Development of a chirped pulse laser for cooling positronium

18
Development of a chirped pulse laser for cooling positronium 1 12.5 th International Workshop on Positron and Positronium Chemistry (PPC 12.5) Y. Tajima 1 , K. Yamada 2 , T. Kobayashi 1 , R. Uozumi 1 , A. Ishida 2 , T. Namba 2 , S. Asai 2 , M. Kuwata-Gonokami 2 , K. Shu 1,2 , E. Chae 1,7 , K. Yoshioka 1 , N. Oshima 3 , B.E. O’Rourke 3 , K. Michishio 3 , K. Ito 3 , K. Kumagai 3 , R. Suzuki 3 , S. Fujino 4 , T. Hyodo 5 , I. Mochizuki 5 , K. Wada 5 and T. Kai 6 31 August 2021 7 1 2 3 4 5 6

Transcript of Development of a chirped pulse laser for cooling positronium

Development of a chirped pulse laser

for cooling positronium

1

12.5th International Workshop on Positron and Positronium Chemistry (PPC 12.5)

Y. Tajima1, K. Yamada2, T. Kobayashi1, R. Uozumi1, A. Ishida2, T. Namba2,

S. Asai2, M. Kuwata-Gonokami2, K. Shu1,2, E. Chae1,7, K. Yoshioka1,

N. Oshima3, B.E. O’Rourke3, K. Michishio3, K. Ito3, K. Kumagai3, R. Suzuki3,

S. Fujino4, T. Hyodo5, I. Mochizuki5, K. Wada5 and T. Kai6

31 August 2021

7

1 2 3

4 5 6

The benefits from a cooled gas of Ps below 10 K

2

[1] S. Chu et al., Physics Review Letters, 52, 1689 (1984)

[2] M. S. Fee et al., Physics Review Letters, 70, 1397 (1993)

[3] S. Mariazzi et al. Physics Review Letters, 104, 243401 (2010)

[4] D. Cassidy et al. physica status solidi, 4, 3419 (2007)

Precision spectroscopy of Ps(Measurement of 1S-2S transition frequency)

Realization of the first BEC of antimatter

Realization of the first Bose-Einstein Condensation of antimatter using positronium(Ps)

<Our Goal>

<Main Challenges>

1. Instant production of dense Ps 2. Rapid cooling of Ps

Cooling Ps atoms to around 10 K

in a few hundred nano-seconds

(Critical temperature is 14 K at 1018 /cm3)

Challenges of laser coolingfor rapid cooling of Ps below 100 K

Principle of laser cooling

3

excited

state

Transition

frequency 𝜔0

laser

𝜔 < 𝜔0

𝜔0 = 𝜔 + 𝑘𝑣

velocity 𝑣

ground

state

decelerate

Recoil velocity :ℏ𝜔

𝑚𝑐(ex. Rb : 5.9 × 10−3 m/s, Ps : 1.5 × 103 m/s )

Velocity m/s

De

nsity o

f a

tom

s (

a.u

.)

Velocity range

where the laser can

cool atoms

Atoms at lower temperature

increases after laser cooling

The requirements for laser cooling of Ps

4

Δ𝜈 (GHz)

Hydrogen

FWHM: 15 GHz

Ps

FWHM: 460 GHz

Pow

er

(a.u

.)

2p

1s Ps

Ps

1cycle = 6.4 ns243 nm

Finish cooling before annihilation

Large Doppler broadening

Cooling Ps from 300 K to 10 K

requires about 50 excitation cycles.

Long pulse duration about

300 ns (at 243 nm)

・Broadband laser (FWHM: 150 GHz)

・Frequency-chirped laser (200 GHz/µs)

The Doppler broadening of Ps is large

because of its small mass

Doppler profile for Hydrogen and Ps at 300 K

Laser Spectrum

Previous research on cooling laser of Ps

5

[3] T. Kumita, et al. Nuclear Instruments and Methods in Physics Research Section B, 192, 171 (2002).

Cooling laser proposed in the previous research[3]

The characteristics of the laser system・The wavelength of the output laser pulse is

around 243 nm but not sufficiently reproducible

・The bandwidth of this laser is about 86 GHz

・Frequency chirp is not achieved

・Pulse duration is 280 ns

Requirements for laser cooling of Ps ・The wavelength of the cooling laser is adjustable

for exciting 1S-2P transition

・Bandwidth is about 150 GHz

・Frequency chirp is necessary for effective cooling

・Pulse duration is about 300 ns

Schematic diagram of cooling laser

6

K. Yamada, Y. Tajima, et. al., Physical Review Applied 16, 014009 (2021)

Schematic diagram of cooling laser

7

729nm → 243 nm

Amplifying an output pulse

CW 729 nmTuning the center

frequency of cooling laser

・Long pulse duration・Wide bandwidth・Rapid frequency-chirp rate

K. Yamada, Y. Tajima, et. al., Physical Review Applied 16, 014009 (2021)

K. Yamada, Y. Tajima, et. al., Physical Review Applied 16, 014009 (2021)

8

注入同期型

[nm]729.063…

Spectral broadening by EOM

EOM placed inside the optical cavity broadens the laser spectrum

by generating a cascade of sidebands.

EOM

Single mode

Electro-optics modulator (EOM)

creates sidebands in frequency domain

[nm]729.063…

Schematic diagram of cooling laser

EOM

High Reflective Mirror

K. Yamada, Y. Tajima, et. al., Physical Review Applied 16, 014009 (2021)

Schematic diagram of cooling laser

9

注入同期型

Chirped Pulse Train Generator

Frequency (GHz)Time (µs)

Pow

er

(a.u

.)

Pow

er

(a.u

.)

Appling a pulse gain while

driving EOM realizes

・Long pulse duration

・Broadband laser

・frequency-chirped laser

Ti:S

Ti:Sapphire Crystal

Overview

Power waveform

Spectrum at different timings

2 µs

200 GHz

10

注入同期型

Manipulation of pulse width using AO modulation

Driving AO modulation to determine the timing

of the falling edge of pulsed light

AOM

Input lightdiffracted light

transmitted light

Time [µs]

Schematic diagram of cooling laser

Time [µs]

AOM

K. Yamada, Y. Tajima, et. al., Physical Review Applied 16, 014009 (2021)

11

Amplifying the pulsed laser out from the CPTG

Time [µs] Time [µs]

0.1 mJ

15 mJbefore After

Schematic diagram of cooling laser

The pulse energy at 729 nm exceeds 15 mJ

after eight rounds of amplification

Multipass Ti:S AmplifierOverview

K. Yamada, Y. Tajima, et. al., Physical Review Applied 16, 014009 (2021)

12

Time [µs]

• A long pulse duration

• A broadband spectrum and a rapid frequency chirp

at around 243 nm

[nm]243

Schematic diagram of cooling laser

Third harmonic generation

LBO BBO

The pulsed laser has the following features:

LBO crystal

K. Yamada, Y. Tajima, et. al., Physical Review Applied 16, 014009 (2021)

729 nm

(15 mJ)

365 nm

(5 mJ)

243 nm

(1 mJ)

13

Demonstration of properties of cooling laserPower waveform at 243 nm Observing frequency chirp

Time-integrated spectrum

・ Center frequency : 1S-2P transition frequency – 120 GHz

・ Pulse width : > 300 ns ・Pulse energy : 1 mJ

・ Bandwidth : 200 GHz ・Chirp rate : ± 42 GHz/𝝁s

Frequency (GHz)

Pow

er

(a.u

.)

Changing the timing of the pump laser for the multipass amplifier

14

Third harmonic generation

Ps Cooling Laser

Multipass amplifier

Seed laser

Chirped Pulse Train Generator

Overview of the cooling laser (2.0 m×1.1 m)

Laser transport

15

At University of Tokyo

The compact laser for easy transport

Laser cooling experiment at KEK

16

High Energy Accelerator Research Organization (KEK)

Laser Booth Vacuum chamber

Positron beam

Inside the vacuum chamber

Laser system for prototypical laser cooling

17

Laser for measuring velocity distribution Cooling laser

Nd:YAG

Pulse Laser

Nd:YAG

Pulse Laser

Nd:YAG

Pulse Laser

OPO EOM

Multipass amplifier

LBO+BBO

Chirped

Pulse

Train

Generator

AOM

Master clock triggers• Nd:YAG Laser × 3

• EOM

• AOM

PBS

To Vacuum Chamber

where Ps atoms are produced

Excitation laser

243 nm

Ionazation laser

532 nm355 nm

Cooling laser

243 nm

Result

Next steps

18

Summary• Ps-BEC is the best candidate for the first antimatter BEC

• Laser cooling of Ps using the 1S-2P transition is a promising method for

rapid cooling of Ps well below 100 K

• Demonstration of laser cooling of Ps atoms,

using the current prototypical laser

• Update the specification of the cooling laser

for more efficient cooling of Ps

1. A train of short pulses inside the 300-ns-long contour

(approximately 2 times as long as the annihilation lifetime of Ps)

2. Spectral broadening by EO modulation spanning over 200 GHz

in total and two characteristic peaks in the spectrum3. A rapid frequency chirp (±42 GHz/μs) in the positive and negative directions

• We developed the unique laser for cooling Ps

Requirements for laser cooling of Ps

1. A broadband spectrum and a frequency chirp to overcome the large Doppler broadening

2. A long pulse duration comparable to the lifetime of Ps