal Properties of the Copolymers with free carboxylic side groups

Page 15: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

3%3,5%100%24

0%0%100%5

0%0%100%1

MX197 crossMX196 crossMX145

(COOH)Time (h)

Soluble fraction

MX145(COOH)

MX197 crosslinked

MX196 crosslinked

Crosslinking of Carboxyl bearing polymersCrosslinking of Carboxyl bearing polymers

50 100 150 200 250 300

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

E''(MPa)

copolymer(COOH)

copolymer crosslinked in 2 steps

copolymer Direct crosslinking

Temperature(oC)

E'(MPa)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Properties of the

Crosslinked Polymers

DMADMA

Page 16: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

226+2.9142500489506750/50B11

230+2.4156000650008080/20B10

228+2.792100338007360/40B9

225+2.6641502390083.470/30B8

---3.1788002540088.780/20B7

198+234550167806860/40B6

--2.7556702030082.580/20B5

204+1.944400220007770/30B4

198+2.0461102200066.660/40B3

215+2.333800144007060/40B2

--2.8280001000079.580/20B1

TgFILMIMwMncx/ybx/yaCODE

Linear aromatic polyethers containing side crosslinkable units

Linear aromatic polyethers containing side crosslinkable units

a Compositions as determined by the monomers’ feed ratiob Compositions as determined by the 1 H NMRC GPC in CHCl3

Page 17: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Crosslinking of side double bondsCrosslinking of side double bonds

-82320.3VIIIB8

B10

B9

B9

B4

B4

B3

B2

B1

Copolymer

-1.52320.5X

-52900.3IXa

-1.72900.5IX

-92500.3IVa

-14,52140.93IV

-182220.93III

-2,72800.3II

-9,7-0.93I

Solubility in DMAc

Tgeqdb/

eqCrosslinker

CODE OF CROSSLINKED

POLYMER

C For 5 hours at 55 oC

Page 18: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

1200

1400

E'(MPa) E

''(MPa)

T (oC)

B9

IXa

IX

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

0

500

1000

1500

2000

2500 B8

VIII

E''(M

Pa)E

'(MPa)

T (oC)

0

50

100

150

200

250

300

0 50 100 150 200 250

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

B3

III

T (oC)

E'(MPa)

0

50

100

150

200

250

300

E''(M

Pa)

0 50 100 150 200 250 300

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B2

II

E'(MPa)

E''(M

Pa)

T (oC)

0

20

40

60

80

100

120

140

160

180

200

Crosslinking of side double bondsCrosslinking of side double bonds

Page 19: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

0.0 0.2 0.4 0.6 0.8

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

180 0C

200 0C

210 0C

220 0C

230 0C

i , A/cm2

voltage , mV

normal flows (H2/O

2(air) = 1.2/2.0)

0.0 0.2 0.4 0.6 0.8

0

100

200

300

400

500

600

700

800

900

1000

H2/Air 1.2/2.0

180 oC

230 oC

V, mV

I, A/cm2

Increase of the Operation TemperatureIncrease of the Operation Temperature

Page 20: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

0.0 0.2 0.4 0.6 0.8

0

100

200

300

400

500

600

700

800

900

1000

voltage , mV

i , A/cm2

180 0C

200 0C

220 0C

180 190 200 210 2200.100

0.101

0.102

0.103

0.104

0.105

0.106

0.107

0.108

0.109

Ionic conductivity

σ (

S/c

m)

T(OC)

0.0 0.2 0.4 0.6 0.8

300

400

500

600

700

800

900

1000

stability of MEA 1 at 200 0C

voltage , mV

i , A/cm2

0 hours

after 24 hours

after 30 hours

after 48 hours

Increase of the Operation Temperature of the MEAsbased on Crosslinked Copolymers B

Increase of the Operation Temperature of the MEAsbased on Crosslinked Copolymers B

I-V Curves of MEA 1II--V Curves of MEA 1V Curves of MEA 1

Hydrogen / Air

DL of MEA 1 = 250%

STABILITY of MEA 1 at 200STABILITY of MEA 1 at 200ooCC

0.1080.1050.101Conductivity

(S/cm)

0.670.60.53Current at 500

mV

670653634Voltage (mV)

at 0.2A/cm2

220200180Temperature

(oC)

Page 21: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Increase of the Operation Temperature of the MEAsbased on Crosslinked Copolymers B

Increase of the Operation Temperature of the MEAsbased on Crosslinked Copolymers B

0.0 0.2 0.4 0.6 0.8

0

100

200

300

400

500

600

700

800

900

1000

200 0C

voltage , mV

i , A/cm2

0 h

24 h

48 h

0.0 0.2 0.4 0.6 0.8

0

100

200

300

400

500

600

700

800

900

1000

voltage , mV

i , A/cm2

180 0C

200 0C

220 0C

180 190 200 210 2200.088

0.090

0.092

0.094

0.096

0.098

0.100

Ionic Conductivity

T(OC)

σ (

S/c

m)

I-V Curves of MEA 2II--V Curves of MEA 2V Curves of MEA 2

Hydrogen / Air

DL of MEA 2 = 195%

STABILITY of MEA 2 at 200STABILITY of MEA 2 at 200ooCC

0.0970.0930.089Conductivity

(S/cm)

>0.80.80.7Current at 500

mV

700687670Voltage (mV)

at 0.2A/cm2

220200180Temperature

(oC)

Page 22: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

0 50 100 150 200 250 300

300

400

500

600

700

T = 200oC

Feed = H2/synthetic air

+ 1 A (0.2 A/cm2)

5x5 single cell

(bipolar plates by Nedstack)

Advent TPS (210 µm thickness)

Voltage, mV

Time, h

Increase of the Operation TemperatureIncrease of the Operation Temperature

Page 23: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

180 200 220 240 260 280 300

0

20

40

60

80

100

MeOH conversion, %

T, oC

CuMn-ox

180 200 220 240 260 280 300

0

2

4

6

8

10

12

CuMn-red

CO selectivity, % open symbols: 300

oC to RT

solid symbols: RT to 300oC

180 200 220 240 260 280 300

0

20

40

60

80

100

T, oC

CuMn-ox-P150

180 200 220 240 260 280 300

0

2

4

6

8

10

12

open symbols: 300oC to RT

solid symbols: RT to 300oC

CuMn-red-P150

180 200 220 240 260 280 300

0

20

40

60

80

100

T, oC

CuMn-ox-P200

180 200 220 240 260 280 300

0

2

4

6

8

10

12

open symbols: 300oC to RT

solid symbols: RT to 300oC

CuMn-red-P200

�The catalytic activity of oxidized samples is higher when the reaction T goes from higher to

lower values

� The exposure T to H3PO4 doesn’t affect significantly the samples activity

WP3: Reforming catalysts: synthesis and screening

First results on CuMnOx catalysts

WP3: Reforming catalysts: synthesis and screening

First results on CuMnOx catalysts

Page 24: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

180 200 220 240 260 280 300

0

20

40

60

80

100

MeOH conversion, %

T, oC

CuMn-ox

180 200 220 240 260 280 300

0

2

4

6

8

10

12

CuMn-ox-P200

CuMn-ox-P150

CO selectivity, %

open symbols: 300oC to RT

solid symbols: RT to 300oC

180 200 220 240 260 280 300

0

20

40

60

80

100

MeOH conversion, %

T, oC

180 200 220 240 260 280 300

0

2

4

6

8

10

12

CuMn-red-P200

CuMn-red-P150

CuMn-red

CO selectivity, %

open symbols: 300oC to RT

solid symbols: RT to 300oC

� In oxidized samples, the exposure to H3PO4 has no negative effect

� In reduced samples, H3PO4 causes deactivation

First results on CuMnOx catalystsFirst results on CuMnOx catalysts

Page 25: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Schematic of the proposed fuel cell stack assemblySchematic of the proposed fuel cell stack assembly

Institut für Mikrotechnik Mainz GmbH

Advanced Energy Technologies

Nedstack Fuel Cell Technology BV

Page 26: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Project deliverablesProject deliverables

D1.1 Management. Procedures preparation, implementation and proposal

improvement

D1.2 Financial, technical, progress, management, mid-term reports

D2.1 Synthesis of new generation membranes based on Advent polymer

D2.2 Characterization of new generation membranes

D3.1 Methanol/ Ethanol reforming catalysts

D3.2 Thorough characterization of structural, redox and adsorptive properties

of the catalysts

D3.3 Report on 500 h long term catalyst testing

Page 27: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

D4.1 Preparation of reforming structured catalysts according to C1 configuration

D4.2 Preparation of an electrode with the reforming catalyst integrated in the hydrophobic layer (C2 configuration)

D4.3 Preparation of an electrode with fully mixed reforming catalyst/electrocatalyst (C3 configuration)

D5.1 Electrochemical testing of membranes

D5.2 Electrochemical testing of new electroreforming anode catalysts

D5.3 Understanding of electrochemical interface properties and electrocatalyticmechanism.

D6.1 Construction of bipolar plates which can operate at 190-200°C

D6.2 Single cell long term testing of most promising materials prepared in WP1, WP2 and WP3

D6.3 Post mortem characterization of electrocatalysts, catalysts, membranes and bipolar plates

Project deliverablesProject deliverables

Page 28: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

D7.1 Construction of 100W stack, BOP components and control system

D7.3 System integration and 500 hrs test

D7.4 Report on system control strategy

D8.1 Internal dissemination and knowledge management through a secure

access site

D8.2 Web site dedicated to the scientific community

D8.3 Public Dissemination (papers in specialized and non specialized

press, technology transfer brokerage events)

D8.4 Plan for the Use and Dissemination of the foreground

Project deliverablesProject deliverables

Page 29: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

� ADVENT TECHNOLOGIES develops new materials and systems for

renewable energy technologies, such as high temperature PEM fuel cells

and hydrogen clean up.

� Advent is primarily focused on high temperature PEM fuel cell membranes

and components.

� Advent also participates in projects for the development of flexible organic

photovoltaics (OPV’s)

� The Company is currently headquartered in Athens, Greece with research

and pilot manufacturing facilities in Patras, Greece.

OverviewOverview

Advent Technologies SA

Page 30: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

Polymer Chemistry

Laboratory

University of Patras

Electrocatalysis Laboratory

FORTH-ICEHT

European and Greek Grants

JOULE III 1998-2001

APOLLON 2002-2005

PYTHAGORAS 2004-2006

PEMHYGEN 2003-2007

PROMETHEAS 2002-2006

APOLLON-B 2006-2009

Development of revolutionary technology

in the area of High Temperature MEAs

Incorporation of

ADVENT TECHNOLOGIES SA (2005)

and establishment of the

ADVENT TECHNOLOGIES NORTH AMERICA INC (2006)

Funding from PRAXE and institutional and

industrial investors from

Greece and abroad (e.g.

Piraeus Bank Capital

Management VC, Sunlight

Systems, Velti, Eltpa-

Provoli, Dolphin Capital,

ILPRA etc.)

HistoryHistory

Page 31: Development of an Internal Reforming Alcohol High ...PEM Fuel Cell Stack IRAFC, JTI-FCH-JU-2008-1 Brussels, November 10th 2010 Project acronym: IRAFC GrantagreementNo.: 245202 Duration

From basic research to a productFrom basic research to a product