Development and Use of TOMCAT/SLIMCAT 3-D CTM Wuhu Feng and Martyn Chipperfield Chris Wilson, Manuel...

1
Development and Use of TOMCAT/SLIMCAT 3-D CTM Wuhu Feng and Martyn Chipperfield Chris Wilson, Manuel Gloor, Martyn Chipperfield A 4-D var inverse modelling system has been built around the TOMCAT CTM. The adjoint of the model advection, convection and PBL mixing schemes has been coded. The model is being used to study CO 2 and CH 4 emission fluxes (e.g. NERC Amazonica Project) NCAS, School of Earth and Environment, University of Leeds, UK. • TOMCAT/SLIMCAT is a 3-D offline chemical transport model ( www.see.leeds.ac.uk/tomcat ). It contains a detailed description of stratospheric and tropospheric chemistry. • TOMCAT is also the host CTM for the GLOMAP global aerosol model. TOMCAT is a test-bed for development of aerosol and chemistry schemes for the UM and UKCA. It shares a number of chemistry / aerosol routines. • Since mid 2011 NCAS has been supporting the development of TOMCAT/SLIMCAT in Leeds through the co-funding of Wuhu Feng. • A major aim of the current NCAS- funded work is the development of a new version of the model which combines best aspects of current versions (inc. pTOMCAT used in Cambridge). • The model is also being used in a wide variety of scientific studies. Wuhu Feng, Ryan Hossaini, Martyn Chipperfield •Treatment of convection is a major uncertainty in ‘large-scale’ models. •Basic TOMCAT model uses Tiedtke (1989) scheme to diagnose convection. •We have developed model to also use archived convective fields from ECMWF reanalyses (ERA-Interim). 2. Convection 1. Introduction References Institute for Climate and Atmospheric Science School of Earth and Environment Figure 4 TOMCAT adjoint CH 4 results for Barrow, Alaska. (Left) Sensitivity of site to air masses. (Centre, right) sensitivity weighted by 2 different CH 4 emission scenarios. Results top- bottom for 10, 30, 60 day histories. Figure 1. Archived versus diagnosed convective updraft mass fluxes. TOMCAT with convection scheme underestimates strong upward convection. 3. Inverse Modelling TOMCAT/SLIMCAT has been used by in a range of science studies. Here is a list of W. Feng papers over past 18 months Monge-Sanz, B.M., Chipperfield, M.P., Cariolle, D., and Feng, W.: Results from a new linear O3 scheme with embedded heterogeneous chemistry compared with the parent full-chemistry 3-D CTM, Atmos. Chem. Phys., 11, 1227-1242, doi:10.5194/acp-11-1227-2011, 2011. • Russo, M.R., V. Marecal, C. R. Hoyle, J. Arteta, C. Chemel, M. P. Chipperfield, O. Dessens, W. Feng, J. S. Hosking, P. J. Telford, O. Wild, X. Yang and J. A. Pyle, Representation of tropical deep convection in atmospheric models, part 1: Meteorology and comparison with satellite observations, Atmos. Chem. Phys., 11, 2765-2786, 2011. • Kremser, S., Schofield, R., Bodeker, G. E., Connor, B. J., Rex, M., Barret, J., Mooney, T., Salawitch, R. J., Canty, T., Frieler, K., Chipperfield, M. P., Langematz, U., and Feng, W.: Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements, Atmos. Chem. Phys., 11, 5183-5193, doi:10.5194/acp-11-5183-2011, 2011. • Hoyle, C. R., Russo, M. R., Arteta, J., Chemel, C., Chipperfield, M. P., D.Amato, F., Dessens, O., Feng, W., Harris, N. R. P., Hosking, J. S., Morgenstern, O., Peter, T., Pyle, J. A., Reddmann, T., Richards, N. A. D., Telford, P. J., Tian, W., Viciani, S., Wild, O., Yang, X., and Zeng, G.: Representation of tropical deep convection in atmospheric models, Part 2: Tracer transport, Atmos. Chem. Phys., 11, 8103-8131, 2011. • Feng, W., Chipperfield, M. P., S. Dhomse, B. M. Monge-Sanz, X. Yang, K. Zhang, and M. Ramonet: Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model, Atmos. Chem. Phys., 11, 5783--5803, 2011. • Feng, W., Chipperfield, M. P., Davies, S., Mann, G. W., Carslaw, K. S., Dhomse, S., Harvey, L., Randall, C., and Santee, M. L.: Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005, Atmos. Chem. Phys., 11, 6559-6573, doi:10.5194/acp-11-6559-2011, 2011. • Lindenmaier, R., K. Strong, R. L. Batchelor, P. Bernath, S. H. Chabrillat, M. Chipperfield, W. H. Daffer, J. R. Drummond, W. Feng, A. I. Jonsson, F. Kolonjari, G. L. Manney, C. A. McLinden, R. Menard, and K. A. Walker, A study of the Arctic NOy budget above Eureka, Canada, J. Geophys. Res., doi:10.1029/2011JD016207, 116, No. D23, D23302, 2011. • Dhomse, S., Chipperfield, M.P., Feng, W., and Haigh, J.D.: Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses, Atmos. Chem. Phys., 11, 12773-12786, doi:10.5194/acp-11-12773-2011, 2011. • Hossaini, R., Chipperfield, M. P., Feng, W., Breider, T. J., Atlas, E., Montzka, S. A., Miller, B. R., Moore, F., and Elkins, J.: The contribution of natural and anthropogenic very short-lived species to stratospheric bromine, Atmos. Chem. Phys., 12, 371-380, doi:10.5194/acp-12-371-2012, 2012. • Kohlhepp, R., Ruhnke, R., Chipperfield, M. P., De Mazire, M., Notholt, J., Barthlott, S., Batchelor, R. L., Blatherwick, R. D., Blumenstock, Th., Coffey, M. T., Demoulin, P., Fast, H., Feng, W., Goldman, A., Griffith, D. W. T., Hamann, K., Hannigan, J. W., Hase, F., Jones, N. B., Kagawa, A., Kaiser, I., Kasai, Y., Kirner, O., Kouker, W., Lindenmaier, R., Mahieu, E., Mittermeier, R. L., Monge-Sanz, B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Raffalski, U., Reddmann, Th., Rettinger, M., Rinsland, C. P., Rozanov, E., Schneider, M., Senten, C., Servais, C., Sinnhuber, B.-M., Smale, D., Strong, K., Sussmann, R., Taylor, J. R., Vanhaelewyn, G., Warneke, T., Whaley, C., Wiehle, M., and Wood, S. W.: Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances, Atmos. Chem. Phys., 12, 3527- 3556, doi:10.5194/acp-12-3527-2012, 2012. • Roscoe, H., W. Feng , M. Chipperfield , M. Trainic , E. Shuckburgh , The existence of the edge region of the Antarctic stratospheric vortex, J. Geophys. Res., 117, D04301, doi:10.1029/2011JD015940, 2012. • Adams, C., K. Strong, X. Zhao, M. R. Bassford, M. Chipperfield, W. H. Daffer, J. R. Drummond, E. Farahani, W. Feng, A. Fraser, F. Goutail, G. L. Manney, C. A. McLinden, A. Pazmino, M. Rex, and K. A. Walker, Severe 2011 ozone depletion assessed with 11 years of ozone, NO2, and OClO measurements at 80N, 7. W. Feng CTM Publications 2011/12 Wuhu Feng, Mark Richardson (NAG), Martyn Chipperfield •The new model uses mixed OpenMP / MPI parallelisation to improve efficiency. Within a latitude-longitude patch of the model domain, OpenMP threads are used. This maintains parallel scaleability beyond the normal MPI communication limits. • Figure 3 shows runs from a 1 o x 1 o which used 320 Hector cores (80 MPI tasks x 4 OMP threads). In this setup the model takes 18 hours per year. • Figure 3 also shows example comparisons of the modelled ClONO 2 and N 2 O from a low resolution run. The overall general pattern of modelled fields from low and high resolution simulations is similar. However, the high resolution run gives finer features of tracer transport (filament s, e.g., South America) which also affects the modelled chemical species. 4. Computationally Efficient High Resolution Model 5. Development of Inverse Model 3. Transport of VSLS Ryan Hossaini, Wuhu Feng, Martyn Chipperfield 6. Model-Model Comparisons Chris Wilson, Sarah Monks, Steve Arnold, Nigel Richards, Martyn Chipperfield •TOMCAT has been involved in a number of international model-model comparisons. These serve as an important check of model performance and lead to scientific papers. • Transcom-CH4 (Patra et al., 2011) looked at modelled CH 4 trends over past 20 years. Transcom-N2O and Transcom-PBL are underway. •POLMIP is comparing behaviour of model chemistry in the Arctic troposphere. Figure 2. Modelled CH 3 I profiles versus aircraft data during NASA TC4 campaign. TOMCAT with archived convection shows more realistic tracer transport in the TTL. Figure 5. Comparison of modelled CH 4 annual cycles from Transcom-CH4 (Patra et al., 2011). Figure 3. ClONO 2 and N 2 O from TOMCAT simulations at 5 o x 5 o (above) and 1 o x1 o degree.

Transcript of Development and Use of TOMCAT/SLIMCAT 3-D CTM Wuhu Feng and Martyn Chipperfield Chris Wilson, Manuel...

Page 1: Development and Use of TOMCAT/SLIMCAT 3-D CTM Wuhu Feng and Martyn Chipperfield Chris Wilson, Manuel Gloor, Martyn Chipperfield A 4-D var inverse modelling.

Development and Use of TOMCAT/SLIMCAT 3-D CTMWuhu Feng and Martyn Chipperfield

Chris Wilson, Manuel Gloor, Martyn Chipperfield

• A 4-D var inverse modelling system has been built around the TOMCAT CTM. The adjoint of the model advection, convection and PBL mixing schemes has been coded.

• The model is being used to study CO2 and CH4 emission fluxes (e.g. NERC Amazonica Project)

NCAS, School of Earth and Environment, University of Leeds, UK.

• TOMCAT/SLIMCAT is a 3-D offline chemical transport model (www.see.leeds.ac.uk/tomcat). It contains a detailed description of stratospheric and tropospheric chemistry.

• TOMCAT is also the host CTM for the GLOMAP global aerosol model.

• TOMCAT is a test-bed for development of aerosol and chemistry schemes for the UM and UKCA. It shares a number of chemistry / aerosol routines.

• Since mid 2011 NCAS has been supporting the development of TOMCAT/SLIMCAT in Leeds through the co-funding of Wuhu Feng.

• A major aim of the current NCAS-funded work is the development of a new version of the model which combines best aspects of current versions (inc. pTOMCAT used in Cambridge).

• The model is also being used in a wide variety of scientific studies.

Wuhu Feng, Ryan Hossaini, Martyn Chipperfield

•Treatment of convection is a major uncertainty in ‘large-scale’ models.•Basic TOMCAT model uses Tiedtke (1989) scheme to diagnose convection.•We have developed model to also use archived convective fields from ECMWF reanalyses (ERA-Interim).

2. Convection1. Introduction

References

Institute for Climate and Atmospheric ScienceSchool of Earth and Environment

Figure 4 TOMCAT adjoint CH4 results for Barrow, Alaska. (Left) Sensitivity of site to air masses. (Centre, right) sensitivity weighted by 2 different CH4

emission scenarios. Results top-bottom for 10, 30, 60 day histories.

Figure 1. Archived versus diagnosed convective updraft mass fluxes. TOMCAT with convection scheme underestimates strong upward convection.

3. Inverse Modelling

TOMCAT/SLIMCAT has been used by in a range of science studies. Here is a list of W. Feng papers over past 18 months

• Monge-Sanz, B.M., Chipperfield, M.P., Cariolle, D., and Feng, W.: Results from a new linear O3 scheme with embedded heterogeneous chemistry compared with the parent full-chemistry 3-D CTM, Atmos. Chem. Phys., 11, 1227-1242, doi:10.5194/acp-11-1227-2011, 2011. • Russo, M.R., V. Marecal, C. R. Hoyle, J. Arteta, C. Chemel, M. P. Chipperfield, O. Dessens, W. Feng, J. S. Hosking, P. J. Telford, O. Wild, X. Yang and J. A. Pyle, Representation of tropical deep convection in atmospheric models, part 1: Meteorology and comparison with satellite observations, Atmos. Chem. Phys., 11, 2765-2786, 2011. • Kremser, S., Schofield, R., Bodeker, G. E., Connor, B. J., Rex, M., Barret, J., Mooney, T., Salawitch, R. J., Canty, T., Frieler, K., Chipperfield, M. P., Langematz, U., and Feng, W.: Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements, Atmos. Chem. Phys., 11, 5183-5193, doi:10.5194/acp-11-5183-2011, 2011. • Hoyle, C. R., Russo, M. R., Arteta, J., Chemel, C., Chipperfield, M. P., D.Amato, F., Dessens, O., Feng, W., Harris, N. R. P., Hosking, J. S., Morgenstern, O., Peter, T., Pyle, J. A., Reddmann, T., Richards, N. A. D., Telford, P. J., Tian, W., Viciani, S., Wild, O., Yang, X., and Zeng, G.: Representation of tropical deep convection in atmospheric models, Part 2: Tracer transport, Atmos. Chem. Phys., 11, 8103-8131, 2011. • Feng, W., Chipperfield, M. P., S. Dhomse, B. M. Monge-Sanz, X. Yang, K. Zhang, and M. Ramonet: Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model, Atmos. Chem. Phys., 11, 5783--5803, 2011. • Feng, W., Chipperfield, M. P., Davies, S., Mann, G. W., Carslaw, K. S., Dhomse, S., Harvey, L., Randall, C., and Santee, M. L.: Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005, Atmos. Chem. Phys., 11, 6559-6573, doi:10.5194/acp-11-6559-2011, 2011. • Lindenmaier, R., K. Strong, R. L. Batchelor, P. Bernath, S. H. Chabrillat, M. Chipperfield, W. H. Daffer, J. R. Drummond, W. Feng, A. I. Jonsson, F. Kolonjari, G. L. Manney, C. A. McLinden, R. Menard, and K. A. Walker, A study of the Arctic NOy budget above Eureka, Canada, J. Geophys. Res., doi:10.1029/2011JD016207, 116, No. D23, D23302, 2011. • Dhomse, S., Chipperfield, M.P., Feng, W., and Haigh, J.D.: Solar response in tropical stratospheric ozone: a 3-D chemical transport model study using ERA reanalyses, Atmos. Chem. Phys., 11, 12773-12786, doi:10.5194/acp-11-12773-2011, 2011. • Hossaini, R., Chipperfield, M. P., Feng, W., Breider, T. J., Atlas, E., Montzka, S. A., Miller, B. R., Moore, F., and Elkins, J.: The contribution of natural and anthropogenic very short-lived species to stratospheric bromine, Atmos. Chem. Phys., 12, 371-380, doi:10.5194/acp-12-371-2012, 2012. • Kohlhepp, R., Ruhnke, R., Chipperfield, M. P., De Mazire, M., Notholt, J., Barthlott, S., Batchelor, R. L., Blatherwick, R. D., Blumenstock, Th., Coffey, M. T., Demoulin, P., Fast, H., Feng, W., Goldman, A., Griffith, D. W. T., Hamann, K., Hannigan, J. W., Hase, F., Jones, N. B., Kagawa, A., Kaiser, I., Kasai, Y., Kirner, O., Kouker, W., Lindenmaier, R., Mahieu, E., Mittermeier, R. L., Monge-Sanz, B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Raffalski, U., Reddmann, Th., Rettinger, M., Rinsland, C. P., Rozanov, E., Schneider, M., Senten, C., Servais, C., Sinnhuber, B.-M., Smale, D., Strong, K., Sussmann, R., Taylor, J. R., Vanhaelewyn, G., Warneke, T., Whaley, C., Wiehle, M., and Wood, S. W.: Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances, Atmos. Chem. Phys., 12, 3527-3556, doi:10.5194/acp-12-3527-2012, 2012. • Roscoe, H., W. Feng , M. Chipperfield , M. Trainic , E. Shuckburgh , The existence of the edge region of the Antarctic stratospheric vortex, J. Geophys. Res., 117, D04301, doi:10.1029/2011JD015940, 2012. • Adams, C., K. Strong, X. Zhao, M. R. Bassford, M. Chipperfield, W. H. Daffer, J. R. Drummond, E. Farahani, W. Feng, A. Fraser, F. Goutail, G. L. Manney, C. A. McLinden, A. Pazmino, M. Rex, and K. A. Walker, Severe 2011 ozone depletion assessed with 11 years of ozone, NO2, and OClO measurements at 80N, Geophys. Res. Lett., 39, L05806, doi:10.1029/2011GL050478, 2012. • Lindenmaier, R., Strong, K., Batchelor, R. L., Chipperfield, M. P., Daffer, W. H., Drummond, J. R., Duck, T. J., Fast, H., Feng, W., Fogal, P. F., Kolonjari, F., Manney, G. L., Manson, A., Meek, C., Mittermeier, R. L., Nott, G. J., Perro, C., and Walker, K. A.: Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011, Atmos. Chem. Phys., 12, 3821-3835, doi:10.5194/acp-12-3821-2012, 2012. • Orr, A., T.J. Bracegirdle, J. S. Hosking, T. Jung, J. D. Haigh, T. Phillips, and W. Feng, Possible dynamical mechanisms for Southern Hemisphere climate change due to the ozone hole, J. Atmos. Sci. , doi: 10.1175/JAS-D-11-0210.1, accepted, 2012. • Gunn, L. N., Chipperfield, M. P., Feng, W., Van Roozendael, M., Gil, M., Yela, M., Johnston, P. V., Kreher, K., and Wood, S. W.: Impact of meteorological analyses and chemical data assimilation on modelled long-term changes in stratospheric NO2, Atmos. Chem. Phys. Discuss., 12, 12023-12050, doi:10.5194/acpd-12-12023-2012, 2012.

7. W. Feng CTM Publications 2011/12

Wuhu Feng, Mark Richardson (NAG), Martyn Chipperfield

•The new model uses mixed OpenMP / MPI parallelisation to improve efficiency. Within a latitude-longitude patch of the model domain, OpenMP threads are used. This maintains parallel scaleability beyond the normal MPI communication limits.

• Figure 3 shows runs from a 1o x 1o which used 320 Hector cores (80 MPI tasks x 4 OMP threads). In this setup the model takes 18 hours per year.

• Figure 3 also shows example comparisons of the modelled ClONO2 and N2O from a low resolution run. The overall general pattern of modelled fields from low and high resolution simulations is similar. However, the high resolution run gives finer features of tracer transport (filament s, e.g., South America) which also affects the modelled chemical species.

4. Computationally Efficient High Resolution Model

5. Development of Inverse Model

3. Transport of VSLS

Ryan Hossaini, Wuhu Feng, Martyn Chipperfield

6. Model-Model Comparisons

Chris Wilson, Sarah Monks, Steve Arnold, Nigel Richards, Martyn Chipperfield

•TOMCAT has been involved in a number of international model-model comparisons. These serve as an important check of model performance and lead to scientific papers.

• Transcom-CH4 (Patra et al., 2011) looked at modelled CH4 trends over past 20 years. Transcom-N2O and Transcom-PBL are underway.

•POLMIP is comparing behaviour of model chemistry in the Arctic troposphere.

Figure 2. Modelled CH3I profiles versus aircraft data during NASA TC4 campaign. TOMCAT with archived convection shows more realistic tracer transport in the TTL.

Figure 5. Comparison of modelled CH4 annual cycles from Transcom-CH4 (Patra et al., 2011).

Figure 3. ClONO2 and N2O from TOMCAT simulations at 5o x 5o (above) and 1o x1o degree.